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Last Time
The Position of a Particle Executing a Random Walk

The Probability of Finding a Particle at a Position after a Random Walk

Treating the Concentration as Time-Dependent Probability Distribution

Relating the Self-Diffusivity to a Random Walk

A Puzzle: Why for a random walk is Vy = 07

3.21 Spring 2001: Lecture 14

The Successful Jump Frequency as an Activated Process
The treatment of diffusion as a statistical process permitted a physical correspondence
between the macroscopic diffusivity and microscopic parameters for, average jump distance
(r), jump correlation f, and the average frequency at which a jumper makes a finite jump T'.
In this lecture, the statistical evaluation of microscopic process will be applied to the
successful jump frequency I'. A physical correspondence for I' that is related to microscopic
processes of attempt or natural atomic vibration frequency and the difference in energy between

the potential energy of site and the maximum value of the minimum potential energy (the
saddle energy) as the atom moves from one equilibrium site to the next.
The result that will be obtain, that the frequency of successful hops,

_ Esaddle_Eequil.

T'=ve kT (14—1)

is related to the natural frequency multiplied by a Boltzmann factor has remarkable general
application.
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Distribution of Energy among Particles
A fundamental result from statistical mechanics is that for an ensemble of atoms at a fixed
temperature 7', that the energies of the atoms has a characteristic probability distribution:

P(E)

|

E

Figure 14-1: Schematic illustration of the distribution of energies at a fixed tempera-
ture, plotted for two different temperatures. P(E) = exp(—E/kT)/Z where Z is the
normalizing factor (partition function) Z, such that 1 = >, P(E).

Below, the rate of successful jumps for simple models of activated processes will be derived.
Each derivation will depend on the distribution of energies given above. It will be supposed
that a single atom will assume all possible values of energy with probabilities given by the
Boltzmann distribution over time (the ergodic assumption). In other words, the distribution
is considered to apply to the atoms at a time scale that is rapid compared to the natural
frequency of the atoms—no correlation is made for the loss (or gain) of energy as an atom
hops from one equilibrium site to the next.
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Activation Processes in Square Wells
Consider an ensemble of particles with distributed energies moving about on the following
energy landscape:

min

Figure 14-2: Simple model of activated process occurring between two square wells with
an activation barrier of height E4.

The characteristic time it takes a particle to cross the activated state is

LA [ m
Ccross ~ ~ L I 14—2
i Urms 4 kT ( )

where v,.,s = 4/(v2) and m is the mass of the particle with characteristic thermal energy k7.
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The total rate, R.,.ss, that particles cross the barrier is

(number of particles in activated state)
Rcross -
TCT'OSS
Niot (probability of being in activated state)
= (14-3)
TCTOSS
kT''1 Zy4
= NiotA| —
m LA Z'mz'n
where Z4 and Z,,;, are the partition functions for the activated and minimum states.
The rate that single particle crosses, I, is:
kT'1 Z
D=4/ ——4 (14-4)
m LA Z’min
E(z)
Z € kT dm L Es—Emin
a_ = Lem T (14-5)
Zmin f e~ T dx L1nin
Lmin
Therefore,
kT 1 Eqa—Emin
[ =4/— e~ R (14-6)

m L1nin

The term that multiplies the Arrhenius factor (the 1/T exponential) is the characteristic
time it takes a particle to make an attempt at the activated state.
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Activation Processes in Harmonic Wells

Consider the following modification of the above simple case, the minima are treated as

harmonic wells:

potential for the equilibrium and saddle points.

Figure 14-3: Modification to the simple square wells activated process by a harmonic

The minima can be approximated by

E(I) - E’m,in + g(m - m’min)z

(14-7)

The analysis is similar to the case of the square wells, but for the ratio of the partition

functions:
Za o f L e_ﬂk%‘ldx
Zmin B 6_% f_LLWz:;:ln e_%dm
Approximating,

Lmin

2 _ﬂ(’:_zmin)z & _la(z_rmin)z
e T dr & e T dx
—Lmin — 00
2

(14-8)

(14-9)
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and carrying out the integration,

/B ]_ _EA*Emin _EA*Emin
I'=4/———e¢ T = w,e KT 14-10
V' 7 (14-10)

where w, is the characteristic oscillating frequency at the minima of a particle with mass m
sitting in a well of curvature S.

