Kinetics of Materials

Next: About this document ...

Page 73 — 2 corrections

Eq. 3.115

$\displaystyle \vec J_1 = -D_1 \left( \nabla c_1 + \frac{\Omega_1 c_1}{kT} \nabla P \right)
= -D_1 c_1   \nabla \left( \ln c_1 + \frac{\Omega_1}{kT} P \right)
$

Eq. 3.118

$\displaystyle \vec F_1 \propto \nabla P \propto \left( \hat u_r \PFD {P}{r}
+ \...
... \frac{1}{r^2}\left( -\hat u_r \sin \theta + \hat u_\theta \cos
\theta
\right)
$

Page 76 — 3 corrections

First equation on page

$\displaystyle A = \pi \left( r^2 + h^2 \right)
$

Eq. 3.125

$\displaystyle R = \frac{r^2}{2h} \left( 1 + \frac{h^2}{r^2} \right)
$

Eq. 3.127

$\displaystyle dV = \frac{\pi r^2}{2} \left( 1 +
\frac{h^2}{r^2} \right) dh
$

Page 82

Fig. 4.2

 

Page 92

Eq. 4.68

$\displaystyle v = \Omega_1 \left[ {D_1 - D_2} \right]_m \left(
{{\frac{\partial c_1}{\partial x}}} \right)_m
$

Page 97 — 3 corrections

Eq. 4.100

$\displaystyle D(\theta )= -\frac{\vec J \cdot \nabla c}{\vert\nabla c\vert^2}
=...
...ht)^2+D_{33}\left( {{\frac{\partial c}{\partial \hat x_3}}}
\right)^2}\right]
$

Eq. 4.101

$\displaystyle \cos^2 \theta = \left[ \frac{\nabla c \cdot \hat k}{\vert\nabla c...
...\right]^2
= \frac{1}{\vert\nabla c\vert^2} \left( \PFD {c}{\hat x_3} \right)^2
$

Eq. 4.102

$\displaystyle \sin^2 \theta = \left[ \frac{\nabla c \cdot \left( \hat \imath + ...
...t( \PFD {c}{\hat x_1} \right)^2 +
\left( \PFD {c}{\hat
x_2} \right)^2 \right]
$

Page 109 — 7 corrections

Eq. 5.39

$\displaystyle u(x) = \frac{b_o}{2} +
\sum_{n=1}^{\infty}
\left[
a_n \sin \left( n \pi \frac{x}{L}\right)
+
b_n \cos \left( n \pi \frac{x}{L} \right)
\right]
$

Eq. 5.40

$\displaystyle a_n = \frac{1}{L} \int_{-L}^{L} u(x) \sin \left( n \pi \frac{x}{L}\right) dx
$

Eq. 5.41

$\displaystyle b_n = \frac{1}{L} \int_{-L}^{L} u(x) \cos \left( n \pi \frac{x}{L}\right) dx
$

Eq. 5.42

$\displaystyle u(x) = \sum_{n=1}^{\infty} a_n \sin \left( n \pi \frac{x}{L} \right)
$

Eq. 5.43

$\displaystyle a_n = \frac{2}{L} \int_{0}^{L} u(x) \sin \left( n \pi \frac{x}{L} \right) dx
$

Eq. 5.44

$\displaystyle u(x) = \frac{b_o}{2} +
\sum_{n=1}^{\infty} b_n \cos\left( n \pi \frac{x}{L} \right)
$

Eq. 5.45

$\displaystyle b_n = \frac{2}{L} \int_{0}^{L} u(x) \cos \left( n \pi \frac{x}{L} \right) dx
$

Page 112

last 2 lines of Table 5.3

$ \frac{e^{-qx}}{p}$ erfc$ \left( \frac{x}{\sqrt{4 D t}} \right)$
$ \frac{e^{-qx}}{pq}$ $ \sqrt{\frac{4 D t}{\pi}}   e^{-x^2/(4Dt)} - x  $   erfc$ \left( \frac{x}{\sqrt{4 D t}} \right)$

Page 114 — 3 corrections

Text at top of page before Eq. 5.71

An estimate of the penetration distance for the error-function solution (Eq. 5.23) is the distance where $ c(x,t) = \cnot /8$ , or equivalently, $ \erf [x/(2\sqrt{Dt})]$ = $ -3/4$ , which corresponds to

Eq. 5.72

$\displaystyle c^A(x) = \cnot - \left( \cnot - c^{A/B} \right) \frac{x}{L}
$

Eq. 5.73

$\displaystyle J^A = -D^A \FD {c^A}{x} = \frac{D^A\left( \cnot - c^{A/B} \right)}
{L}
$

Page 115

Eq. 5.80

$\displaystyle 0 = \frac{\partial}{\partial r}
\left(
r D(r) \frac{\partial c}{\partial r}
\right)
$

Page 116 — 7 corrections

Eq. 5.83

$\displaystyle c^\mathrm{in} (r) = \frac{c^\mathrm{i/o} - c^\mathrm{in}}
{\ln \l...
...mathrm{in}}\right)}
\ln \left( \frac{r}{R^\mathrm{in}} \right) + c^\mathrm{in}
$

Eq. 5.84

$\displaystyle J^\mathrm{i/o} = -D^\mathrm{in} \frac{c^\mathrm{i/o} - c^\mathrm{...
...{in} + \Delta R/2}{R^\mathrm{in}}\right)}
\frac{1}{R^\mathrm{in} + \Delta R/2}
$

Eq. 5.85

$\displaystyle c^\mathrm{out} (r) = \frac{c^\mathrm{out} - c^\mathrm{i/o}}
{\ln...
...right)}
\ln \left(\frac{r}{R^\mathrm{in} + \Delta R/2}\right) + c^\mathrm{i/o}
$

Eq. 5.86

$\displaystyle J^\mathrm{i/o} = -D^\mathrm{out}\frac{c^\mathrm{out} - c^\mathrm{...
...ta R}{R^\mathrm{in} + \Delta R/2}\right)}
\frac{1}{R^\mathrm{in} + \Delta R/2}
$

Eq. 5.88

\begin{displaymath}
\begin{array}{lcl}
\alpha^\mathrm{out} \equiv
\frac{D^\mathr...
...{R^\mathrm{in} + \Delta R/2}{R^\mathrm{in}}\right)}
\end{array}\end{displaymath}

Eq. 5.89

$\displaystyle I = 2 \pi \left( R^\mathrm{in}+\frac{\Delta R}{2} \right) J^\math...
...} \right)}
{\ln \left( \frac{R^\mathrm{in}+\Delta R/2}{R^\mathrm{in}} \right)}
$

