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Abstract

AtomicControl is a software package designed to aid in the teaching of crystallography and x-ray
diffraction concepts to materials science students. It has the capability to create an arbitrary crys-
tal structure based on the user’s specification of a space group and atomic coordinates. It also can
generate a simulated powder diffractogram based on the user’s generated crystal. The program is
fully interactive and allows the user to view the effects of changes to lattice and atoms in a 3D
visualization of the crystal. AtomicControl’s x-ray diffraction patterns have been shown to match
well with experimental data, proving the validity of the algorithm.

AtomicControl is available online at http://pruffle.mit.edu/atomiccontrol/
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Chapter 1

Introduction

1.1 Motivation

Learning crystallography and x-ray diffraction requires understanding 3D geometry, symmetry

operations, and the abstract concept of a reciprocal space. These concepts require the student

to visualize crystal structures in order to observe crystal symmetries and geometric constraints.

Currently there is a need, especially in the MIT materials science undergraduate curriculum, for

a freely available, intuitive tool to interactively build and visualize crystal structures as well as

simulate x-ray diffraction patterns. Such a tool would be very useful to the student trying to

visualize a crystal structure. Current tools are often very expensive or difficult to use, and often

both. An easy to use alternative would make the subject of crystallography more accessible and

easier to learn.

A commercial modeling package called Cerius2 was used in the undergraduate Materials Struc-

tures Laboratory class (3.081) until 2003 as a way to build and visualize crystal structures and

to do simple x-ray powder diffraction simulations. While Cerius2 was previously available to the

MIT community on the Silicon Graphics (SGI) Athena workstations,these SGI workstations have

been phased out and students no longer have access to this package [1]. Since Cerius2 is no longer

available to MIT students, the students in 3.012 and 3.014 (the sophomore-level materials theory

and laboratory classes) need a new tool to replace Cerius2 , in order to do 3D crystal visualization

and x-ray diffraction simulations.

Given the need for a crystal visualization and simulation package for use in the undergraduate

materials science curriculum, this project’s objective has been to produce an open-source software

package that can both allow the user to build and visualize a crystal as well as produce a simulated
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x-ray diffraction pattern. This has been realized through a software program called AtomicControl.

To provide cross-platform compatibility AtomicControl has been written in Java, and as a result

can be run on any platform that supports Java, including Microsoft Windows, Apple’s MacOS X,

and GNU/Linux [2].

AtomicControl provides an interactive crystal builder that allows the user to design a crystal

by defining its Bravais lattice, space group symmetry, and atom coordinates. It produces a 3D

visualization of the constructed crystal structure. AtomicControl also provides an x-ray diffraction

simulator. AtomicControl takes any arbitrary user-built crystal structure and calculates its x-ray

power diffraction for the user. This allows for the student to interactively modify the crystal

structure and observe the effect on the powder pattern.

1.2 Overview

This document discusses AtomicControl’s two main features, the crystal builder and the diffraction

simulator. Chapter 2 provides a brief description of the object-oriented software model used in

the development of AtomicControl. Chapter 3 discusses the theory behind generating a crystal

structure from a space group definition and describes the algorithm used in AtomicControl to

generate the a crystal. An overview of basic x-ray diffraction theory is provided in Chapter 4 with

a focus on the vector-based description. The algorithms used to produce x-ray powder diffraction

patterns in AtomicControl are discussed in Chapter 5. Since this a program that is designed to be

easy to use, a description of the user interface of AtomicControl is provided in Chapter 6. Lastly,

lesson plans that demonstrate how AtomicControl may be used in a classroom are provided in

Chapter 7.
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Chapter 2

Software Model

AtomicControl is written in the Java programming language and is fully object-oriented. Since the

Java platform is available on most operating systems AtomicControl may be used almost anywhere.

AtomicControl can be run on any platform that supports Java, and has been tested on Microsoft

Windows, Apple’s MacOS X, and GNU/Linux.

The object-oriented nature of Java was leveraged in AtomicControl — each crystal, atom, el-

ement, space group is represented internally as a Java object. Each object encapsulates data and

functionality inherent in its type. For example, AtomicControl can interrogate an Atom object to

retrieve its position, its radius, or its charge. The central object representation is the Crystal class.

A Crystal object contains lists of Atom objects that describe the crystal’s generator atoms, its unit

cell atoms, and all atoms in the crystal. The crystal also references one of the 230 SpaceGroup

objects, each of which describes the transformations and translation vectors to build the required

symmetry into the unit cell of that specific space group. Figure 2.1 details these and other connec-

tions between objects in AtomicControl.

This Java object structure is a useful way to keep track of data while AtomicControl is running,

but in order to save and retrieve crystal information a file format is required. An extensible markup

language (XML) file structure was used so that the files would be easy to create and parse in Java.

