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Figure 32-1: lllustration of role of misfit dislocations in transition from coherent to
semi-coherent interfaces
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Steady-State Dengibf State:

Figure 32-2: Schematic illustration of the steady-state probability distribution of sub-
critical nuclei.
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Heterogeneous Nucleation
Heterogeneous nucleation can occur on imperfections when the nucleating particle effec-

tively “replaces” some energetic feature of the original configuration. For instance, nucleation
on a grain boundary removes grain boundary area and replaces it with interphase boundary
area that would have been created anyway by formation of the new phase. Thus, preexisting
imperfections effectively “catalyze” the nucleation process.
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Figure 32-3: Geometrical parameters defining size and shape of a lenticular 5 particle
situated on a grain boundary in phase « for the case of isotropic surface energy. Students
should be able to derive and expression for the critical volume for this case. In this case,
the mathematics will show that the radius of the heterogeneous particle is the same as
that of the homogeneous (spherical) particle.

Heterogeneous nucleation is a commonly observed phenomenon.
Question: How do you explain the following phenomena?

1. If you gently open a carbonated beverage without shaking it, how does it approach equilib-
rium?

2. If you open a carbonated beverage soon after vigorously shaking it, how does it approach
equilibrium?

3. If you leave a (previously shaken) carbonated beverage undisturbed for a long time and then
gently open it, how does it approach equilibrium? What sets the time scale for the time it
must be left undisturbed?
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Heterogeneous nucleation can be understood by considerations of the geometry of the nu-
cleus. The steps can be illustrated by a simple example of a cubic crystal with {100}-facets

nucleating in a (100)-direction.

crystal v,..

Figure 32-4: lllustration of a completely faceted cubic particle nucleating on a flat
substrate with interfacial energies v{100y = 7., vapor-substrate <,,, and substrate-

For this case, the AG for homogeneous nucleation is given by the maximum of

AGhomog = Agw® + 6y4w? (32-1)
Therefore,
o = Do

A
3 (32-2)

AGH 3270

Ghomog A92

For heterogeneous nucleation,

AGheter = Aglzhfym,(l2 + 4lh) + (Vee — fyvs)lz (32-3)

Therefore,
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The shape of the particle is determined by the differences in surface tensions and the
geometrical factors associated with the shape of the particle determine the nucleation barrier
for heterogeneous diffusion.

Spinodal Decomposition and Order-Disorder Transformation Kinetics
Background
The nucleation conditions for phase transformations have been discussed. The rest of this

lecture will review another type of initiation mechanism that does not involve nucleation. These
mechanisms can either be accompanied by mass flux as in the case of spinodal decomposition
or without large-range mass flux as in the case of order-disorder transitions.

These nucleation-free transitions occur when a small local change in the system is never
accompanied by an increase in free energy, but always a decrease in free energy.

Spinodal decomposition arises from free energy diagrams and phase diagrams like those
illustrated below:
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Figure 32-5: lllustration of the types of free energy curves and the regions on a phase
diagram that are associated with spinodal decomposition.

In order-disorder transitions such as a ferromagnetic transition or a lattice-ordering, there
are no conserved quantities which would give rise to a common tangent in the above diagram.
The two different kinds of processes can be illustrated schematically:
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Figure 32-6: lllustration of two atomic rearrangement processes.

The ordering reaction does not require long-range diffusion, but the decomposition reaction
must move mass over long distances.

In the appendix to these notes, it is demonstrated how the changes in free energy depend
on whether flux is required or not. The important results can be summarized as follows:

e Non-conserved quantities: If 7 is a non-conserved quantity, like spin, or crystalline
order, then for small changes in 7 given by é7:

dG
AG = §n— 32-5
L (32-5)

n=10

Therefore, an order parameter can always decrease the free energy by picking a variation
on with a sign that makes the product in Eq. 32-24 negative. An non-conserved order
parameter has no barrier against reaching a value which makes the free energy a local
minimum.

e Conserved quantities: If ¢ is a non-conserved quantity, like concentration, then for
small changes in ¢ given by dc:

AG = o (6ef'—~ (32-6)
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Therefore, a barrier to the growth of small variations exists whenever the second deriva-
tive in Eq. 32-23 is positive. Thus, nucleation is required for a transformation outside of
the spinodal curves.

In fact, it can be shown that the sign of the diffusivity, D, for concentration flux is given
by the second derivative G /8c?. This has the effect of causing “up-hill” diffusion.

Macroscopic Theories for Decomposition Kinetics

If transformations occur without nucleation, then the thermodynamics must account for
continuous variations of thermodynamic state variables. These continuous variations are called
“diffuse interfaces” and they are addressed in this section. The important result is that the
local free energy density has a contribution due to gradients of thermodynamic state variables.