Eq. 5.90

$\displaystyle c^\mathrm{i/o} - c^\mathrm{in} = \frac{\alpha^\mathrm{out} \left(
c^\mathrm{out}-c^\mathrm{in}
\right)}{\alpha^\mathrm{out} +
\alpha^\mathrm{in}}
$

Page 118

Eq. 5.94

$\displaystyle \PFD { ^{\star}\!c}{t} = -\nabla \cdot \vec J = \PFD {}{x}
\left( ^{\star}\!D\PFD { ^{\star}\!c}{x} -
\ave {v_A} c \right)
$

Page 121

Eq. 5.118

\begin{displaymath}
\begin{split}
\int_{-{a}/{2}}^{{a}/{2}} &
e^{-( x - \chi)^2/...
...erf \left(
\frac{x-a/2}{\sqrt{4Dt}} \right)
\right]
\end{split}\end{displaymath}

Page 122 — 4 corrections

First equation on page

\begin{displaymath}
\begin{split}
c(x,y,z,t) = \frac{c_o}{8} & \times
\left[ \...
...\left( \frac{z-a/2}{\sqrt{4 D t}} \right)
\right]
\end{split}\end{displaymath}

Eq. 5.120

$\displaystyle \PFD {T}{t} = \hat \kappa_\parallel \left( \PSD {T}{\hat x_1} + \PSD {T}{\hat x_2}
\right) +
\hat \kappa_\perp \PSD {T}{\hat x_3}
$

Eq. 5.122

$\displaystyle \PFD {T}{t} = \left( \hat \kappa_\parallel^2 \hat \kappa_\perp \right)^{1/3}
\left[ \PSD {T}{\xi_1} + \PSD {T}{\xi_2} + \PSD {T}{\xi_3} \right]
$

Eq. 5.124

$\displaystyle T \left( \hat x_1, \hat x_2, \hat x_3, t \right)= \frac{\alpha}{t...
...\kappa_\parallel t} + \frac{\hat x_3^2}{4
\hat
\kappa_\perp t}
\right)
\right]
$

Page 123

Eq. 5.126

$\displaystyle T \left( x_1^\prime, x_2^\prime, x_3^\prime = 0, t \right) =
\fr...
...l t} + \frac{3}{16 \hat \kappa_\perp
t} \right) {x_2^\prime}^2\right]
\right\}
$

Page 124

Eq. 5.127

$\displaystyle T \left( \hat x_1, \hat x_2 = 0, \hat x_3, t \right) =
\frac{\alp...
...kappa_\parallel t} + \frac{{\hat
x_3}^2}{4
\hat
\kappa_\perp t} \right)\right]
$

Page 126 — 2 corrections

Eq. 5.137

$\displaystyle T = T_\circ \sin \left(\pi \frac{x}{L}\right)  
e^{-\pi^2 \kappa t/L^2}
$

Eq. 5.139

$\displaystyle T_\infty
= \frac{1}{L} \int_0^L T_\circ \sin \left( \pi \frac{x}{L} \right) dx =
\frac{2}{\pi} T_\circ
$

Page 127 — 5 corrections

Eq. 5.146

$\displaystyle -D\left( \PFD {\hat c}{x}\right)_{x=0} = -\alpha   \hat c(0,p)
$

Eq. 5.147

$\displaystyle a_2 = -\frac{\alpha   \cnot }{p\sqrt{D}\left( \sqrt{p} + \frac{\alpha}{\sqrt D}
\right)}
$

Eq. 5.148

$\displaystyle \hat c = -\frac{h   \cnot }{p \left( h+\sqrt{p/D}\right)}  
e^{-\sqrt{{p}/{D}}   x } + \frac{\cnot }{p}
$

Eq. 5.149

$\displaystyle c(x,t) = \cnot \left[ \erf \left( \frac{x}{2\sqrt{Dt}} \right) +
e^{hx + h^2 Dt}  
\erfc \left( \frac{x}{2\sqrt{Dt}} +h\sqrt{Dt} \right) \right]
$

Eq. 5.150

$\displaystyle c(0,t) = \cnot   e^{-h^2/(Dt)}   \erfc \left( h \sqrt{Dt}
\right)
$

Page 128 — 3 corrections

Eq. 5.152

$\displaystyle c(0,t) = \cnot \left( 1+h^2 Dt \right) \left( 1-\frac{2}{\sqrt{\pi}} h \sqrt{Dt}
\right)
\cdots
$

Eq. 5.153

$\displaystyle \left[ \PFD {\hat c^I}{x} \right]_{x=0} = \left[ \PFD {\hat c^{II}}{x}
\right]_{x=\infty} = 0
$

Eq. 5.154

$\displaystyle \left[ \PFD {\hat c^I}{x} \right]_{x=L} = \left[ \PFD {\hat c^{II}}{x}
\right]_{x=L}
$

Page 129 — 2 corrections

Eq. 5.157

\begin{displaymath}
\begin{split}
c^I(x,t) & = \frac{c_0}{2} \left[ \erf \left( ...
...-
\erf \left( \frac{x-L}{2\sqrt{Dt}}\right)
\right]
\end{split}\end{displaymath}

Eq. 5.158

$\displaystyle c(x,t) = \frac{c_0}{2} \left[ \erf \left( \frac{x+L}{2\sqrt{Dt}}\right) -
\erf \left( \frac{x-L}{2\sqrt{Dt}}\right)
\right]
$

Page 137 — 2 corrections

Eq. 6.45

\begin{displaymath}
\begin{split}
\partt {\left[
\begin{array}{l}
\breve{c}_1 ...
..._2\\
\vdots\\
\breve{c}_{N-1}
\end{array}\right]}
\end{split}\end{displaymath}

Eq. 6.47

\begin{displaymath}
\begin{split}
\frac{\partial \breve{c}_1 }{\partial t} & = \...
...ial t} & = \lambda_{N-1} \nabla^2
\breve{c}_{N-1}
\end{split}\end{displaymath}

Page 141

Eq. 6.54

\begin{displaymath}
\begin{split}
c_{\alpha} = &   a_{1} + a_{2}   \erf \left(...
... \erf \left(
\frac{x}{\sqrt{4\lambda_{+}Dt}}\right)
\end{split}\end{displaymath}

Page 142 — 2 corrections

Eq. 6.56

\begin{displaymath}
\begin{split}
c_{1} =   & \frac{D_{11}-D_{22}-\Delta}{2D_{2...
... \erf \left(
\frac{x}{\sqrt{4\lambda_{+}Dt}}\right)
\end{split}\end{displaymath}

