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3.21 Spring 2002: Lecture 22

Continuous Transformations—Introduction
In previous lectures on morphological evolution by surface diffusion, interface motion arises

even though there is no transportation of material through the interface.
For the case of evaporation-condensation, interface motion arises because material is trans-
forming from a state on one side of the interface into the state on the other side of the interface.
Evaporation-condensation is a simple example of a kinetic process associated with a phase
transformation: interface velocity is related to the rate (volume/time) of phase transformation
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per unit area of interface. Discussions of phase transformations are facilitated with a defi-
nition of phase The concept of a phase is often confused with heterogeneity. It will become
apparent that a system with multiple phases is necessarily heterogeneous and necessarily has
interfaces However, the converse—a heterogeneous system with interfaces necessarily has mul-
tiple phases—is not true and is easily proved by the existence of polycrystalline single phase
material or that of antiphase boundaries.

Phase A homogeneous part of a system that can be identified as “physically different” from
another part of the system. Physically different implies that the two homogeneous sub-
systems are not related by a combined rotation and translation. A phase is always
separated from another phase by an identifiable interface.

Pedestrian examples are the solid phases, liquid phase, and vapor phase of pure wa-
ter where the homogeneous phase can be identified by homogeneous values of the mass
density or enthalpy density—the interface can be identified by those regions where the
field parameters representing densities of equilibrium extensive quantities are spatially
variable. Less obvious examples are the FCC and BCC phases of iron-carbon-nickel-
chromium steel or the ferromagnetic and non-ferromagnetic phases of LaSrMnO man-
ganites.

I'll take this opportunity to quote one of my heros:

We may call such bodies as differ in composition or state, different phases of
the matter considered, regarding all bodies which differ only in quantity and form

as different examples of the same phase.
...J. W. GIBBS in Trans. Connecticut Acad. III. (1875) page 152
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Figure 22-1: A single component phase diagram. On the right figure, the color
represents the equilibrium value of a molar extensive quantities (i.e., blue is a low value
of V and red is a large value of V) that apply to each phase at that particular p and 7.
For phase transitions, the color could be associated with an order parameter.

The motion of a grain boundary or an antiphase domain boundary does not transform ma-
terial as it passes through it. The material is re-ordered but not transformed. Nevertheless, it
is useful to introduce a field parameter characterizing the local symmetry or spatial orientation
of a material. Such a field parameter would have the characteristic of being uniform except in
the vicinity of grain boundary or antiphase domain boundary.

In either case, the kinetic evolution of the relevant field parameter becomes a convenient
means to track the motion of the interface because the interface can be co-located at values of
the field parameter intermediate to its homogeneous values in the abutting material.

Such field parameters are generically called order parameters. Although it may be that
“order parameter” has a natural conceptual association to the case of geometrical variants of
a single phase, it is consistent with the use of order parameters in the Landau expansion of a
free energy density about its equilibrium density. We shall use order parameters in either case.
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The hypothesis that an order parameter changes continously through an interface is con-
nected to questions of whether a phase change or geometrical change can be continuous trans-
formations. In other words, a phase or geometrical variant can be generated within another
by a continuous process.

The process of the formation of a new phase from an existing phase can be classified into
two categories: continuous and discontinuous phase transitions.

Discontinuous phase transitions occur by nucleation—-a process that Gibbs called,

initially small in extent but great in degree.”2¢

Degree refers to quantity that characterized a phase and extent refers a length scale. Nu-
cleation will be treated in subsequent lectures.

Continuous phase transitions can be treated with the evolution of continuous order param-
eter fields—processes that Gibbs called, “initially is small in degree, but may be great in its
extent in space.”

Considerations of the development of a continuous phase transformations or geometrical
transform should begin with a careful examination of order parameters.