XML is a hierarchical file format that has a standard method of parsing [3]. The saved data files

for AtomicControl use the crystal as the top level in this hierarchy. For each crystal the lattice

definition and atom lists are provided. Figure 2.2 shows the basic hierarchy of this file format.
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Crystal
LatticeVectors
reciprocalLatticeVectors

generatorAtoms
unitCellAtoms
allAtoms

SpaceGroup
BuildSymmetry()
setAlpha(), setBeta() ..
LaticeTransform(Vertex)

Atom
centroid
element
charge
move(Vertex)

SpaceGroup
Default Lattice Vectors
Allowed Free Variables
Transforms
isGammaFixed()
isACfixed()

Element
Z
Scattering Factor
getScatteringFactor(sin(θ)/λ)

Vertex
x, y, z
add(Vertex)
Dot(Vertex)
Cross(Vertex)
scale(double)CrystalBuilder

XML File

Matrix
elements[]
Multiply(Vertex)
Invert()

Transform
TranslationVector
RotationMatrix
applytoVertex(Vertex)

Figure 2.1: Interaction of Java objects in AtomicControl

<crystal>
<spacegroup id="1" />

<latticevects>
<a>

<x>1</x> <y>0</y> <z>0</z>
</a>
<b>...</b>
<c>...</c>

</latticevects>

<generatoratoms>
<atom element="1" charge="0" visible="true">

<centroid>
<u>0</u> <v>0</v> <w>0</w>

</centroid>
</atom>

...
</generatoratoms>

<unitcellatoms> ... </unitcell>
<allatoms> ... </all>

</crystal>

Figure 2.2: XML crystal file format.
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Chapter 3

Space Group Symmetry Builder

3.1 Space group definition

Each space group is defined by unique set of symmetry operations, which result in a 3D periodic

structure. 230 space groups have been proven via group theory to be exhaustive, i.e. they describe

all possible symmetry combinations for periodically tiling space [4]. Because of this completeness,

any crystal can be categorized into one of these 230. Space groups have a standardized naming

and numbering convention that has been put forth in the International Tables of Crystallography

[5]. The names describe the prominent symmetries present and the numbering scheme is logical:

the higher numbered space groups correspond to higher symmetry systems. For example the

lowest symmetry space group P1 (no. 1) has only translational symmetry. P 1̄ (no. 2) has an

additional inversion symmetry point about the origin. Higher symmetry space groups will include

mirror and rotational symmetries along with more complex symmetries such as glide planes. All

of these types of symmetry operations can be described by geometrical constructions as well as

mathematical transformations, known as equipoint transformations. These transformations are

very useful because they are easy for a computer program to implement. Thus AtomicControl uses

these equipoint transformations to generate a crystal unit cell [6]. These equipoint transformations

are of the form ~x′ = [R]~x + ~T :


u′

v′

w′

 =


R11 R12 R13

R21 R22 R23

R31 R32 R33




u

v

w

+


T1

T2

T3

 (3.1)
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where ~x is the atom location in fractional coordinates, and ~x′ is an atom position that must exist

to satisfy the symmetry operation. T is restricted to vectors within the unit cell (smaller than [1

1 1]). This restriction on T ensures that the number of transformations required to fully describe

the unit cell is finite.

There is an additional requirement to fully define the unit cell when the unit cell is not prim-

itive. In these cases translation operators are required to create the multiple lattice points in

a non-primitive unit cell definition. For example, the conventional FCC lattice has four lattice

points per cell. This means that defining this unit cell requires three additional translation vectors

(1
2 , 1

2 , 0), (1
2 , 0, 1

2), (0, 1
2 , 1

2).

3.2 Symmetry operators and their matrix representations

Equipoint transformations can in some cases be directly correlated with a standard crystallographic

symmetry operator. For example, an inversion symmetry through the origin can be represented as

the negative identity matrix, while a uv-plane mirror can be described by a matrix that flips the

w component of ~x. Glide symmetries, while more complex, can still be represented through two

operators: a matrix operation and a subsequent translation. Figure 3.1 provides some examples of

a symmetry operator and its equipoint transformation.

Inversion uv-plane mirror Glide

R =

 −1 0 0
0 −1 0
0 0 −1

 R =

 1 0 0
0 1 0
0 0 −1

 R =

 1 0 0
0 1 0
0 0 −1

 ; ~T =

 1
2
0
0


Figure 3.1: Various symmetry operators represented as vector transformations.

A space group can be defined as a finite set of such transformations. This does not mean that

every symmetry in the crystal needs to be represented as a separate transformation. For example

a four-fold axis can also be part of two intersecting orthogonal mirror planes, and symmetry trans-

formations for the four-fold axis will be redundant. There is a minimum number of transformations

required to fully define the space group and an example is shown in Fig. 3.2.
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Translation vectors : (0,0,0), (1/2,1/2,0), (0,1/2,1/2), (1/2,0,1/2)
+-----------------------------------------------------------------------------+
| 12 equipoint transformations (X)’=[R]*(X)+(T) : |
+-----------------------------------------------------------------------------+
| R(11) R(12) R(13) R(21) R(22) R(23) R(31) R(32) R(33) T(1) T(2) T(3) |
| 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.000 0.000 0.000 |
| 1.0 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 -1.0 0.000 0.000 0.000 |
|-1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 -1.0 0.000 0.000 0.000 |
|-1.0 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 1.0 0.000 0.000 0.000 |
| 0.0 1.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.000 0.000 0.000 |
| 0.0 -1.0 0.0 0.0 0.0 -1.0 1.0 0.0 0.0 0.000 0.000 0.000 |
| 0.0 1.0 0.0 0.0 0.0 -1.0 -1.0 0.0 0.0 0.000 0.000 0.000 |
| 0.0 -1.0 0.0 0.0 0.0 1.0 -1.0 0.0 0.0 0.000 0.000 0.000 |
| 0.0 0.0 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.000 0.000 0.000 |
| 0.0 0.0 -1.0 1.0 0.0 0.0 0.0 -1.0 0.0 0.000 0.000 0.000 |
| 0.0 0.0 -1.0 -1.0 0.0 0.0 0.0 1.0 0.0 0.000 0.000 0.000 |
| 0.0 0.0 1.0 -1.0 0.0 0.0 0.0 -1.0 0.0 0.000 0.000 0.000 |
+-----------------------------------------------------------------------------+