Eq. 6.60

\begin{displaymath}
\begin{split}
c_{2} = &   \frac{c_{2}^{R} + c_{2}^{L}}{2} \...
...,\erf \left(
\frac{x}{\sqrt{4\lambda_{+}t}}\right)
\end{split}\end{displaymath}

Page 143 — 2 corrections

Eq. 6.61

\begin{displaymath}
\begin{split}
c_{\alpha} = &  \frac{a_{\alpha}}{(4\pi\lambd...
...^{3/2}}
\exp\left(-\frac{r^2}{4\lambda_{+}t}\right)
\end{split}\end{displaymath}

Eq. 6.65

\begin{displaymath}
\begin{split}
c_{2} = & \frac{2 D_{21}N_{1}+(\Delta+D_{22}-D...
...^{3/2}}
\exp\left(-\frac{r^2}{4\lambda_{-}t}\right)
\end{split}\end{displaymath}

Page 159

Eq. 7.56

$\displaystyle \left[ \PFD {\ln \Gamma^\prime}{P} \right]_T =
\left[ \PFD {\ln \nu}{P} \right]_T - \frac{1}{kT}\left[ \PFD {G^m}{P}
\right]_T
$

Page 161

Eq. 7.61

\begin{displaymath}
\begin{split}
\langle R^2 \rangle & = \frac{\int_0^\infty \i...
...int_0^\infty c(x_1,x_2,x_3,t)  
dx_1 dx_2 dx_3}
\end{split}\end{displaymath}

Page 193 — 2 corrections

Eq. 8.114

$\displaystyle \frac{dc^{[100]}}{dt} = -12 \Gamma'
\left(
c^{[100]} - \frac{c^\mathrm{tot}}{3}
\right)
$

Eq. 8.115

$\displaystyle c^{[100]}(t) -\frac{c^\mathrm{tot}}{3}
= \left[ c^{[100]}(o) -\frac{c^\mathrm{tot}}{3}\right]
e^{-12 \Gamma' t}
$

Page 195 — 2 corrections

Eq. 8.118

$\displaystyle J = J(\rightarrow) - J(\leftarrow) =
c A   e^{-(U_{\circ}+\Delta U/2)/(kT)}
-\left(c + \FD {c}{x} a\right)
A   e^{-(U_{\circ}-\Delta U/2)/(kT)}
$

Eq. 8.119

$\displaystyle J = -A   e^{-U_{\circ}/(kT)}
\left[ a \FD {c}{x}+ \frac{c\Delta U}{kT} \right]
$

Page 196

Eq. 8.123

\begin{displaymath}
\begin{split}
p_6 & = 1 \left( \frac{1}{6} \right) + 0 \left...
...\right)^3 + 2 \left(
\frac{1}{6} \right)^4 = 0.0015
\end{split}\end{displaymath}

Page 197

First equation on page

\begin{displaymath}
\begin{split}
\ave {\cos \theta} & = 0.1960 \left( -1 \right...
... + 0.0015
\left( 1 \right)\\
\nonumber
& = -0.2293
\end{split}\end{displaymath}

Page 198 — 2 corrections

Eq. 8.130

$\displaystyle -J^{\mathrm{net}} = D_{11} \FD {n}{x}
= \left( \frac{3a^2}{4} \Ga...
...a^2}{4} \Gamma_\circ^\prime
+ \frac{a^2}{2} \Gamma_x^\prime \right) \FD {n}{x}
$

Eq. 8.138

$\displaystyle \ave {r_3^2} = (1-p) \left( \frac{c}{2}\right)^2
$

Page 202 — 5 corrections

Eq. 8.154

$\displaystyle \left[ V_\mathrm{Zr}^{\prime \prime \prime \prime }\right]
=
\fra...
...{\bullet}
\right] +
\frac{1}{2} \left[ V_\mathrm{O}^{\bullet \bullet} \right]
$

Eq. 8.155

$\displaystyle \left[ V_\mathrm{Zr}^{\prime \prime \prime \prime }\right]
\left(...
...} \left[ \mathrm{Ta}_\mathrm{Zr}^{\bullet} \right]
\right)^2
= e^{-G_S^f/(kT)}
$

Equation following Eq. 8.155

$\displaystyle \left[ V_\mathrm{Zr}^{\prime \prime \prime \prime
}\right] = \fra...
...{\bullet \bullet} \right] \gg
\left[ \mathrm{Ta}_\mathrm{Zr}^{\bullet} \right]
$

Eq. 8.156

$\displaystyle \left[ V_\mathrm{Zr}^{\prime \prime \prime \prime
}\right] = \left( \frac{1}{4}\right)^{1/3}
e^{-G_S^f/(3kT)}
$

Equation following Eq. 8.156

$\displaystyle \left[ V_\mathrm{Zr}^{\prime \prime \prime \prime
}\right] = \frac{1}{4} \left[ \mathrm{Ta}_\mathrm{Zr}^{\bullet} \right]
$

Page 204

Eq. 8.161

$\displaystyle 4[V_{\mathrm{O}}^{\bullet \bullet}]
\left( [V_{\mathrm{O}}^{\bull...
...thrm{M}}^{\prime
\prime}]\right)^2 P_{\mathrm{O}_2}^{1/2} =
e^{-\Delta G/(kT)}
$

Page 206

Eq. 8.177

$\displaystyle {\frac{dc_1}{dt}}=-6\Gamma'\left(c_1-\frac{c^{\text{tot}}}{3}\right)
$

Page 207

Eq. 8.178

$\displaystyle \left[c_1(t)
-\frac{c^{\text{tot}}}{3}\right]=
\left[c_1(0)
-\frac{c^{\text{tot}}}{3}\right]=e^{-6\Gamma't}
$

Page 208 — 5 corrections

Eq. 8.180

\begin{displaymath}
\begin{split}
\FD {c_{1}}{t} = & -2\left(\Gamma'_{1 \rightar...
...)
c_{1} + 2 \Gamma'_{3 \rightarrow 2}c^{\text{tot}}
\end{split}\end{displaymath}

Eq. 8.181

\begin{displaymath}
\begin{array}{cc}
\Gamma'_{1\rightarrow2} = \Gamma'\left( 1 ...
...\left( 1
+ \frac{U_{1 \rightarrow 3}}{2kT} \right)
\end{array}\end{displaymath}

Eq. 8.183

$\displaystyle c_{1}(t) = \left( \frac{c^{\text{tot}}}{3} -
c_{1}^{\text{eq}} \...
...{c^{\text{tot}}}{3} -
c_{2}^{\text{eq}} \right) e^{-k' t} + c_{1}^{\text{eq}}
$