Order Parameters

Consider a system in which composition cannot be varied, such as a pure material. The

Gibbs phase rule indicates that there is only one degree of freedom in a system that can char-

26 Ibid Page 256, An fraction of the paragraph where this quote appears is so much fun, that I can’t resist
giving it here:

ldots Another kind of change is conceivable, which initially is small in degree but may be great
in its extent in space. Stability in this respect or stability in respect to continuous changes in
phase has already been discussed (see page 105), and its limits determined. These limits depend
entirely upon the fundamental equation of the homogeneous mass of which the stability is in
question. But with respect to the kind of changes here considered, which are initially small in
extent but great in degree, it does not appear how we can fix the limits of stability with the same
precision. But it is safe to say that if there is such a limit it must be at or beyond the limit at
which [surface tension] vanishes. This latter limit is determined by the fundamental equation of
the [interface] between the the phase of which the stability is in question and that of which the
possible formation is in question. ...

It is interesting that Gibbs’ initial considerations about stability—and admittedly more precise predictions—
concerned the continuous phase transformation; subsequently, he worked out the conditions for nucleation. This
is opposite to the order of historical and typically pedagogical approach in materials science.
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acterized by temperature and pressure only. One degree of freedom implies that for conditions
in which two phases are in equilibrium, there must be a relation between temperature and
pressure. Such a relation can be derived by considering the Gibbs-Duhem relationship in each
of the phases—for example, if the two phases are solid and liquid:

0= Shquld dT — thuld dp
0 = gsolid yp _ VSOhddp
dp AS AH
> — = =
dT equilibrium AV Teq. AV

(22-1)

which is the famous Clausius-Clapeyron equation that couples changes in intensive parameters
so that phase equilibrium is continuously satisfied.
Consider the behavior of the molar free energy (or p) on slices of Figure 22-1 at constant

pand 7"
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Figure 22-2: Considerations of the molar Gibbs free energy on slices of the single com-
ponent phase diagram along lines of constant 7" and constant p. The slope of the curve
is related to the molar volume of each phase and can be used as an order parameter that
indicates the spatial variation of a phase.
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Figure 22-3: Behavior of G = yu at constant P as a function of 7. Where the curvature
of G changes sign, the system is unstable to small fluctuations in density. The liquid and
vapor curves must be connected to each other and this is illustrated with the "spiny-
looking” curve with opposite curvature. The solid curve is not continuously connected

to the others.
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Figure 22-4: Behavior of G = y at constant 7" as a function of p. The slope of the curve
is related to the molar volume of each phase and can be used as an order parameter that

indicates the spatial variation of a phase.
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Figure 22-5: Example of single component phase diagram plotted with one derived
intensive variable.

What would the plot look like with two extensive variables plotted?
The example in 22-5 is reminiscent of a phase diagram with a miscibility gap:

|
|
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Figure 22-6: lllustration of the types of free energy curves and the regions on a phase
diagram that are associated with spinodal decomposition.

In fact, if one of the chemical potentials that can be derived by the graphical tangent
intercept method was plotted as a function of composition, it would look very similar to the
"spiny-looking” curves in Figs 22-3 and 22-3.

In the case of a phase transformation, the equilibrium values of the density of an extensive
quantity, such as the concentration or composition ¢(Z), can be used as an order parameter. For
geometric transformations or order-disorder, a similar approach of equilibrium hidden variables

is implicit in a Landau expansion.?”.

2"The following example is taken from Landau and Lifshitz, “Statistical Physics” third edition, pages 451-455
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Consider two phases that differ by an order parameter 7 that could be associated with the
displacement of an atom away from a crystalline inversion center, such as in a piezoelectric
transition. The equilibrium state of the crystal as an arbitrary function of a fixed temperature
and pressure can be approximated as a series in the terms p, 7', and #:

G(T,p,n) = G,(T,p) + a(p)(T — T.)7° + B(p)n* (22-2)

where T, is the Curie temperature for the transition. The equilibrium state of is entirely
determined by the minima of G as a function of pressure and temperature—therefore 1 does
not have have the same status as the variables 7" and p. The order parameter 7 is determined
by the minima of G:

: _dP)NT—T.)

L= 22-3
nequzl 2B(p) ( )

In the case of phase transformations above, the molar volume could be used as a local
indicator of which phase is present—V(f) can be used as an order parameter field. Similarly,
spatial variations of a field 7(Z) could be used as an order parameter to indicate whether a
phase is in its centrosymmetric or a piezoelectric phase—and positions where |V7n| is large

would identify interfaces.