Figure 3.2: Translation vectors and equipoint transformations that define space group no. 196,
F23, the lowest symmetry face-centered cubic space group [7].

3.3 Algorithm for crystal generation

A space group’s equipoint transformations can be applied to any atom in a crystal to produce new

atom positions required by symmetry. In AtomicControl this property is used to build the unit

cell of the crystal. All the user-defined generator atoms have the list of transformations applied

to their fractional coordinates. This process produces a larger list of atoms, some of which are

duplicates, i.e. they occur at the same spatial location. These duplicates are then removed by

searching through the atom list. This process of transformation application and duplicate removal

is repeated until the atom list stabilizes. Once stabilized the list of atoms contains the full unit cell

as well as some valid atoms in the neighboring cells. The list is truncated to contain only unit cell

atoms, and unit cell is then complete. This crystal building process process is outlined in Fig. 3.3.
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Apply translation vectors to generator atom list
do:

for each atom:
for each transformation:

apply transformation to atom
create a copy of the atom at the transformed coordinate

remove duplicates from atom list
while atom list is bigger than before, repeat do
remove atoms outside the unit cell

Figure 3.3: Pseudo-code demonstrating the unit cell generation algorithm

3.4 Crystal generation results

For a non-special atom position in an Fm3̄m symmetry crystal there will be 96 atom positions that

must be filled in order to conform to the symmetry of Fm3̄m. To make sure that AtomicControl can

generate these 96 symmetry-required points, an arbitrary non-special generator atom had Fm3̄m

symmetry imposed on it. It can be seen in Fig. 3.4 that AtomicControl has correctly generated all

96 symmetry-required points to fully define the unit cell.

Figure 3.4: A non-special point in Fm3̄m generates 96 symmetry-required points. Small dots are
the lattice points.
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Chapter 4

X-ray Diffraction Theory

X-ray diffraction is based on the assumption that x-ray radiation with wavelengths on the order

of Ångstroms can elastically scatter off the electronic structure of a crystal. The periodicity of

the crystal will cause this scattering of the x-ray plane-wave to constructively interfere at certain

scattering directions while destructively interfering at other scattering directions. The diffracted x-

rays are detected at a distance much larger than the periodicity of the lattice, so that the diffraction

can be approximated by the Fraunhofer diffraction conditions [8]. By using this model it has been

shown that the diffraction conditions are related to the Fourier transform of the electronic structure

[9]. The Fourier transform allows the calculation of the complex amplitude A as a function of the

elastic scattering vector ~∆k, as shown in Eq. 4.1.

A( ~∆k) =
∫

ρ(~x)e−i ~∆k·~xdv~x (4.1)

Where:

~∆k = ~k′ − ~k (4.2)

|~k| = |~k′| = 2π

λ
(4.3)

The scattering vector’s meaning can be best described graphically, as in Fig. 4.1 where ~k is

the incoming wave-vector, ~k′ is the scattered wave-vector and ~∆k is their difference. For elastic

scattering ~k and ~k′ must have the same length to conserve the wavelength and therefore the energy

of the photon. The vector difference between these is known as the scattering vector ~∆k, which
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represents the momentum the crystal must impart on the photon to cause the particular scattering

condition.

2θ

k

k
′

   2π

λ

θθ

k k
′

∆k

∆k

Figure 4.1: Scattering vectors.

Integrating over all space for an infinite electron distribution, ρ(~x), is impossible, but some

approximations can simplify the process. By assuming that the crystal is perfect and that each

unit cell has the same electronic structure Eq. 4.1 can be reduced to a finite integral. If this

assumption is made the electronic structure, ρ(~x), can be rewritten as a sum
∑

n ρunitcell(~x− ~Rn),

where Rn is a lattice vector of the form Rn = m1~a1 + m2~a2 + m3~a3, mi are integers, and ρunitcell is

the electronic structure of the unit cell. Equation 4.1 can then be rewritten as

A( ~∆k) =
∫ ∑

n

ρunitcell(~x− ~Rn)e−i ~∆k·~xdv~x (4.4)

By reordering the sum and the integral in Eq. 4.4, it can be rewritten as

A( ~∆k) =
∑

n

e−i ~∆k· ~xn

∫
ρunitcell(~x− ~Rn)e−i ~∆k·(~x− ~Rn)dv~x (4.5)

Since
∫

dv~x is over all space, the shift by ~Rn does not affect the outcome, and Eq. 4.5 becomes

A( ~∆k) =
∑

n

e−i ~∆k· ~Rn

∫
ρunitcell(~x)e−i ~∆k·~xdv~x (4.6)

This equation has simplified the Fourier transform to a finite sized integral, but it has a sum of

phase factors in front that must be dealt with. Understanding the dot product ~∆k · ~x is important

to understanding this sum. The definition of the reciprocal lattice can help in interpreting this

quantitity.
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4.1 The reciprocal lattice

The Fourier transform of a set of periodic delta functions is another set of periodic delta functions.

