... $ y(\vec{x})$1
A functional is a function of a function; in this case, it takes a function and maps it to a scalar which is numerically equal to the total free energy of the system
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... values2
If $ y$ represents a conserved quantity like $ c$, then the variation $ vt$ must not contribute to the total content of the system ( $ \int vt dV = 0$), but we will satisfy this requirement automatically below.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....3
This is one particular choice for the functional gradient, for which there are an infinite number of choices. This particular choice (the gradient in the $ L2$-norm of functions) describes the physics of the problem.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....4
For the general functional, $ P[y] = \int Q[y(\vec{x}),\nabla y] dV$, the variational derivative of $ P$ is

$\displaystyle \frac{\partial Q}{\partial y} -
\nabla \cdot \frac{\partial Q}{\partial \nabla y}
$

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... quantity.5
An extensive quantity is one which depend on the total size of a system, like the volume, enthalpy, or free energy. A molar extensive quantity is scaled by diving by the total number of moles in the system: $ \overline{V}(c) = V(c)/(N_A + N_B) =
\overline{V}(N_A/(N_A + N_B)) =
\overline{V}(\overline{N}_A)$. A molal extensive quantity is scaled by dividing by the number of moles of a particular species.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.