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Order Parameters

Interface Transitions and Nucleation

Elastic Energy Contributions to Nucleation and the Eshelby Cycle

Heterogeneous Nucleation

Diffusion with Moving Interfaces

The methods for solving the diffusion equation were presented for cases of fixed boundary
conditions. However, there many examples of kinetic processes in materials where boundaries
(e.g. interfaces, phase boundaries) move in response or because of diffusion. Below, methods to
treat such problems will be shown to be straightforward extensions of the diffusion equation—
the additional physics is a conservation principle relating the velocity of the moving interface
the rate at which a conserved quantity is consumed per unit area of the interface. While exact
solutions are difficult to obtain, a few general results and approximations can be obtained and
applied to materials processes.

The analysis of the moving interface problem originates with Stefan who was developing a
model for the rate of melting of the polar ice-caps and icebergs. This problem remains as one
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of the biggest alloy solidification problems. Heat must be conducted from the oceans to the
melting interface to to provide the latent heat of melting and salt must be supplied as well
since the equilibrium concentrations salt in the liquid and solid differ.

Interface Motion due to Heat Absorption at the Interface
To simplify the analysis of the problem, consider the heat-flux problem independently;

specifically, consider freezing a liquid-solid mixture by extraction of heat:

VAt

Figure 26-1: Schematic illustration of a temperature distribution resulting in the freezing
and motion of the liquid/solid interface. The velocity of the interface will depend on the
difference in enthalpy density in each phase.

Assuming density, p, is same in each phase, and equating the volume swept out with heat
required for the phase change:

vAtApAhyr_,s = Heat absorbed by interface motion

26-1
’UAtApAhL_)S = (JZ — Jout)AAt ( )
where h is the enthalpy per unit volume, therefore
dX (t) 0T oTry,
Ah ={-D D 26-2
5 PAhLs ( 55, TP 5, ) (26-2)

Equation 26-2 is known as the “Stefan Condition,” X (¢) is the position of the (assumed planar)
interface.

It is probably wise to check for wayward minus signs. Consider the usual case, Ahy_,5/T,, =
Asp,s < 0, and suppose the thermal diffusivity in the solid phase is zero (i.e. all heat
is absorbed by the interface and supplied by the liquid reservoir); does the velocity of the
interface have the expected sign?
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Therefore the thermal diffusion equations become:

2
s _ pITs 0<z<X(t)
O _ o1 X(t)<z<
ot 5 og2 TS

J(z=0,t)=J, Ts(x=X(t),t) = T To(x=X(t),t) =T Jy(z =o00,t) =0  (26-4)

with the new unknown function, the interface position X (¢), to be determined by the subsidiary
Stefan condition:
dX(t)
dt

oT oT
pAhp_,s = <_DS_S + DL_L>

Dz Oz (26-5)

z=X(t)

Mass Diffusion in an Alloy

The Stefan condition relates the velocity of the interface to the “jump” in the density
of an extensive quantity. For the case of heat above, that quantity was the enthalpy den-
sity. Next, the diffusion of chemical species will be coupled to the jump in alloy composition
(amount/volume) at a moving interface—an analogous Stefan condition results.

Consider a diffusion couple between two alloys at different compositions for a system with
multiple phases in equilibrium at a given temperature.
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VAL

Figure 26-2: Schematic illustration of diffusion in an alloy with more than one equilibrium
phase at a given temperature

The mass balance at the moving interface is related to the phase diagram:

Figure 26-3: lllustration of the composition difference at an interface in local equilibrium.

dNp = (cj' — c;7)AvAt (26-6)
This must be balance by the amount going in:

0C,

a
T

AN = —D AAt (26-7)
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minus the amount going out

acC
AN = —Dﬁa—;Am (26-8)

Therefore, the Stefan condition is:

dX (t) 8C, _ 8C;
€q _ eq — _
(e =)=, ( D5 +Dﬁ8m>

(26-9)

Simple Stefan Example
A limiting case for the mass diffusion case is developed below; the result that the interface
grows as 4/t is derived. This result, as shown in the textbook, is a general one for the Stefan

problem with uniform diffusivity in each phase. Therefore, this result is applicable to materials
processes where material must diffuse through a growing phase towards an interface where is
can react and form new material—such as oxidation of a surface.