Because of this property, it is convenient to define a reciprocal lattice that exists in Fourier space.

A crystal lattice may be transformed into a lattice in Fourier (or reciprocal) space. This reciprocal

lattice can be defined using basis vectors (~b1, ~b2, ~b3), just like the real-space basis vectors,( ~a1, ~a2, ~a3),

and the relationship between them is given by

~ai · ~bj = 2πδij (4.7)

This creates the reciprocal lattice vectors ~G which are integer sums of the basis set ~bi defined as

~G = h~b1 + k~b2 + l ~b3 (4.8)

where

~b1 = 2π
~a2 × ~a3

~a1 · ~a2 × ~a3

~b2 = 2π
~a3 × ~a1

~a1 · ~a2 × ~a3

~b3 = 2π
~a1 × ~a2

~a1 · ~a2 × ~a3
(4.9)

The definition of the reciprocal lattice leads to some useful properties. The dot product of any

~G and an arbitrary vector ~x = u~a1 + v ~a2 + w ~a3 is

~G · ~x = 2π(hu + kv + lw) (4.10)

In the special case when ~x equals a lattice vector ~R defined as

~R = m1~a1 + m2~a2 + m3~a3 where mi are integers (4.11)

the dot product from Eq. 4.10 becomes

~G · ~R = 2π(m1u + m2v + m3w) = N2π where N is an integer (4.12)

This result has strong implications when this dot product is seen in a complex exponential.

The first term of Eq. 4.6,
∑

n exp(−i ~∆k · ~Rn), is closely related to the reciprocal lattice.

Assuming an infinite crystal, this sum can only be non-zero if the phase factors do not cancel over

the infinite sum over all lattice points Rn. It turns out that only when ~∆k · ~Rn = 2π for any

lattice vector ~Rn does this sum become non-zero. This requirement looks strikingly similar to the
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definition of the reciprocal lattice in Eq. 4.12. This shows that the only allowed scattering vectors

are reciprocal lattice vectors and that the diffraction amplitude A( ~∆k) is non-zero only for A(~G).

A( ~∆k) can now be described as

A( ~∆k) =


∫

ρunitcell(~x)e−i ~∆k·~xdv~x if ~∆k = ~G

0 otherwise

(4.13)

4.2 Ewald sphere construction

Given the requirement that |~k| = |~k′| = 2π/λ, but allowing all possible scattering angles, the

locus of all potential scattering vectors can be plotted in reciprocal space. This locus is a sphere

superimposed on the reciprocal lattice and is known as the Ewald sphere. This spherical shell is

the region in Fourier space probed by the x-ray beam at a given wavelength and orientation with

respect to the crystal. As discussed previously, only ~∆k = ~G are allowed for diffraction. This

further limits the possible scattering vectors. As is seen in Fig. 4.2a, the Ewald sphere is unlikely

to intersect two reciprocal lattice points and form a diffraction condition, therefore there is a need

to move the sphere to probe more of reciprocal space as seen if Fig. 4.2b.

Laue diffraction probes this space by using a spectrum of wavelengths. This has the effect

of changing the radius of the shell, thus probing a solid sphere in reciprocal space. A powder

diffraction experiment uses monochromatic x-rays, but each powder grain is oriented differently to

incident beam. As the orientation of the crystal changes with respect to the incident beam, the

Ewald sphere rolls in reciprocal space, as can be seen in the change between Fig. 4.2a and 4.2b. If

all possible orientations are considered the Ewald sphere will sweep a limiting sphere with a radius

of 4π/λ. All reciprocal lattice vectors within this sphere can create diffraction peaks in a powder

pattern.

4.3 Structure factor

So far the Fourier transform A( ~∆k) of electronic structure has been simplified to a finite integral,

but another assumption can be made to completely eliminate the need for the integral. It is

possible to assume that an atom’s electron distribution is localized around its nucleus. With this

assumption the electron distribution of each atom with index i can be expressed as a scaled delta
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Figure 4.2: Ewald sphere construction showing a successful diffraction condition and an incident
wave ~k that fails to create a diffraction condition. Most incident ~k will not produce a diffraction
condition.

function fiδ(~x− ~xi), where ~xi is the location of atom i and fi is the scattering power of that atom.

In this approximation ρunitcell(~x) can be expressed as
∑

i fiδ(~x− ~xi). Applying this approximation

to Eq. 4.13 produces

A(~G) =
∫ ∑

i

fi(~G)δ(~x− ~xi)e−i ~G·~xdv~x =
∑

i

fie
−i ~G·~xi (4.14)

This definition of A(~G) is known as the structure factor because it defines the diffraction ampli-

tude in terms of the atomic structure of the unit cell. The structure factor describes the diffraction

amplitude A(~G) as a sum of phase-factors due to phase-offsets from the scattering of x-rays off of

atoms in the unit cell.