The theory for the free energy of inhomogeneous systems was developed by Cahn and
Hilliard in 1958. The theory was originally developed to account for contributions to the free
energy from gradients in the composition—or any other conserved field. The diffuse interface
method was extended to non-conserved order parameters by Allen and Cahn (1979) in their
study of the kinetics of the order-disorder transition. The theories for both can be developed in
parallel since their construction follows from the same principles. ¢(Z) describes any conserved

field quantity (like the concentration field in a closed system) and 7(Z) represents any non-
conserved order parameter field.

A two-phase system with a miscibility gap at equilibrium with a planar interface will
have an equilibrium composition profile ¢(z) through the interfacial region. The form of the
equilibrium composition distribution is determined by the ¢(z) which minimizes F', the total
free energy of the system. Similarly, a system that tends to form long-range ordered domains
will have a distribution of order, 7(z), across a planar interface between two identical domains
having different local minima in their order parameters.

Example profiles, ¢(z) and 7(z), through diffuse interfaces in these two types of systems
are shown schematically below:
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Figure 32-7: lllustration of order parameter fields in the diffuse interface theories.

The profiles ¢(z) and n(z) are continuous and the compositions ¢, and ¢, are the equilib-
rium compositions of the bulk phases. The values of order parameter 7' and 1" correspond to
local minima in the free energy.

Let y(z) stand for either ¢(z) or n(z). Also, let f(y, Vy) be the free energy of a small volume
dV which has average composition y and a gradient Vy across it. If the free energy density
is expanded about its homogeneous value f(y) = f(y,0) (presumably a known function) then
then

. 1
f(y,Vy) = f(y,0) + L-Vy + 5VyKVy + ... (32-7)
where
S af
" 3(o/0v) .
is a vector evaluated at zero gradient and
o f
K = 32-9
5= 5(0y/x)0(0y]03,) (329

is a matrix of second derivatives.

If homogeneous material has a center of symmetry, the free energy cannot depend on the
direction of the gradient and thus L =0 and K will be a symmetric matrix. Furthermore,
if the homogeneous material is isotropic (or cubic), then K will be a diagonal matrix (with
components K along the diagonal), then free energy density is, to second order:

K K
F(y:Vy) = f(4,0) + 5 Vy- Vy = f(y,0) + 5|Vy|2 (32-10)

Only the second term contributes to the free energy only in the region near the interface
(where the gradient is non-zero). The gradient-energy coefficient K is a parameter which
contributes to the interfacial area. However, it is not the only term which contributes: as the
composition profile traverses the interface region, compositions from the non-equilibrium parts
of the free energy curve are contributing to the excess free energy associated with the interface
as well.
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It is possible to calculate equilibrium profiles in terms of the parameters in Eq. 32-10.
However, our purpose is describe the kinetics of how an arbitrary distribution y(Z) evolves
towards equilibrium.

We will take a variational calculus approach. The treatment below assumes no prior knowl-
edge of the calculus of variations and will serve as an introduction to the subject.

The total free energy of the entire system (occupying the domain Q) is:

Fly(z)] = /Q(f(y) + %Vy-Vy)dV (32-11)

which defines F' as a functional with the argument y(z)3*. The function y(Z) will also have
specified boundary conditions on 9 (the boundary of 2); for instance, y(9€2) will have fixed
values or fixed derivatives.

If the field y(Z) is changing with velocity v(&), the is the rate of change of F is

K
Fy+ut) = /[f(y + vt) + +§(Vy - Vy +2tVy - Vo + t°Vov - Vv]dV (32-12)
Q
so that
oF ,
— = [ [f'(y)v+ KVy - Vov]dV (32-13)
ot |- Q
using
V- (vVy) = Vv - Vy +ovV3y (32-14)
and using the divergence theorem,
oF S
— = /(f'(y) — KV2y)vdV + / vVy - dA (32-15)
ot =0 Q N

The boundary integral vanishes if v(9) = 0, which would be the case if y(9Q) had fixed
boundary values®®; or, if the projections of the gradients onto the boundary vanish. If these
two cases are not satisfied, then when the volume to surface ratio is greater than the inherent
diffusion length, the system may be considered to be large enough so that the contributions
due to boundary can be neglected.

The change in total energy in Eq. 32-15 is the sum of local variations: (f'(y) — KV?y)v.
Therefore, the largest possible increase of F' is when the flow, v(Z), is proportional to

f'ly) = KV?y (32-16)

Therefore, Equation 32-16 is the functional gradient of F(y).3® Sometimes Eq. 32-16 is called
the variational derivative of F.3” When the variational derivative vanishes, y(z) is an extremal

34 A functional is a function of a function; in this case, it takes a function and maps it to a scalar which is
numerically equal to the total free energy of the system

351f y represents a conserved quantity like c, then the variation vt must not contribute to the total content
of the system ([ vtdV = 0), but we will satisfy this requirement automatically below.