Because a common description language can be developed, it is useful to consider the
similarities between different kinds of order parameters; i.e, the densities of extensive quantities
that are used as order parameters for phase transformations and the geometrical (or hidden)
variables that serve as order parameters that can be used to identify an interface in a single
phase material. However, differences between the two types of order parameters will have
important consequences on the kinetics of their evolution.

An important distinction is that one order parameter (e.g., ¢(Z)) is locally conserved—local
changes can only arise from a flux divergence in the absence of sources and sinks. The other
type of order parameter is not locally conserve; e.g., a measure of disorder 7(Z) can change
with no associated flux.



MIT 3.21 Spring 2002 © S.M Allen W.C Carter Lecture 22 105

@0 00000000 @0 00000000
000000000 @0 00000000
ON NONON NONON N NGO ON NONON NONON N N
ON NONONONON NON NGO ON NONONONON N N N
@0 00000000 L JON NON NON N NONGC
‘..‘.¢..... Q...‘¢..‘..
000000000 000000 00GOGO
000000000 000000000
OCNON N NONON N NONG 0000 0000GOCGO
@0 000000 0®eO0o 00000 000GOO
0000000 0O 000000 00OGOO
ON N NONON N NONON ©O000OC0O0OG®@O®O®O
Order—Disorder Spinodal Decomposiin
Figure 22-7: lllustration of two atomic rearrangement processes.

The ordering reaction does not require long-range diffusion, but the decomposition reaction
must move mass over long distances.

In the appendix to these notes, it is demonstrated how the changes in free energy depend
on whether flux is required or not. The important results can be summarized as follows:

e Non-conserved quantities: If 1 is a non-conserved quantity, like spin, or crystalline
order, then for small changes in 7 given by 7:
dG

n=mno

Therefore, an order parameter can always decrease the free energy by picking a variation
on with a sign that makes the product in Eq. 22-23 negative. An non-conserved order
parameter has no barrier against reaching a value which makes the free energy a local
minimum.

e Conserved quantities: If ¢ is a non-conserved quantity, like concentration, then for
small changes in ¢ given by dc:

1, ,dG

c=cq



MIT 3.21 Spring 2002 © S.M Allen W.C Carter Lecture 22 106

Therefore, a barrier to the growth of small variations exists whenever the second deriva-
tive in Eq. 22-22 is positive. Thus, nucleation is required for a transformation outside of
the spinodal curves.

In fact, it can be shown that the sign of the diffusivity, D, for concentration flux is given
by the second derivative 8°G/dc*. This has the effect of causing “up-hill” diffusion.

Kinetics and Diffuse Interfaces

If transformations occur without nucleation, then the thermodynamics must account for
continuous variations of thermodynamic state variables. These continuous variations are called
“diffuse interfaces” and they are addressed in this section. The important result is that the
local free energy density has a contribution due to gradients of thermodynamic state variables.

The theory for the free energy of inhomogeneous systems was developed by Cahn and
Hilliard in 1958. The theory was originally developed to account for contributions to the free
energy from gradients in the composition—or any other conserved field. The diffuse interface
method was extended to non-conserved order parameters by Allen and Cahn (1979) in their
study of the kinetics of the order-disorder transition. The theories for both can be developed in
parallel since their construction follows from the same principles. ¢(Z) describes any conserved

field quantity (like the concentration field in a closed system) and 7(Z) represents any non-
conserved order parameter field.

A two-phase system with a miscibility gap at equilibrium with a planar interface will
have an equilibrium composition profile ¢(z) through the interfacial region. The form of the
equilibrium composition distribution is determined by the ¢(z) which minimizes F', the total
free energy of the system. Similarly, a system that tends to form long-range ordered domains
will have a distribution of order, 7(z), across a planar interface between two identical domains
having different local minima in their order parameters.

Example profiles, ¢(z) and n(z), through diffuse interfaces in these two types of systems
are shown schematically below:
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Figure 22-8: lllustration of order parameter fields in the diffuse interface theories.