Any scattering vector represented by a reciprocal lattice vector in the limiting sphere represents

a possible diffraction condition. Each of these reciprocal lattice vectors represents a periodicity in

the real-space crystal lattice. This periodicity is created due to repeated planes of atoms. If there

is an extra atom plane between the atom planes defined by the hkl of the reciprocal lattice vector,

the scattering off of the extra plane can destructively interfere with the scattered photons from the

planes and extinguish the diffraction amplitude as seen in Fig. 4.3.

4.4 Atomic scattering factor

Each element or ion has a scattering power associated with it due to its electronic structure, and

its power to either constructively or destructively interfere in a diffraction pattern is scaled by this

power. This means that a carbon atom will have approximately half the scattering ability of a
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Figure 4.3: The addition of an offset plane of atoms causes destructive interference of scattered
photons.

sulfur atom simply because it has half the number of electrons. This difference is quantified in

the atomic scattering factor, f , which is the defined as the scattering power compared to a single

electron [10]:

f =
scattering power of atom

scattering power of a single electron
(4.15)

All of the discussion about structure factors has used the assumption that atoms are infinitesimal

points, but in reality there is an electron distribution that is usually spherically symmetric about the

nucleus. It is possible to take this into account by calculating the diffraction pattern as the Fourier

transform of this continuous electronic structure, as desribed in 4.1. However this complexity is

not needed for most calculations — and not possible if the electronic structure is not known —

so this detail can be parameterized into the atomic scattering factor. When the diffraction angle

increases, the x-rays interact with the outer parts of the electron cloud and therefore have less

scattering power. Therefore the atomic scattering factor, f , can be parameterized as a function of

diffraction angle. The atomic scattering factors for elements and ions are tabulated as a function

of sin θ/λ which is related to the magnitude of the scattering vector ~∆k. There is no directional

dependence tabulated because these values assume that the electronic structures are spherically

symmetric. AtomicControl uses these tabulated values and interpolates to find the appropriate

scattering power for the situation. Figure 4.4 shows the atomic scattering factors for a number of

elements as they are used in AtomicControl. AtomicControl uses a linear interpolation method to

find the scattering factor for an arbitrary scattering angle.
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Atomic Scattering Factors of Low Z Elements
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Figure 4.4: The atomic scattering factor of a number of elements as a function of sin θ/λ [10].

4.5 Ideal powder pattern

A powder pattern is an a spectroscopic image of a crystalline powder bombarded with monochro-

matic x-rays. As seen in the Ewald sphere description of diffraction, the likelihood of a diffraction

condition occurring is very slight for a single crystal with a single beam of monochromatic x-rays

probing the sample. The powder diffraction method addresses this problem by creating many

orientations of the crystal in the path of the x-rays. An ideal powder pattern has all possible

orientations equally available, and this has the effect of probing every point in the limiting sphere

by rolling the Ewald sphere in reciprocal space. However, there is a drawback to this method of

probing reciprocal space. The powder pattern superimposes all diffraction conditions which have

the same scattering angle θ.

A more conventional perspective on the powder pattern is provided with Bragg’s formula.

The Bragg condition occurs when φ = 2π, that is when the scattered photons are in phase, and

the condition λ = 2d sin θ is obeyed. In a powder pattern, each observed diffraction peak in 2θ is

associated with a given lattice spacing via Bragg’s formula: d = λ/(2 sin θ). As previously discussed,

each reciprocal lattice vector is associated with a lattice spacing in the crystal and it also represents
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Figure 4.5: The Bragg diffraction condition. φ = 2π when λ = 2d sin θ.

the elastic change in wave-vector of a diffracted photon, ( ~∆k) as shown in the construction in Fig.

4.5. Lattice spacing, diffraction angle, and associated reciprocal lattice vector can be all associated.

While the Bragg definition of diffraction angle is useful in understanding, the association between

reciprocal lattice vector and angle will be useful in computing the powder diffraction pattern in

AtomicControl via the relation

2d =
sin θ

λ
=

| ~∆k|
4π

=
|~G|
4π

(4.16)

The magnitude of diffraction peaks at a given 2θ angle is determined by the sum of all A(~G)

which have the same scattering angle, 2θ. The intensity observed is related to A2 and can be

represented by a number of factors that are based on the geometry of the crystal, the geometry of the

diffraction apparatus, and the electronic structure of the crystal. For the standard diffractometer

setup the following components must be considered: structure factor, as previous discussed; the

multiplicity; and the Lorentz-polarization factor in the form

I︸︷︷︸
Relative Intensity

= |F |2︸︷︷︸
Structure Factor

· p︸︷︷︸
Multiplicity

·
(1 + cos2 2θ

sin2 θ cos θ

)
︸ ︷︷ ︸

LP factor

(4.17)

Multiplicity

Due to the symmetry of the crystal, there is always more than one reciprocal lattice vector, ~G, that

is associated with the same scattering angle. For example, the (111) plane will always have the

same scattering angle as (1̄1̄1̄). However, the multiplicity however can also be larger than two. In
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a cubic system the (100) plane is in a family of six diffraction-equivalent planes. In an tetragonal

system (100) and (010) fall under the same family and have the same diffraction angle, but the

(001) and (001̄) are in a separate family and have a different diffraction angle due to a different

inter-planar spacing d. In an orthorhombic crystal, the multiplicity drops to two for each of the

{100},{010}, and {001}, because each has different d. AtomicControl does not require an explicit

calculation of multiplicities when calculating diffraction intensities because it considers all allowed

scattering vectors in all directions and simply adds the structure factors when it finds ones that

have the same 2θ angle.