The coupled diffusion equations are:

Oc,, - 0%c,
865 ~ aZCﬂ
5 = Drgs X(t)<z <o (26-10)

ca(z=0,t) =0 co(z = X(t),t) =2
cp(z = X(¢),t) = c;q cg(z =o00,t) =1

With the simplifying assumptions that Dlg > D, and a steady-state profile applies in
a-phase, the concentration profiles become:

co(z,t) = 1 0<z<X(t)
X(t) (26-11)
cp(z,t) = ¢ X(t)<z<oo

Incorporating this limiting case into the Stefan condition and integrating,

X (t) - X(t=0)= — 2~ (26-12)
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Morphological Instabilities

A growth interface can undergo a morphological instability in cases when the driving force

for growth (or transformation) is very large. The commonly observed example is that of a
snowflake—which is a beautiful structure, but from simple considerations may appear to have
much more surface energy than one might expect. In fact, the surface energy ‘competes’
with the driving force for transformation—as the driving force increases, the amount of ‘extra’
surface of the growth shape increases. On the other hand, if surface tension is very large
compared to the volumetric driving force then the tendency for an interface to become unstable
is decreases.
Instability of a Pure Liquid-Solid Interface

Consider the solidification of a pure liquid above its melting point by removing heat through
a walls which are kept at a fixed temperature.

Twall =

Figure 26-4: lllustration of conditions for stable interface morphology.

In this case, solidification begins at the walls and the solidification interface moves towards
the center of the container at a rate which is dictated by how fast the latent heat of solidification
can be conducted through the freshly grown solid phase and out through the walls. In this case,
the interface is completely stable and the interface moves stably until all the liquid disappears.

Now consider the solidification of a pure liquid which has been carefully supercooled below
its melting point with no nucleation. If the solid phase is nucleated by a seed at the center of
the container, then solidification proceeds as heat is conducted to the supercooled liquid and
through the container walls.
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Twall =

Figure 26-5: lllustration of the solidification of a supercooled liquid.

If effects of gravity are eliminated, then such an experiment can be carried out with only
thermal diffusion through the liquid phase and no convection. In this case, the interface is
unstable and any small undulations in the surface can grow into dendrites.

The essential difference between Figure 26-4 and Figure 26-5 is that in the unstable case
the new phase is growing into an unstable phase. The basic idea can be described in fairly
simple terms. The supercooled liquid conducts heat which is generated by solidification; when
a small protuberance forms at the interface, it pokes into liquid at a slightly lower temperature
which can more efficiently conduct heat and therefore the protuberance continues to grow.
Alloy Solidification

A typical casting microstructure has a morphological instability:

Figure 26-6: Typical casting microstructures. The micrograph on the left comes from
near the container surface. If you are viewing in HTML, click on figure to see a phase
field simulation of grain growth computed by J.A. Warren of NIST.

This is a puzzle: The morphological instability occurs for the case illustrated in Fig. 26-4—which
is the case that was argued to be stable.
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Constitutional Supercooling

The puzzle is solved by showing that the liquid near the growing interface is made unstable
by composition variations due to the limited rate of mass diffusion. In this case, the instability
is due to composition and not temperature.

The analogy between the thermal instability of a pure substance and the instability of alloy
at constant temperature can be understood by referring to an isothermal line in a binary phase

diagram.
-
Cs Co G
Figure 26-7:  lllustration of part of a binary phase diagram. If the solid phase is
growing into an unstable liquid at 7" = T and composition Cy (Cs < Cy < Cp) then
the interface will be unstable.

For a solid growing into a liquid phase, the advancing solid must reject solute into the liquid
phase. The rate of advance is limited by the rate at which rejected solute can be diffused away,
just as in the thermal case where interface motion is limited by the rate at which heat is
diffused away.

Suppose that a material with a uniform composition, C' in Fig. 26-7, is uniformly quenched
into the two-phase region. The liquid is effectively under-cooled; such a system is called
constitutionally under-cooled. Thus, a solidification front which starts from the edges of the
container will become unstable for the same reasons that the front in 26-5 is unstable.
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Mullins-Sekerka Instability

Both the constitutional supercooling and the thermal undercooling interfaces were analyzed
by Mullins and Sekerka. They were able to determine a relationship between the wavelength
of the instability, the surface tension, the transport coeflicients, and the driving forces.

The analysis begins by introducing a dimensionless variable for temperature in one case
and composition in the other:

T_T
Amf/‘i - Thermal Model

U= (26-13)

p—peq(T)
Tcé—g Solute Model

The interface condition is related to the curvature through the Gibbs-Thompson effect:

U = —dyk (26-14)

wnter face

where d, is a capillary length:

¥Tnrc
(Am];z Thermal Model

d, = (26-15)

(ACV)ZE% Solute Model

This can be inserted into a set of moving interface diffusion equations and the stability of
the interface can be evaluated by perturbation analysis.

All perturbation wavelengths greater that A..;; can grow:
A > At & 2wy [ (1 + B)Ad, (26-16)

where (3 is the ratio of solid to liquid transport coefficients and A is an effective diffusion length
given by the interface-controlling diffusivity divided by the velocity of the interface.
The fastest growing wavelength is given by

)"mam = \/g)\cm't (26'17)
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It is expected that A,,,, will determining the scale of the resulting microstructure.




