Link to Current (updated) notes

next previous Next: Index Up: Lecture_07_web Previous: Vector Spaces

Linear Transformations


MATHEMATICA$ ^{\text{\scriptsize {\textregistered }}}$ Example
(notebook Lecture-07)
(html Lecture-07)
(xml+mathml Lecture-07)
Visualization of linear transformations
  1. Take a polyhedron (an octahedron, for example) and color each of the faces and display it.
  2. Apply the matrix:

    $\displaystyle \left( \begin{array}{ccc} 1 & 0 & 0\ 0 & 1 & 0\ 0 & 0 & -1\ \end{array} \right)$ (07-15)

    to each of the vertices. Note that the transformation reflects along the z-directions across the x-y plane.
  3. Apply the matrix:

    $\displaystyle \left( \begin{array}{ccc} 1 & 0 & 0\ 0 & 1 & 0\ 0 & 0 & 5\ \end{array} \right)$ (07-16)

    to each of the vertices.

  4. Apply the matrix:

    $\displaystyle \left( \begin{array}{ccc} \cos(\theta) & -\sin(\theta) & 0\ \sin(\theta) & \cos(\theta) & 0\ 0 & 0 & 1\ \end{array} \right)$ (07-17)

    to each of the vertices. Its determinant is unity.



© W. Craig Carter 2003-, Massachusetts Institute of Technology