36This is one particular choice for the functional gradient, for which there are an infinite number of choices.
This particular choice (the gradient in the L2-norm of functions) describes the physics of the problem.

37For the general functional, Ply] = [ Q[y(&), Vy]dV, the variational derivative of P is

oQ oQ
Jy -V oVy
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function and a candidate for a local maximum or minimum. For the case of the gradient
energy, if Eq. 32-16 vanishes, then y is an equilibrium profile.

The functional gradient is the starting point for the kinetic equations for conserved and
non-conserved parameter fields.
Appendix: Free Energy Changes and Geometric Constructions

The free energy versus composition curve, illustrated in the above for a constant temper-

ature, is a familiar example of a free energy which gives rise to a miscibility gap. The region
between the spinodal lines delimits those compositions for which there is no barrier to de-
composition. Inside the miscibility gaps, but outside of the spinodal region, decomposition
is favored but a thermodynamic barrier requires large fluctuations in composition (i.e., nucle-
ation) for decomposition. The position of spinodal lines is determined by the sign of the free
energy change for a small fluctuation in composition. The following derivation is from Hilliard
which derives the variation of the molar free energy, F(c), but this derivation applies to any
extensive molar quantity.3®.

We can write F(c) in terms of its partial molar quantities, F 4(c) and Fp(c):

F(C) = NJYFANB FA(C) + NA]\-I-BNB FB(C)

=cFa(e)+ (1 —¢)Fp(c) = cuale) + (1 — c)up(c) (32-17)

which plots as a straight line when the arguments of the partial molar quantities are evaluated
at a particular point ¢, on the curve F(c): cua(co)+ (1 —c)un(co). Consider a large system at
composition ¢y which transforms 1 mole to a new composition ¢’. If the system is open and the
composition is free to change, then the change in F is simply the difference AF = F(c’ ) —F(CO).
Similarly, for any non-conserved parameter 7, the change in molar free energy is:

AF = F(q) = F(n) (32-18)

38 An extensive quantity is one which depend on the total size of a system, like the volume, enthalpy, or
free energy. A molar extensive quantity is scaled by diving by the total number of moles in the system:
V(c)=V(c)/(Na+ Ng) =V(Na/(Na+ Np)) =V (N,). A molal extensive quantity is scaled by dividing by
the number of moles of a particular species.
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Figure 32-8: lllustration of the change in molar free energy from a composition ¢q. If
the system is closed so the composition is fixed, then the change in the molar free energy

is AF, for every mole which forms at composition ¢’. If the system is open and the
composition is free to change its value, then AF, is the change per mole transformed.

However, if the system is closed (which is the case for a localized fluctuation in composition),
then it is necessary to account for the exchange of material necessary to satisfy the constraint
of fixed composition. For each mole transformed, the change in F for the ¢’ moles of the B
component is [F () — Fp(cy)]¢, with a similar term for the A component:

AF = [FB(CI) — FB(CO)]C' + [FA(CI) — FA(CO)](I — c') (32—19)
which can be rewritten as

AF = Fp(c)+ (1= d)Fa(d) — csF p(co) — (1 — co) Faleo)+

(co — &)[Fp(co) — Falco)] (32-20)

or
o . dF
AF = F(d) = F(cy) — (¢ — co)d— (32-21)
c
c=co
which is numerically equal to the distance indicated in the figure by the distance AF,.. AF,
is negative if the curve for F'(c) lies below the tangent at ¢ = ¢/. Equation 32-21 holds for any
concentration ¢’ when the composition ¢, is fixed.
Consider the special case of a small composition fluctuation, ¢ = ¢ — ¢;. Expanding F'(c)

in dc:

(8c)* == + ... (32-22)
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Substituting Eq. 32-21 into Eq. 32-22 results in the change in the molar free energy
for a variation of a conserved parameter c:

-
AT = Lot

S (6c)P— (32-23)

c=co

Similarly, the lowest order term for the change in the molar free energy for a variation
of a non-conserved order parameter 7 is
dF

AF = on—— (32-24)
U

n=no

Therefore, an order parameter can always decrease the free energy by picking a variation én
with a sign that makes the product in Eq. 32-24 negative. An non-conserved order parameter
has no barrier against reaching a value which makes the free energy a local minimum.

On the other hand, for a conserved quantity like ¢, the variation in molar free energy is
proportional to (éc)?. Therefore, a barrier to the growth of small variations exists whenever
the second derivative in Eq. 32-23 is positive. Thus, nucleation is required for a transformation
outside of the spinodal curves.

The sign of Eq. 32-23 determines the sign of the interdiffusion coefficient.