Lorentz-polarization factor

The Lorentz-polarization factor is a combination of a number of geometric terms that arise from

experimental broadening of diffraction peaks, as well as the polarization of diffracted photons.

These combine to decrease the intensity of photons diffracted at mid-range angles and has the

form

L.P. =
(

1 + cos2 2θ

sin2 θ cos θ

)
(4.18)

A plot of the Lorentz-polarization factor as a function of scattering angle is shown in Fig. 4.6.

27



0

10

20

30

40

50

60

70

80

90

100

0º 20º 40º 60º 80º 100º 120º 140º 160º 180º

L.P.

Figure 4.6: Lorentz-polarization factor as a function of 2θ.
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Chapter 5

X-ray Powder Diffraction Pattern

Algorithm

5.1 Finding valid scattering vectors

The first step to calculating an x-ray powder diffraction pattern is to find which scattering conditions

are possible. As described earlier, only scattering vectors ~∆k = ~G are allowed for diffraction off

an infinite crystal. The are still an infinite number of ~G’s, but with elastic scattering only a small

subset is allowed with monochromatic radiation. This was shown geometrically in Fig. 4.1. This

geometry relates angle to the reciprocal lattice vector by the relation

sin θ

λ
=

|G|
4π

(5.1)

If |~G| > 4π/λ then ~G is outside the limiting sphere, and the associated interplanar spacing is

not probed by the diffractometer. AtomicControl calculates, based on λ, a maximum value for h, k,

and l that could yield a valid scattering vector. From the the range from [−hmax − kmax − lmax]

to [hmax kmax lmax], a list of allowed ~G vectors within can be found by checking their magnitude as

outlined in Fig. 5.1.
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for each h from −hmax to hmax:
for each k from −kmax to kmax:

for each l from −lmax to lmax:
Gmag = |h~b1 + k~b2 + l~b3|2
if Gmag·λ/4π < 1 :

add [h k l] to list of allowed ~G

Figure 5.1: Pseudo-code describing the process of finding valid scattering vectors.

5.2 Calculation of structure factors

Once the allowed scattering vectors (reciprocal lattice vectors, ~G) are found, it is possible to cal-

culate a structure factor a for each using the definition of the unit cell. In the process outlined in

Fig. 5.2, AtomicControl iterates through all allowed ~G’s and for each ~G it iterates through all unit

cell atoms to produce the sum

F (~G) =
unit cell∑

j

fj(~G) ei ~G· ~Rj (5.2)

for each allowed ~Gi :
for each unit cell atomj:

~Rj = Atomj’s Centroid

s = | ~Gi|/4π

Fi = Fi + fj(s) e
~Rj · ~Gi

save Fi

Figure 5.2: Pseudo-code showing the structure factor calculation algorithm.

5.3 Converting structure factors to powder pattern

The final step in producing a powder diffraction pattern is to sort the structure factors into their

associated diffraction angles. The diffraction angle is calculated based on the relationship

θ = sin−1

(
λ|~G|
4π

)
(5.3)

Once this angle θi is found, the current Gi’s structure factor is superimposed on the intensity at

2θi until all allowed Gi’s have been exhausted. Once the sorting process is complete the Lorentz-

polarization factor is then applied to the plot values. This sorting process is outlined in Fig. 5.3.

If an disallowed Gi is run through this algorithm, the algorithm would try to take the arc sine
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for each ~Gi :

θi = sin−1( λ | ~Gi|
4π )

I(2θi) = I(2θi) + |Fi|2
for each θn :

I(2θn) = I(2θn) ∗ LP(θn)

Figure 5.3: Pseudo-code showing the algorithm for converting structure factor values into a x-ray
powder pattern plot.

of a value greater than one. Java handles this condition by giving the result as zero. However,

the correct result would be a complex angle that would be meaningless in this context. It is

also important to note that this algorithm does not contain any multiplication by a multiplicity

because it does not need to. AtomicControl does not need to explicitly calculate multiplicities when

calculating diffraction intensities because it considers all allowed scattering vectors and simply adds

the structure factors when it finds ones that have the same 2θ angle.

5.4 Results of diffraction calculations

To verify AtomicControl’s method of x-ray powder diffraction calculation, known structures were

simulated and compared with experimental powder patterns. AtomicControl has been tested with a

number of cubic structures including FCC gold, BCC iron, CdTe, and NaCl. Hexagonal elemental

structures such as magnesium were also tested. The diffraction patterns for these compounds

matched well with experiment. An illustrative example is shown in Fig. 5.4. As time permits a

wider range of structures will be tested on AtomicControl to assure that the algorithm is error-free.
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Chapter 6

User Interface

AtomicControl is designed to be a user-friendly program so that the learning curve of the software

does not inhibit learning of crystallography. Because of this AtomicControl’s interface is organized

to the logical steps of building a crystal model, starting with the specification of a space group and

lattice parameters, then the adding of unit cell, and finishing with the generation of x-ray power

diffraction patterns. This process, however, is not rigid. The user can modify the crystal at any of

these stages in the process at any time and AtomicControl will automatically update the crystal

based on the change. This type of instant feedback is a very useful feature that can help especially

when this application is used for teaching purposes.