Eq. 8.184

\begin{displaymath}
\begin{split}
k' & = 6 \Gamma'\\
c_{1}^{\text{eq}} & = \fra...
... 2}}{3kT}
+ \frac{U_{1 \rightarrow 3}}{3kT}\right)
\end{split}\end{displaymath}

Eq. 8.185

\begin{displaymath}
\begin{split}
p_{1} = & \frac{e^{-U_{1}/(kT)}}{Z} =
\frac{e^...
... 2}}{3kT}
+ \frac{U_{1 \rightarrow 3}}{3kT}\right)
\end{split}\end{displaymath}

Page 226 — 4 corrections

Eq. 9.22

$\displaystyle 0={\frac{\partial ^2c^B_2 (y_1,t_1)}{\partial y_1^2}}-\frac{2c^B_...
...rtial x_1} \; \erf \left(
{{\frac{x_1}{2t_1^{1/2}}}} \right)} \right]_{x_1=0}
$

Eq. 9.23

$\displaystyle c^B_2(y_1,t_1)=\exp \left[ -\left( \frac{4}{\pi k^2t_1}
\right)^{1/4}  y_1 \right]
$

Eq. 9.24

$\displaystyle c^{XL}_2(x_1,y_1,t_1)=\frac{1}{k}\exp \left[ {-\left( {\frac{4}{{...
...} \right]  \left[ {1-\erf \left( {{\frac{x_1}{2t_1^{1/2}}}}
\right)} \right]
$

Eq. 9.25

$\displaystyle {\frac{d\ln \Delta N}{dy}}=-\left[ {{\frac{4D^{XL}_2}{\pi t}}}
\right]^{1/4}  \left[ {\frac{1}{{k\delta D^B_2}}} \right]^{1/2}
$

Page 228

Eq. 9.31

$\displaystyle J=-\left[ {\frac{\pi \delta ^2}{4}  ^\star \! D^D  {\frac{\part...
...t] 
\left[ {\frac{1}{\delta }\frac{\theta}{b}(\sin \phi +\cos \phi )} \right]
$

Page 276 — 6 corrections

First equation on page

$\displaystyle \hat n = \frac{\hat \zeta \times \vec b}{\left\vert \hat \zeta
\times \vec b \right\vert }
$

Eq. 11.42

$\displaystyle \vec f_\mu =-\frac{\hat \zeta \times \vec b}{\left\vert \hat \zeta
\times \vec b \right\vert}   \PFD {G}{y}
$

Text following Eq. 11.42

Since the climb distance that results from the destruction of $ \delta \! N_V$ vacancies is now $ \delta y=(\Omega /\left\vert {\hat \zeta
\times \vec b}
\right\vert)\, \delta \! N_V$ , using Eqs. 3.64 and 3.66,

Eq. 11.43

$\displaystyle \vec f_\mu = -\frac{\hat \zeta \times \vec b}{\Omega}
\PFD {G}{N_...
...\zeta \times \vec b}{\Omega}
kT \ln \left( \frac{X_V}{X_V^\mathrm{eq}} \right)
$

Eq. 11.44

$\displaystyle df=2\mu b^2\sin \left(\frac{d\theta}{2}\right)\approx \mu b^2  d\theta
=
\frac{\mu b^2  ds}{R}
$

Eq. 11.45

$\displaystyle \left\vert {\vec f_\kappa } \right\vert={\frac{df}{ds}}=\frac{\mu b^2}{R}
$

Page 277 — 3 corrections

Text following Eq. 11.49

Comparing the last result with Eq. 11.10, we see that the curvature given by $ \kappa =a/(a^2+p^2)$ is constant everywhere and that the principal normal vector at any point on the helix is pointed toward the helix axis and is perpendicular to it. Also, the vectors $ \vec B$ and $ \vec d$ are constant vectors independent of $ \hat \zeta $ . If we now take the axis of the helix to be along $ (\vec B-\vec d)$ so that $ (\vec B-\vec d) = \hat k\left\vert {\vec B-\vec d} \right\vert$ and put the results above into Eq. 11.46, we find that it is satisfied if

Eq. 11.50

$\displaystyle {\frac{\mu b^2}{\sqrt {a^2+p^2}}}=\left\vert {\vec B-\vec d} \right\vert
$

Eq. 11.52

$\displaystyle {\frac{\mu b^2}{\sqrt {a^2+p^2}}}=\left\vert {\vec B}
\right\vert = \frac{bkT}{\Omega } \ln
\left(\frac{X_V}{X_V^\mathrm{eq}}\right)
$

Page 278 — 2 corrections

Eq. 11.53

$\displaystyle X_V=X_V^\mathrm{eq}  e^{\mu b\Omega/\left(kT\sqrt {a^2+p^2} \right)}
$

Eq. 11.55

$\displaystyle W\cong W^\circ + \frac{1}{2} \left( \frac{W^\circ }
{c^2} \right) v^2
$

Page 280

Eq. 11.58

$\displaystyle \frac{bkT_a}{\Omega} \ln\left(\frac{X_V}{X_V^\mathrm{eq}}
\right) = \frac{\mu b^2}{ R} = \frac{2\mu b^2}{L}
$

Page 282 — 3 corrections

Eq. 11.64

$\displaystyle c_V(r^\prime) - c_V^\mathrm{eq}(\infty) =
a_1 \ln\left(\frac{R}{r^\prime}\right) + a_2
$

Eq. 11.65

\begin{displaymath}
\begin{split}
a_1 \ln\left(\frac{R}{R_\circ}\right) + a_1 \l...
...isl})
\\
a_2 & = \frac{c_V^\mathrm{eq}(\infty)}{2}
\end{split}\end{displaymath}

Eq. 11.66

$\displaystyle c_V(r)- c_V^\mathrm{eq}(\infty) =
\frac{ c_V^\mathrm{eq}(\mathrm{...
...thrm{eq}(\infty) }
{\ln (R / \sqrt{R_\circ l})}
  \ln\left(\frac{R}{r}\right)
$

Page 296 — 5 corrections

Eq. 12.17

$\displaystyle c - c^\infty = a_1
\sinh\left(\frac{2x}{\sqrt {\langle x^2\rangle }}\right)
+ a_2
\cosh\left(\frac{2x}{\sqrt {\langle x^2\rangle }}\right)
$

