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3.21 Spring 2002: Lecture 7

Scaling and the Diffusion Equation

Note that the diffusivity has units (numberxcm?)/s; therefore, Dt/z? is dimensionless.
Introduce a dimensionless variable 7:

8

(7-1)

3

I
N
)
o~

Suppose for a particular problem, that the boundary and initial conditions are also invariant
to this scaling implied by 7, in other words, if the length scale is tripled (yards instead of feet)
then the time scale for the boundary conditions is multiplied by a factor of nine. Or, under
the scaling,

=M t=M\’t then: 7=1 (7-2)

the boundary conditions can be written entirely in terms of the one dimensionless variable 7.

An example of such a problem would be the “step-function” initial conditions with either
Dirichlet or zero-flux Neumann boundary conditions at Foo:

c(xt) - C(+ool) = Cp

C(-oot) =& """ > X

Figure 7-1: Spatially-dependent function for the initial condition of the step-function.
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Initial conditions:

51

) O -0 <z<0
c(x,t—O)—{ Cr 0< 2 < o0 (7-3)
or
¢(n=00) =Cr c(n=—-00) =0y (7-4)
with boundary conditions:
d
C(.’II = +00;t) = (77 = +OO) = OR or 80((;;’7:) . = fj(/):’n) . =0 (7-5)
and
Oc(z,t dc
Using the definition for 7:
o_mo o oo o
ot Oton oz Oz 0n
The diffusion equation becomes:
dc  B%
2= =— 7-8
"5 = o (7-8)

Because everything in the above equation depends only on 7, the partial differential equation
becomes an ordinary differential equation (0 — d) that can be integrated without too much

difficulty.
Let
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(7-9)
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so that
dq
—Ing = — 7-10
=g (7-10)
which can be integrated
dc 2
— = bye " 7-11
e (1)
where by is an integration constant and this can be integrated again
n 5
c(n) — c(n = m) = bo/ e d¢ (7-12)
70
Let 19 = —oo and with the step-function initial conditions, ¢(n = —oc0) = Cf,
0 2 1 2
c(n)=Cr+ bo(/ e ¢ d¢ -|—/ e™¢ d(¢) (7-13)
—o0 0
or, by introducing another constant for b,
2 [0 _a 2 [ViDi
c(n) = CL + ag —/ e d¢ + —/ e d¢ (7-14)
<ﬁ —oo ﬁ 0
The integral with an argument is just some function with a peculiar name:
12) = oz [ et (7-15)
erf(z) =— | e -
Vb



MIT 3.21 Spring 2002 © W.C Carter Lecture 7 53

that has the properties: erf(0) = 0, erf(oco) = 1 (this is where the /7 comes from), erf(—z) =

—erf(z)
So, the solution to the one-dimensional step function IC uniform diffusion equation is:
Cr+C Cr—C
c(a:,t) = Rt O + R Lerf( z > (7—16)
2 2 V4Dt
or
AC T

clxz,t) = (C) + —erf 7-17
(2.0) = () + S ert (=) (717

Short Distances, Long Times
An additional and useful property of the error function is that erf(z) ~ z for z < 1
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Figure 7-2: The difference between the error function erf(z) and its argument z. Up to
values of about z = 0.9, the difference is less than 13%.

Because the scaling parameter 1 = \/Zﬁ is small for long times ¢t > 7p where 7p is the

14

characteristic diffusion time:

,’1,’2

= 7-18
™D 4D ( )

4Note that long times must be specified in terms of some characteristic time that depends on a diffusivity
and a length. A similar comment applies to any limiting value of a physical parameter.
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or for short distances ¢ < xp where xp is the characteristic diffusion length:
XD = v 4Dt (7-19)

the solution of the step-function IC becomes:

AC =z
clz,t) =(c) + — 7-20
(@) = (0 + G (1-20
The flux at the origin varies as,
D
=0,t) = —A — -21
I =0,1) = ~ACy] 2 (r21)

~~

The total amount of material that flows past the origin (per unit area) up to a time 7 goes as

NE
| D
qu?nulative(:c = O,T) = —-AC —T (7_22)
s

Superposition Example
The simple solution that was developed above can be used with the method of superposition

to develop a large number of solutions.

For example, suppose the initial conditions are changed so that there is a finite source of
material diffusing into an infinite material and the finite source is confined to slab of with Az
in the z-direction but extending infinitely in the y- and z-directions.!®

15This is effectively a one dimensional problem in the z-spatial variable.
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X= | ¢(x,t=0)=0

8(x,t=/ 0)=cg

Figure 7-3: Initial conditions for the one dimensional finite square source initial condi-
tions.

These initial conditions can be obtained by summing two known solutions, i.e. those for
the initial conditions:

0 —o0o<z<0
c(z,t=0)= { c 0<z<oo (7-23)
and
0 —00o <z < Az
wi=0={l, SIS (720
Co Co

x=0 x=0 X=AX

X=AX

Figure 7-4: Graphical representation of the method of superposition.
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The solution is just the sum:

z z—Az
cg ¢y 2 VaDt .2 cg ¢y 2 VaDt  _ 2
t)= —+ ——— d( — — — —— d 7-25
o) =G+ 9 [T a3 -9 [ e (7-25)

c(z,t) = %0 [erf (\/%) — erf (%)} (7-26)

It will be beneficial to reflect on what kinds of problems (i.e. which initial and boundary
conditions) will admit solutions from scaling and then subsequent summing of solutions. First
for the scaling solution, the boundary and initial conditions had to be invariant under the

scale factor 1 = \/ﬁ—this is usually the case for infinite domains with zero flux conditions

at |7] = oo. Second, the summing method works when each solution that is to be summed
also satisfies scaling—therefore the initial conditions for the particular problem must also be
invariant. Typically, these methods are useful in the infinite domain.

The One-Dimensional Fundamental Solution

The solution for “point-source” initial conditions will prove to be quite useful for cases
when the addition of a large number of solutions generate the initial conditions for a particular
problem. The solution obtained in Eq. 7-26 can be used to obtain the fundamental solution.
Expanding in powers of small dz = Az:!6

(e =0,t =0)dz _.2
e~ iDi 7-27
v an Dt ( )

This is the fundamental solution for a point source in a 1D infinite domain.
Many other solutions by summing point source solutions,

o(z,t) =

16Tt is fairly easy to show that erf(z) = %(z — ? + O(2°)).
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In general,'” for almost any initial conditions ¢(z,t = 0) = ¢;.(z) on the 1D infinite domain
with zero flux at z = Fo00,

o > Cic(C)e_%tﬁ -
o(z,t) = [oo —\/W d¢ (7-28)
18

Otherwise known as the the Green’s function solution.

Other Fundamental Solutions

The same method can be used to find fundamental solutions for cases where the finite
source is a object of a given dimensionality embedded in an infinite space of larger dimension.
This is called the “co-dimension” and it is the dimensionality of the infinite region minus the
dimensionality of the embedded object.

All the pertinent examples are contained in the following table:

| Co-dimension Example Symmetric Part of V? Fundamental Solution |
Point on Line
2
. 9% c(z=0,t=0)dz (—;ﬁ)
1 Line 0%1 Plane - ot €
Plane in 3D
2
. . 10 (.0 c(z=0,t=0)27nrdr (—31p7
2 Pf)lllt‘ in Plane - pm (r 3T) s e( )
Line in 3D
. . 10 290 c(2=0,t=0)4nr3dr (—%)
3 POlllt mn 3D 2 or (7‘ E) We

1"There are some technical restrictions on the class of initial conditions are fairly easy to guess.
180r the “Son of York Trick”....