6.1 Specifying a space group

The first step in this process of building a crystal is to specify the crystal’s space group, lattice

constants, and interaxial angles. The first panel that the user sees on opening AtomicControl is

the space group panel. The space group panel lets the user choose a crystal system and a space

group within that system. Each crystal system has a set of constraints that make it unique. For

example a cubic system must have all interaxial angles at 90o and the lattice constants equal. The

space group panel knows this and will not allow the user to change the fixed interaxial angles and

keeps the lattice constants synchronized by making sure lattice-constant ratios are maintained at

the crystal system specification. A screenshot of the space group panel is provided in Fig. 6.1.
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Figure 6.1: Space group panel for the NaCl crystal structure.

6.2 Populating the unit cell

Once the space group and lattice parameters are defined, the user can then add atoms to the unit

cell. Clicking the “Add Generator Atom” button in the generator panel will create a default atom

shown in the panel. The atoms fractional coordinates, element type, charge, and visibility in the

crystal viewer, can be modified from this panel as seen in Fig. 6.2. The choice of element type and

charge will affect the radius observed in the crystal viewer as well as affect the atomic scattering

factor used in the calculation of the x-ray diffraction pattern.

The atoms in this panel will have the space group symmetry operators applied to produce the

unit cell atoms, which are displayed in the unit cell atoms panel. Additionally, the unit cell atoms

will be translated and copied to produce the multi-celled crystal in the all atoms panel. Each time

the user changes a generator atom, the unit cell atoms are automatically recalculated and the user

will see changes immediately in the crystal viewer.

6.3 Viewing the crystal

When the user is defining the space group and the generator atoms, the rest of the crystal data is

automatically updated. This means that as soon as the user adds an atom, he can see the results

instantly in the crystal viewer. The crystal viewer can show the entire crystal, a single unit cell, or

just the generator atoms defined by the user. The view can be zoomed and the relative size of the

atoms to the lattice constant can be changed to go from a space-filling model to a point structure.

The main feature of the crystal viewer is the ability for the user to click and drag on the crystal and
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Figure 6.2: The three atom list panels for the NaCl crystal structure.
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interactively rotate the crystal. This allows the user to see the crystal from all angles and get a full

sense of its 3D structure. Figure 6.3 shows some various visualizations the NaCl crystal structure.

Figure 6.3: NaCl crystal visualization in AtomicControl.

6.4 Virtual diffractometer

Once the crystal is defined, the user needs only to go to the XRD panel and press the “Diffract”

button to have AtomicControl calculate an x-ray powder diffraction pattern. In this panel, the user

may also choose the x-ray target from a list of common target elements. When the “Diffract” button

is pressed, the diffractometer windows appear. These windows provide a plot of the diffraction

intensities plotted against 2θ. They also provide an interactive viewer of the reciprocal lattice of

the crystal. In this view spheres with diameters that are proportional to structure factor at each

reciprocal lattice vector allow the user to understand the concept of a reciprocal lattice and how

it relates to the diffraction pattern. The diffractometer windows are shown in Fig. 6.4 with the

example of NaCl.
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Figure 6.4: X-ray diffraction pattern and reciprocal lattice viewer of NaCl produced by Atomic-
Control.

6.5 Saving and retrieving data

AtomicControl provides the capability to save the crystal data in an XML file format (see Chapter

2). The File menu, seen in Fig. 6.5, allows the user to save or open a file in this format. This menu

will also allow the user to export the crystal view to an image file and save the x-ray diffraction

pattern to a spreadsheet file.

Figure 6.5: The File menu of AtomicControl.
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Chapter 7

Lesson Plans

Since AtomicControl is intended to be used in the classroom, this section provides three examples

that illustrate to the instructor or student how to use AtomicControl to observe and understand

the relationship between structure and diffraction pattern. These examples can be combined with

laboratory experiments that would allow the student to compare simulated data with experimental

results.

7.1 Redefining the unit cell

The conventional unit cell of the body-centered cubic Bravais lattice is not a primitive unit cell.

Each cube contains two lattice points within it: the corner point and the body-center point. It is

possible to redefine the lattice using three non-orthogonal vectors that create a unit cell with only

one lattice point. The choice between these two cell definitions should be arbitrary and one should

be able to pick the definition that suits current needs.

However, on first observation of the mathematical definition of the structure formula, it appears

that an x-ray diffraction pattern would be dependent on this rather arbitrary definition of the unit

cell. This should not seem right, because the physics of diffraction should not change when the

mathematical definition of the unit cell changes. In the end, both definitions produce the same

crystal and therefore should produce the same diffraction pattern. This lesson plan shows how

these two different lattice definitions may be visualized in AtomicControl and shows that the x-ray

diffraction pattern does not change upon redefinition.