Eq. 12.18

$\displaystyle c(x=0) = c^\mathrm{eq}$    $\displaystyle \left. \frac{\partial c}{\partial x} \right\vert _{x = \lambda/2}
= 0
$

Eq. 12.19

$\displaystyle \phi =2 \delta D^S_A\left. \frac{\partial c}{\partial x}
\right\vert _{x=0}
$

Eq. 12.20

$\displaystyle \phi _\mathrm{ideal}=\left( \frac{c^\infty }{\tau} -
\frac{c^\ma...
...
= \frac{4(c^\infty -c^\mathrm{eq})\lambda
\delta D^S_A}{\langle x^2\rangle }
$

Eq. 12.21

$\displaystyle \eta =\frac{\phi}{\phi _\mathrm{ideal}}
= \frac{\langle x^2\rang...
... x^2\rangle }}
  \tanh\left(\frac{\lambda}{\sqrt {\langle x^2\rangle}}\right)
$

Page 297 — 3 corrections

Eq. 12.23

$\displaystyle \phi = 2 \delta D_{A}^{S} \left(\FD {c}{x}\right)_{x=0}
$

Eq. 12.24

$\displaystyle \phi = \frac{4 \delta
D_{A}^{S}(c^{\infty}-c^\mathrm{eq})}
{\sqrt{\ave x^2}}
\tanh \left( \frac{\lambda}{\sqrt{\ave x^2}}\right)
$

Eq. 12.27

\begin{displaymath}
\begin{split}
J_\mathrm{net} = & \frac{\phi}{\lambda} = \fra...
...^\prime (P - P^\mathrm{eq}) = K (P - P^\mathrm{eq})
\end{split}\end{displaymath}

Page 298 — 4 corrections

Eq. 12.29

$\displaystyle \Delta G=2\pi \! Rg^L-\frac{\pi R^2h}{\Omega} kT\ln
\left( \frac{P^\text{eq}}{P}\right)
$

Eq. 12.30

$\displaystyle \Delta G_c(\mathrm{homo})=\frac{\pi \Omega \left(g^L\right)^2}
{hkT\ln\left({P^\text{eq}}/{P}\right)}
$

Eq. 12.31

$\displaystyle \Delta G=\pi \! Rg^L-2Rh\gamma ^S-{\frac{\pi R^2h}{2\Omega }}
kT\ln \left(\frac{P^\text{eq}}{P}\right)
$

Eq. 12.33

$\displaystyle \frac{\Delta G_c(\mathrm{edge})}{\Delta G_c(\mathrm{homo})}=
\frac{1}{2}\left( {1- {\frac{2h\gamma ^S}{\pi g^L}}} \right)
$

Page 300 — 6 corrections

Eq. 12.36

$\displaystyle P=\frac{N!}{\left( N_k^+ \right)!   \left( N_k^- \right)!   \left(
N - N_k^+ - N_k^- \right)!}
$

Eq. 12.37

\begin{displaymath}
\begin{split}
d   \Delta \mathcal{G} & = G_k^f   dN_k^+ + ...
...t(\frac{N_k^-}{N - N_k^+ - N_k^-} \right)   dN_k^-
\end{split}\end{displaymath}

Eq. 12.38

$\displaystyle \PFD {\Delta \mathcal{G}}{N_k^+} = 0 = 2 G_k^f
+ 2kT \ln\left(\frac{N_k^+}{N - N_k^+ - N_k^-} \right)
$

Eq. 12.39

$\displaystyle \left[ \frac{N_k^+}{N} \right]^\mathrm{eq} = e^{-G_k^f/(kT)}
$

Eq. 12.40

$\displaystyle \frac{N_k^\mathrm{eq}}{N} = \left[ \frac{N_k^+}{N} \right]^\mathrm{eq} + \left[
\frac{N_k^-}{N} \right]^\mathrm{eq} = 2   e^{-G_k^f/(kT)}
$

Last equation on page

\begin{displaymath}
\begin{split}
\nonumber
d   \Delta \mathcal{G} & = G_k^f dN...
...\theta a N/d) -
N_k^+ - N_k^- } \right]   d N_k^-
\end{split}\end{displaymath}

Page 301 — 2 corrections

Eq. 12.41

$\displaystyle \frac{d   \Delta \mathcal{G}}{dN_k^+} = 0 = 2G_k^f + kT \ln
\lef...
...c{[(\theta a N/d) +N_k^+]N_k^-}{[N - (\theta a N/d)
-N_k^+ - N_k^-]^2}\right\}
$

Eq. 12.42

$\displaystyle \left[ \frac{N_k^+}{N}+\frac{\theta a}{d} \right]^\mathrm{eq}
  \left[ \frac{N_k^-}{N} \right]^\mathrm{eq}
= e^{-2G_k^f/(kT)}
$

Page 317

Caption to Fig. 13.9

Experimentally determined plot of $ \ln M^B$ vs.tex2html_image_mark>#tex2html_wrap_inline8542# for a (111) tilt boundary with a $ 46.5^\circ$ tilt angle in Al containing Fe solute atoms. $ M^B =$ boundary mobility. From Molodov et al. [21].

Page 329

Eq. 13.38

$\displaystyle \ln M_B(T_1) - \ln M_B(T_2) = -\frac{E^B}{k} \left( \frac{1}{T_1} - \frac{1}{T_2}
\right)
$

Page 331 — 5 corrections

Eq. 13.46

$\displaystyle {{\partial c} \over {\partial t}}=\nabla ^2c = D_B \left(
\PSD {c}{r}+{2
\over r}{{\partial c} \over {\partial r}} \right)
$

Eq. 13.49

$\displaystyle u(r,t)=a_1\left[ {1-\erf \left( {{{r-R} \over {2\sqrt {D_B t}}}}
\right)} \right]+a_2
$

Eq. 13.50

$\displaystyle c-c_\circ ={{a_1} \over r}\left[ {1-\erf \left( {{{r-R} \over {2\sqrt
{D_B t}}}} \right)} \right]+{{a_2} \over r}
$

Eq. 13.51

$\displaystyle {{c-c_\circ } \over {c_{\mathrm{eq}}^{\alpha \beta}-c_\circ }}={R...
...er r}\left[
{1-\erf \left( {{{r-R} \over {2\sqrt
{D_B t}}}} \right)} \right]
$

Eq. 13.52

$\displaystyle I=4\pi R^2D_B\left({{{\partial c}\over{\partial r}}}
\right)_{r=R...
...athrm{eq}}^{\alpha
\beta}\right)\left[
{1+{R \over {2\sqrt {D_B t}}}} \right]
$