The profiles ¢(z) and n(z) are continuous and the compositions ¢, and ¢, are the equilib-
rium compositions of the bulk phases. The values of order parameter ' and 1" correspond to
local minima in the free energy.

Let y(z) stand for either ¢(z) or n(z). Also, let f(y, Vy) be the free energy of a small volume
dV which has average composition y and a gradient Vy across it. If the free energy density
is expanded about its homogeneous value f(y) = f(y,0) (presumably a known function) then

then
- 1
f(y,Vy) = f(y,0)+L-Vy+§VyKVy+... (22-6)
where
— — 22-
B(9y/0w:) (22-7)

is a vector evaluated at zero gradient and

92 f
(0y/0z:)0(0y/0z;)

K= (22-8)

1s a matrix of second derivatives.
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If homogeneous material has a center of symmetry, the free energy cannot depend on the
direction of the gradient and thus L =0 and K will be a symmetric matrix. Furthermore,
if the homogeneous material is isotropic (or cubic), then K will be a diagonal matrix (with
components K along the diagonal), then free energy density is, to second order:

K K
f( Vy) = f(%:0)+ - Vy - Vy = f(y,0) + §|Vy|2 (22-9)

Only the second term contributes to the free energy only in the region near the interface
(where the gradient is non-zero). The gradient-energy coefficient K is a parameter which
contributes to the interfacial area. However, it is not the only term which contributes: as the
composition profile traverses the interface region, compositions from the non-equilibrium parts
of the free energy curve are contributing to the excess free energy associated with the interface
as well.

It is possible to calculate equilibrium profiles in terms of the parameters in Eq. 22-9.
However, our purpose is describe the kinetics of how an arbitrary distribution y(Z) evolves
towards equilibrium.

We will take a variational calculus approach. The treatment below assumes no prior knowl-
edge of the calculus of variations and will serve as an introduction to the subject.
The total free energy of the entire system (occupying the domain Q) is:

Fly(z)] = /Q(f(y) + %Vy-Vy)dV (22-10)

which defines F' as a functional with the argument y(z)?®. The function y(Z) will also have
specified boundary conditions on 9§ (the boundary of 2); for instance, y(9Q) will have fixed
values or fixed derivatives.

28 A functional is a function of a function; in this case, it takes a function and maps it to a scalar which is
numerically equal to the total free energy of the system
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If the field y(Z) is changing with velocity v(Z), the is the rate of change of F is

109

K
F(y+wot) = /[f(y + vt) + +E(Vy -Vy + 2tVy - Vv + t*Vv - Vo]dV (22-11)
Q
so that
oF ,
— | = [ [f'yv+ KVy: Vo]dV (22-12)
ot |, Q
using
V- (vVy) = Vo - Vy +vV3y (22-13)
and using the divergence theorem,
oF / 2 A
— = [ (f'(y) = KVy)vdV + [ vVy-dA (22-14)
ot .o Ja a0

The boundary integral vanishes if v(9€) = 0, which would be the case if y(99) had fixed
boundary values?’; or, if the projections of the gradients onto the boundary vanish. If these
two cases are not satisfied, then when the volume to surface ratio is greater than the inherent
diffusion length, the system may be considered to be large enough so that the contributions

due to boundary can be neglected.

The change in total energy in Eq. 22-14 is the sum of local variations: (f'(y) — KV?y)v.

Therefore, the largest possible increase of F' is when the flow, v(&), is proportional to

f'ly) — KV?y

(22-15)

29Tf y represents a conserved quantity like ¢, then the variation vt must not contribute to the total content

of the system ([ vtdV = 0), but we will satisfy this requirement automatically below.
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Therefore, Equation 22-15 is the functional gradient of F(y).>* Sometimes Eq. 22-15 is
called the variational derivative of F.3' When the variational derivative vanishes, y(z) is an
extremal function and a candidate for a local maximum or minimum. For the case of the
gradient energy, if Eq. 22-15 vanishes, then y is an equilibrium profile.

The functional gradient is the starting point for the kinetic equations for conserved and
non-conserved parameter fields.