Many-Body Theory of Activated Processes at Constant Pressure

In a real system, an atom or a vacancy does not make a successful hop without affecting (or
getting effected by) its neighbors—all of the particles are vibrating and saddle point energy is
an oscillating target produced by the random vibrations of all the atoms. The energy-surface
that an atom, interstitial, or vacancy travels upon is a complicated and changing surface. If
there are N spherical particles, then there are 6 N-degrees of freedom to this surface, but it will
be assumed that the momentum variables can be averaged out so that only a 3N-dimensional
potential surface remains:
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Figure 14-4: A schematic representation of the 3N-dimensional (positions) surface for
a crystal with N sites. The minima are located at P and ) and it may be supposed,
for simplicity, that a particle that jumps from P to () does so along the trajectory S
crossing through a maximum of width § at the saddle point A* which is located at the
minium along the ridge S™.

The minima, or equilibrium values of momenta and positions, can be approximated by
harmonic wells:

m,-wl-z

=1

This is approximated by a one-dimensional problem by assuming that all states during a
hop lie on the surface S in the figure.

Let the first coordinate be in the direction of the crossing (parallel to S), then the average
(rms) momentum p; in that direction is related to the an average rate of attempts. The result
that was derived for the harmonic potential can be re-used in this case:

fraction 0

ET 1 articles in
=4/——|?P 14-12
m L4 | activated ( )

state

where L 4 is recogonized to be the width § in Figure. 14-4.
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However, in this case, the particle may have a different volume in the activated state
compared to the equilibrium state:?”

Vm,ig — VA

part part

—ve (14-13)

part

For the case where the volume may vary, but pressure is constant, the canonical constant
pressure partition function must be used:

Zp= Y e (14-14)

energies, volumes

Therefore I'p,,+ picks up an additional factor:

ET 1 -PYat 74

——e
m LA Zmzn

Lpart = (14-15)

It remains to evaluate the partition functions by summing over all energies: 7 = ZfN e~ Pwia)/FT
The partition function is evaluated by passing to the classical limit by dividing up the quantum
phase space into cells of side-length equal to Planck’s constant, h:

2T This is certainly important for the case for migrating particles that have a large compliance (low stiffness)
such as vacancies.
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Figure 14-5: lllustration of the trick used to evaluate the partition function by counting
degeneracy in quantum phase space with the uncertainty principle.

Because of the uncertainty principle:

Ap;Ag; > h

(14-16)

Each elementary volume, (ApAgq);, in phase space must be considered to have degeneracy:

Ap;Ag;
B3N
Therefore,
1 i
7 = h3—N ‘ C_f_T

In the classical limit,

(pz ;)
R // / Z dpidps ... dpsndqidgs . .. dgsy

(14-17)

(14-18)

(14-19)

Using the Harmonic approximations for the minima and carrying out the integration and

letting all the masses have the same value:
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3N 3N
X w;

=1

Carrying out the same process for the activated state (which has one less degree of freedom)
and adding the momentum near the activated state to the integral:

By (2mkT\*V m ST
Z4= Lje" 7T — 14-21
o=t (D) MT)(HWA (1421

1=2 ?

The products over the vibrational modes can be related to the entropies of the states, i.e.,

3N-1 3N-1
ok T A
(H w;“> = ( ”h ) e % (14-22)
=2

Putting this all back into the expression for the rate of jumps,

mig ,mig mig mig
kT _(Epart+P‘/part_Tspart) kT Gyart

kT = I‘pm,t = Te_ kT (14—23)

I‘kpart - h €