Page 333

Eq. 13.63

$\displaystyle \ln \left( {{{\sqrt {R^2+R_\infty R+R_\infty ^2}} \over {R_\infty...
...} \right)+{\pi \over {2\sqrt 3}}={{3R_\infty \widetilde D } \over {R_c^3}}  t
$

Page 335

Eq. 14.50

$\displaystyle \PFD {h}{t} = \vec J_A \cdot \hat \jmath   \Omega =
-\frac{^\star \! D^{XL}}{kT\corf } \left( \PFD {\Phi_A}{y}
\right)_{y=0}
$

Page 357

Eq. 14.55

\begin{displaymath}
\begin{split}
\kappa_1 = & -\frac{\SD {r}{z}}{\left[ 1 + \le...
...^2 (z/R_w)]^{3/2}}
= \frac{-1}{R_w \cosh^2 (z/R_w)}
\end{split}\end{displaymath}

Page 358 — 3 corrections

Eq. 14.56

$\displaystyle \cos \phi = \frac{1}{\sqrt{1+\left( \FD {r}{z} \right)^2}}
$

Eq. 14.57

$\displaystyle \kappa_2 = \kappa_S   \cos \phi
= \frac{1}{r(z)}   \frac{1}{\sqrt{1+\left( \FD {r}{z} \right)^2}}
$

Eq. 14.60

$\displaystyle \Total {G} = 2 \pi \gamma^B \int_0^{h/2} r \sqrt{1 + (dr/dz)^2}\; dz
= \frac{\pi \gamma^B}{2} \left( h R_w + R_w^2 \sinh \frac{h}{R_w} \right)
$

Page 361 — 6 corrections

Eq. 14.70

$\displaystyle \left( {{{\partial k} \over {\partial t}}} \right)_x
= -\nabla \cdot q = -\left( {{{\partial q} \over {\partial
x}}} \right)_t
$

Eq. 14.71

$\displaystyle {{dk} \over {dt}}
=\left( {{{\partial k} \over {\partial x}}} \right)_t{{dx} \over
{dt}}+\left( {{{\partial k} \over {\partial t}}} \right)_x
$

Eq. 14.72

$\displaystyle \left( {{{\partial q} \over {\partial x}}} \right)_t
={{dq} \over...
...partial x}}} \right)_t
= -\left( {{{\partial k} \over {\partial t}}} \right)_x
$

Eq. 14.73

$\displaystyle {{dk} \over {dt}}
=\left( {{{\partial k} \over {\partial x}}} \right)_t  \left( {{{dx}
\over {dt}}-{{dq} \over {dk}}} \right)
$

Eq. 14.74

$\displaystyle dy = \left(\PFD {y}{x}\right)_t dx + \left(\PFD {y}{t}\right)_x dt
$

Eq. 14.75

$\displaystyle \frac{dy}{dx} = \left(\PFD {y}{x}\right)_t +
\left(\PFD {y}{t}\right)_x \frac{dt}{dx} = -h k + q h \frac{dt}{dx}
$

Page 366

Fig. 15.2

\begin{figure}{diffcontrolfield}
\end{figure}

Page 384 — 3 corrections

Third equation on page

$\displaystyle \frac{dR}{dt} = M \left( \frac{\ave {R}}{\ave {R^2}} - \frac{1}{R}\right)
= M \left( \frac{5}{3 R_\text{max}} - \frac{1}{R}\right)
$

Fourth equation on page

$\displaystyle \frac{\partial f}{\partial t} =
- \frac{\partial}{\partial R} \le...
...}{t} \right]
= \frac{2 A M}{3 R_\text{max}} \left( 5R - 4 R_\text{max} \right)
$

Eq. 15.52

$\displaystyle \FD {R_\mathrm{cut-off}}{t} =
\frac{2 \widetilde D\gamma \Omega
c...
...hrm{cut-off}}
\left( \frac{1}{\ave {R}} - \frac{1}{R_\mathrm{cut-off}} \right)
$

Page 385

Eq. 15.56

$\displaystyle \frac{dA}{dt} \propto \left[ (N-1)\frac{\pi}{3} - \frac{\pi}{2}\right]
= \frac{\pi}{3} \left( N-\frac{5}{2} \right)
$

Page 411 — 6 corrections

Eq. 16.71

\begin{displaymath}
\begin{split}
\sigma_s^A & = \left[ -\sqrt{3}   \cos^2 \the...
...
\sigma_s^C & = 2 \sin \theta \cos \theta   \sigma
\end{split}\end{displaymath}

Eq. 16.72

$\displaystyle \dot \varepsilon = \frac{1}{d} \left[ \frac{1}{\sqrt{3}}\FD {(S_s...
...
+ \frac{1}{3} \FD {(2S_s^C-S_s^A-S_s^B)}{t} 2\sin \theta \cos
\theta \right]
$

Page 412 — 2 corrections

Eq. 16.76

$\displaystyle \Phi_A\left(\frac{L}{2}\right) = \mu_A^\circ
$

Eq. 16.77

$\displaystyle \Phi_A - \mu_A^\circ = \pm \frac{\sigma   \Omega}{\ln
[L/(2R_\circ)]} \ln\left( \frac{L}{2r} \right)
$

Page 414

Eq. 16.86

\begin{displaymath}
\begin{split}
\frac{\mathrm{rate}_B}{\mathrm{rate}_S}
= & \f...
...S w_S - \sin
\frac{\psi}{2})\right]}
= \lambda^{-4}
\end{split}\end{displaymath}

Page 415 — 4 corrections

Eq. 16.88

$\displaystyle \nabla^{2} \sigma_{nn} = \constant = A =
\frac{1}{r} \FD {}{r} \left( r  \FD {\sigma_{nn}}{r}\right)
$

Eq. 16.89

$\displaystyle \left[ \FD {\sigma_{nn}}{r}\right]_{r = R_{c}}
$

Eq. 16.90

$\displaystyle \sigma_{nn} =\frac{A}{4}\left[ (r^{2}
- R^{2} \cos^{2} \theta) + 2 R_{c}^{2} \ln \left( \frac{R
\cos \theta}{r}\right)\right] - \gamma^{S}\kappa
$

Eq. 16.91

$\displaystyle A = - \frac{8(F_\text{app} + \Upsilon)}{\pi \left\{ R_{c}^{4}
\le...
...ight] + R^{2} \cos^{2} \theta (4 R_{c}^{2} -R^{2}
\cos^{2} \theta )
\right\} }
$

Page 416

Eq. 16.98

$\displaystyle dV = d\left[\pi R_{c}^{2} L -\frac{2 \pi R^{3}}{3}(2 - 3 \cos
\theta + \sin^{3}
\theta)\right] = 0
$

Page 446

Footnote 9

The last sentence of this footnote should cite reference [4].