Appendix: Free Energy Changes and Geometric Constructions

The free energy versus composition curve, illustrated in the above for a constant temper-
ature, is a familiar example of a free energy which gives rise to a miscibility gap. The region
between the spinodal lines delimits those compositions for which there is no barrier to de-
composition. Inside the miscibility gaps, but outside of the spinodal region, decomposition
is favored but a thermodynamic barrier requires large fluctuations in composition (i.e., nucle-
ation) for decomposition. The position of spinodal lines is determined by the sign of the free
energy change for a small fluctuation in composition. The following derivation is from Hilliard

which derives the variation of the molar free energy, F(c), but this derivation applies to any
extensive molar quantity.32.
We can write F(c) in terms of its partial molar quantities, /' 4(c) and Fp(c):

OB ves I ORS peo Y0

= cFale) + (1= ) 5(e) = epa(e) + (1 = pus(c)

(22-16)

which plots as a straight line when the arguments of the partial molar quantities are evaluated
at a particular point ¢, on the curve F(c): cua(cy) + (1 —c)un(co). Consider a large system at
composition ¢y which transforms 1 mole to a new composition ¢’. If the system is open and the
composition is free to change, then the change in F is simply the difference AF = F(c)—F(cy).
Similarly, for any non-conserved parameter 7, the change in molar free energy is:

AF =F(n') = F(n) (22-17)

30This is one particular choice for the functional gradient, for which there are an infinite number of choices.
This particular choice (the gradient in the L2-norm of functions) describes the physics of the problem.
31For the general functional, P[y] = [ Q[y(Z), Vy]dV, the variational derivative of P is

oQ oQ
3V avy

32 An extensive quantity is one which depend on the total size of a system, like the volume, enthalpy, or
free energy. A molar extensive quantity is scaled by diving by the total number of moles in the system:

V(c)=V(c)/(Na+ Np) =V(Na/(Na+ Ng)) = V(N ). A molal extensive quantity is scaled by dividing by
the number of moles of a particular species.
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Figure 22-9: lllustration of the change in molar free energy from a composition ¢y. If
the system is closed so the composition is fixed, then the change in the molar free energy
is AF, for every mole which forms at composition ¢. If the system is open and the
composition is free to change its value, then AF,, is the change per mole transformed.

However, if the system is closed (which is the case for a localized fluctuation in composition),
then it is necessary to account for the exchange of material necessary to satisfy the constraint
of fixed composition. For each mole transformed, the change in F for the ¢ moles of the B
component is [FB(C’ ) — FB(CO)]CI , with a similar term for the A component:

AF = [FB(C’) — FB(CO)]C' + [FA(CI) — FA(CO)](l —d) (22-18)
which can be rewritten as

T ' /
AF = cFB(c) (22_19)

or

AF = F(d) - F(CO) — (' —¢p)— (22-20)

which is numerically equal to the distance indicated in the figure by the distance AF.. AF,
is negative if the curve for F(c) lies below the tangent at ¢ = . Equation 22-20 holds for any
concentration ¢ when the composition ¢, is fixed.

Consider the special case of a small composition fluctuation, ¢ = ¢ — ¢y. Expanding F(c)
in dc:

T (22-21)

c=cq c=co

Substituting Eq. 22-20 into Eq. 22-21 results in the change in the molar free energy
for a variation of a conserved parameter c:

-1 d2F
AF = 5(csc)Q—

3 (22-22)

C=C(
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Similarly, the lowest order term for the change in the molar free energy for a variation
of a non-conserved order parameter 7 is

AF = én— (22-23)

Therefore, an order parameter can always decrease the free energy by picking a variation é7n
with a sign that makes the product in Eq. 22-23 negative. An non-conserved order parameter
has no barrier against reaching a value which makes the free energy a local minimum.

On the other hand, for a conserved quantity like ¢, the variation in molar free energy is
proportional to (éc)?. Therefore, a barrier to the growth of small variations exists whenever
the second derivative in Eq. 22-22 is positive. Thus, nucleation is required for a transformation
outside of the spinodal curves.

The sign of Eq. 22-22 determines the sign of the interdiffusion coefficient.