Page 452

Reference 16

This publication was listed incorrectly. The correct citation may be found at reference [4].

Page 453 — 3 corrections

Eq. 18.49

\begin{displaymath}
\begin{split}
\vec J_A^C = & -c_A \left[ \frac{L_{AA}}{c_A} ...
...A} \right]
\nabla \mu_B = - c_B L_B \nabla \mu_B\\
\end{split}\end{displaymath}

Eq. 18.57

$\displaystyle \Omega_A \nabla \mu_B - \Omega_B \nabla \mu_A = \Omega_A \nabla \! \left(
\PFD {f}{c_B} \right)
$

Eq. 18.58

$\displaystyle \vec J_B^V = -{\Omega_A}^2 c_A c_B \left( L_B c_A + L_A c_B \righ...
...\!
\left(
\PFD {f}{c_B} \right)
= -L  \nabla \! \left( \PFD {f}{c_B} \right)
$

Page 454

Eq. 18.60

$\displaystyle \vec J_B^V = - \left( L   \PSD {f}{c_B} \right) \nabla c_B
$

Page 474

Fig. 19.10

Page 490 — 3 corrections

Eq. 19.82

$\displaystyle \Delta \mathcal{G}'' =
\frac{2\mu (1+\nu )N^2\Omega ^2}{9(1-\nu )V}
-NkT\ln \left(\frac{X_V}{X_V^\mathrm{eq}}\right)
$

Eq. 19.83

$\displaystyle \Delta \mathcal{G}''_{\min }
=
-\frac{9(1-\nu )V}{4E\Omega^2}
\left[kT\ln \left(\frac{X_V}{X_V^{\mathrm{eq}}} \right)\right]^2
$

Eq. 19.84

$\displaystyle \Delta g =
-
\frac{3\varepsilon _{xx}^T}{\Omega}
kT \ln \left(\fr...
...{4\Omega ^2E}
\left[kT\ln \left(\frac{X_V}{X_V^{\mathrm{eq}}} \right)\right]^2
$

Page 491 — 4 corrections

Text before Eq. 19.86

Standard relationships for volumes and areas show that the volume of the nucleus is given by $ V=2\pi R^3 \left[ \cos \alpha -
(\cos^3 \alpha)/3 \right]$ while the area of the two facets is $ 2\pi R^2
\sin^2 \alpha$ and the area of the spherical portion of the interface is $ 4\pi R^2 \cos \alpha$ . The free energy to form the nucleus is therefore

Eq. 19.86

$\displaystyle \Delta \mathcal{G} = 2\pi R^3
\left( \cos \alpha - \frac{\cos^3 ...
...elta g_B + 2\pi R^2 \sin^2 \alpha   \gamma^f + 4\pi R^2 \cos \alpha
  \gamma
$

Eq. 19.87

$\displaystyle \Delta \mathcal{G} = \left( 2\pi R^3 \Delta g_B + 6 \pi R^2 \gamma \right)
\left(\cos \alpha - \frac{\cos^3 \alpha}{3}
\right)
$

Eq. 19.88

$\displaystyle \frac{\Delta \mathcal{G}_c}{\Delta \mathcal{G}_c(\textrm{sphere})}
= \frac{1}{2} \left( 3 \cos \alpha - \cos^3 \alpha \right)
$

Page 496 — 5 corrections

Eq. 19.101

$\displaystyle \Delta \mathcal{G}_\mathrm{tri} = \frac{l^2}{2} \Delta g_a + 2 \g...
...+\left( \gamma^{11/\mathrm{sub}} - \gamma^{v/\mathrm{sub}}\right) \sqrt{2}  l
$

Eq. 19.102

$\displaystyle \PFD {\Delta \mathcal{G}_\mathrm{tri}}{l} = 0 = 2 \Delta g_a \fra...
...} + \left( \gamma^{11/\mathrm{sub}} - \gamma^{v/\mathrm{sub}}\right)
\sqrt{2}
$

Eq. 19.103

$\displaystyle l_c = -\frac{2 \gamma^{10/v} + \sqrt{2}\left( \gamma^{11/\mathrm{sub}} -
\gamma^{v/\mathrm{sub}}\right)}{\Delta g_a}
$

Eq. 19.104

$\displaystyle \Delta \mathcal{G}_\mathrm{rect} = bc   \Delta g_a + (2b + c)  ...
...ma^{10/v}
+ c \left( \gamma^{10/\mathrm{sub}} - \gamma^{v/\mathrm{sub}}\right)
$

Eq. 19.106

$\displaystyle \PFD {\Delta \mathcal{G}_\mathrm{rect}}{c} = 0 = b_c \Delta g_a + \left(
\gamma^{10/v}+\gamma^{10/\mathrm{sub}} - \gamma^{v/\mathrm{sub}}\right)
$

Page 497

Eq. 19.108

$\displaystyle A_$tri$\displaystyle = \frac{1}{2}   l_c^2 = \frac{1}{2}
\left[ -\frac{2 \gamma^{10/v...
...gamma^{11/\mathrm{sub}} -
\gamma^{v/\mathrm{sub}}\right)}{\Delta g_a}\right]^2
$

Page 499 — 3 corrections

text before Eq. 19.115

Let $ \gamma^{LP}$ , $ \gamma^{LS}$ , and $ \gamma^{SP}$ be the energies (per unit area) of the liquid/particle, liquid/solid, and solid/particle interfaces, respectively. From Section 19.2.1 the volume of the solid nucleus is $ V^S = \left( \pi R^3 /3 \right)\left( 2 - 3\cos
\theta + \cos^3 \theta \right)$ , the spherical liquid/solid cap area is $ A^{LS} = 2 \pi R^2 (1 - \cos \theta)$ , and the solid/particle area is $ A^{SP} = \pi R^2 \sin^2 \theta$ . The free energy of nucleus formation on the particles is then

Eq. 19.117

$\displaystyle \Delta \mathcal{G}_c^P = \frac{4\pi\left( \gamma^{LS}\right)^3}{3( \Delta
g_B)^2}\left( 2 - 3\cos
\theta + \cos^3 \theta \right)
$

text after 19.117

On the other hand, for the homogeneous nucleation of a spherical solid nucleus in the bulk liquid, $ \Delta \mathcal{G}_c^H = 16 \pi
\left( \gamma^{LS} \right)^3 / \left[ 3( \Delta g_B)^2 \right]$ .

Page 526 — 4 corrections

Eq. 20.81

$\displaystyle c_B^{\alpha \infty} = c_B^{\alpha \beta}(R_{c}) = c_B^{\alpha \beta}
(\infty) \left( 1 + \frac{\gamma \Omega}{kTR_c} \right)
$

Eq. 20.82

$\displaystyle c_B^{\alpha \infty} - c_B^{\alpha \beta}(R) = \frac{c_B^{\alpha
\...
...fty} - c_B^{\alpha \beta}(\infty)
\right]
 
\left( 1 - \frac{R_c}{R}
\right)
$

Eq. 20.83

$\displaystyle \FD {\IP _1}{t}\left( c_\mathrm{eq}^{\beta \alpha} -
c_\mathrm{eq...
...a_2 \left( c_\mathrm{eq}^{\beta \alpha} -
c_\mathrm{eq}^{\beta \gamma} \right)
$

Eq. 20.84

$\displaystyle \FD {\IP _2}{t}\left( c_\mathrm{eq}^{\beta \alpha} -
c_\mathrm{eq...
...a_2 \left( c_\mathrm{eq}^{\beta \alpha} -
c_\mathrm{eq}^{\beta \gamma} \right)
$

Page 527 — 4 corrections

Eq. 20.85

$\displaystyle \frac{c_B^\beta - c_B^{\beta 0}}{c_B^{\beta \alpha} - c_B^{\beta ...
...rf ({A_1}/{\sqrt{4 \tilde D^\beta}}) - \erf ({A_2}/{\sqrt{4
\tilde D^\beta}})}
$

Eq. 20.88

\begin{displaymath}
\begin{split}
A_1 & = \frac{Q^\beta \sqrt{4 \tilde D^\beta}}...
...- \erf \left(
A_1/\sqrt{4 \tilde D^\alpha}
\right)}
\end{split}\end{displaymath}

Eq. 20.89

\begin{displaymath}
\begin{split}
A_2 & = \frac{\sqrt{4 \tilde D^\beta}}{\sqrt{\...
... - \erf \left( A_2/\sqrt{4 \tilde D^\beta}
\right)}
\end{split}\end{displaymath}

Eq. 20.91

$\displaystyle \frac{d^2 c_B^\alpha (\eta)}{d\eta^2} + \left( \frac{1}{\eta} +
2\eta \right) \FD {c_B^\alpha (\eta)}{\eta} = 0
$

Page 528 — 3 corrections

Eq. 20.96

$\displaystyle v \left( c_B^{\beta \alpha} - c_B^{\alpha \beta} \right) =
\widetilde D^\alpha \left( \FD {c_B^\alpha}{r} \right)_{r = R}
$

Eq. 20.97

$\displaystyle 2 \eta_R \left( c_B^{\beta \alpha} - c_B^{\alpha \beta} \right) =
\left( \FD {c_B^\alpha}{\eta} \right)_{\eta = \eta_R}
$

Eq. 20.98

$\displaystyle \eta_R^2   e^{\eta_R^2}   E_1\left(
\eta_R^2 \right) = \frac{c_B^{\alpha \infty} - c_B^{\alpha \beta}}
{c_B^{\beta \alpha} - c_B^{\alpha \beta}}
$

Page 529 — 5 corrections

Eq. 20.101

$\displaystyle \FD {\IP }{t} \left( c_B^{\beta \alpha} - c_B^{\alpha \beta}\right) =
\widetilde D^\alpha \left(\PFD {c_B^\alpha}{x} \right)_{x=\IP }
$

Eq. 20.102

$\displaystyle \eta_{\IP } = \frac{\left( c_B^{\alpha \infty} -
c_B^{\alpha\beta...
...a} - c_B^{\alpha\beta}\right) \sqrt{\pi}  
\erfc \left( \eta_{\IP } \right)}
$

Eq. 20.103

$\displaystyle \widetilde D^\alpha \left( \PFD {c}{x}\right)_{x=\IP } = \FD {\IP }{t} \left(
c_B^{\beta \alpha} - c_B^{\alpha \beta}\right)
$

Text after 20.103

Using the linear approximation in Fig. 20.14, $ \partial c/ \partial x = \left(
c_B^{\alpha \infty} - c_B^{\alpha \beta}\right)/(Z-\IP )$ . Also, the conservation of $ B$ atoms requires that the two shaded areas in the figure be equal. Therefore, $ \left(
c_B^{\beta \alpha} - c_B^{\alpha \infty}\right)
\IP = \left(
c_B^{\alpha \infty} - c_B^{\alpha \beta}\right)(Z-\IP )/2$ . Putting these relationships into Eq. 20.103 gives

Eq. 20.104

$\displaystyle \IP \; d\IP = \frac{\widetilde D^\alpha \left( c_B^{\alpha \infty...
...pha \beta}\right)
\left( c_B^{\beta \alpha} - c_B^{\alpha \infty} \right)}\;dt
$

Page 530

Eq. 20.106

\begin{displaymath}
\begin{split}
\Delta c^\alpha = &  c^{\alpha\beta}_\mathrm{...
...\frac{4 \gamma \Omega c^\alpha
(\infty)}{kT \ave R}
\end{split}\end{displaymath}

Page 542

Eq. 21.24

\begin{displaymath}
\begin{split}
\ave {N}_c = & \int_{{T_{c}}/{2\beta}}^{t} J(t...
...2 \beta t) (T_c^2 + 4
\beta^2 t^2)}{128 \beta^{4}}
\end{split}\end{displaymath}

Page 582

Eq. 24.13

$\displaystyle \left( 1 - \frac{1}{\eta_1^2} \right) {x_1^\prime}^2
+ \left( 1 ...
...ght) {x_2^\prime}^2 +
\left( 1 - \frac{1}{\eta_3^2} \right) {x_3^\prime}^2 = 0
$

Page 584 — 2 corrections

Eq. 24.21

$\displaystyle 0 = - \Delta S   dT + \Delta V   dP -
\frac{V_{\circ}}{2}
\left...
...ext{mart}}} - \frac{1}{E_{\text{par}}}\right)
  d (\sigma^{\text{app,uni}})^2
$

Eq. 24.22

$\displaystyle \frac{dT}{d (\sigma^{\text{app,uni}})^2} =
-\frac{V_{\circ}}{2  ...
...ext{{par}} -E_{\text{mart}}) }
{ 2 E_\text{{par}} E_{\text{mart}}   \Delta H}
$





about this text

authors

resources

errata

Next: About this document ...
Kinetics of Materials 2006-01-04