39



Conventional BCC

The standard space group definition of Im3̄m (no. 229) in AtomicControl provides the symmetry

BCC iron. However, for the purpose of this lesson, a primitive cubic lattice will be used and atoms

will be placed in the corner and body-centered positions to illustrate that the unit cell contains two

lattice points. The lowest symmetry cubic lattice is P23 (no. 195) and will work well as a starting

point for this structure. The lattice constant of BCC iron (α-Fe) is known to be a = 2.8664Å [11].

Two generators atoms will need to be defined to make a BCC structure in a primitive cubic lattice.

In the generator panel, create two iron atoms, one at the corner (0,0,0) and one at the body center

(1
2 , 1

2 , 1
2). The space group panel for this structure is shown in Fig. 7.1 along with the resulting

visualization.

Figure 7.1: Space group panel of conventional BCC iron and resulting unit cell.

From the definition of the two generator atoms, the structure factor for the convention cell of

BCC iron is

F (~G) =
unit cell∑

j=0

fje
i ~G· ~Rj = fFe(1 + eiπ(h+k+l)) (7.1)

Primitive BCC

The primitive lattice of BCC can be defined by three vectors that connect the convention corner

point to three non-coplanar body-center points as seen in Fig. 7.2. This creates a short bipyramidal

unit cell that only contains one lattice point. These vectors can be defined in cartesian coordinates

as

~a1 =
a

2
(−x̂ + ŷ + ẑ) ~a2 =

a

2
(x̂− ŷ + ẑ) ~a3 =

a

2
(x̂ + ŷ − ẑ) (7.2)

To create this lattice in AtomicControl, all symmetry is removed by picking the triclinic space

group P1 (no. 1). AtomicControl allows the definition of the lattice vectors through the definition

of lattice constants and interaxial angles in the space group panel. The magnitudes of ~a1, ~a2, and
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~a3 are all equal to
√

3
2 a = 2.4824Å. The angle between any two of the vectors is the tetrahedral

angle, 109.5o. α, β, and γ are the angles between ~a2 and ~a3, ~a1 and ~a3, and ~a1 and ~a2, respectively.

Figure 7.2: Space group panel of primitive BCC Fe and resulting crystal structure. The conventional
unit cell is outlined.

The structure factor of the BCC structure defined in this primitive fashion is

F (~G) =
unit cell∑

j

fje
i ~G· ~Rj = fFee

i2π·0 = fFe. (7.3)

This definition looks much different than that of the conventional cell definition shown in Eq. 7.1.

Changes in definition do not change diffraction

Since the intensity of a diffraction peak is proportional to |F |2 it would seem that the primitive

definition would cause more peaks to be present than the conventional cell. while Fprimitive always

equals fFe, FConventional can go to zero at certain reciprocal lattice vectors and at their associated

scattering angles. However, if you click the diffract button after creating both of these structures,

the diffraction pattern will look the same.

The key difference between the two definitions is that they do not have the same reciprocal lattice

vectors. In fact, the conventional unit cell has twice as many reciprocal lattice points. However

these extra reciprocal lattice vectors do not produce additonal diffraction conditions because the

structure factor of the conventional cell guarantees that the ones that do not line up with the

primitive cell’s reciprocal lattice vectors have their diffraction amplitude extinguished. All that

has been done by redefining the unit cell is redefining how the atomic planes are designated. For

example the (110) in the conventional cell is now designated the (100) in the primitive cell. The

two identical diffraction patterns are shown in Fig. 7.1 with their respective naming schemes.
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a

b

Figure 7.3: Simulated diffraction patterns of (a) conventional unit cell BCC and (b) primitive unit
cell BCC. Only the hkl labels are different.

7.2 Cu3Au order-disorder transformation

This lesson plan focuses on the change that occurs in the Cu3Au order-disorder transformation and

its resulting changes in x-ray diffraction pattern. Ordered Cu3Au is has a primitive cubic structure

with gold at the corners and copper in the face center positions. When Cu3Au is quenched from

high temperatures, it stays in a disordered state where both copper and gold will occupy both sites

— corner and face-center — randomly. This gives this structure Fm3̄m symmetry and the atomic

scattering factors will be a weighted average of the Au and Cu content in the alloy.

X-ray diffraction can be a useful tool in understanding the degree of ordering in such a system.

The first step in understanding how structure effects the diffraction is to build the crystals in

AtomicControl.

Building ordered Cu3Au

Building a crystal in AtomicControl first requires definition of the crystal system and space group.

This is done in the space group panel as seen in Fig. 7.4. Ordered Cu3Au has a primitive cubic

lattice. The first step is to select a cubic crystal system. The next step is to pick a space group;
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ordered Cu3Au has Pm3̄m(no. 221) symmetry. The lattice constant has been determined to be

a = 3.7493Å [12] and also can be entered in the space group panel.

Figure 7.4: Space group panel with Cu3Au lattice parameters entered.

The next step is to define the atoms in the unit cell. The gold atoms will be at the corners of the

unit cell with coordinates (0,0,0) and the copper atoms will be at the face-centers with coordinates

(1
2 , 1

2 , 0). These can be added to the generator panel. There are three face-center atoms per unit

cell, but it is only necessary to define one. The three-fold symmetry around the [111] direction

required by the space group Pm3̄m will cause the others to be generated. It is possible to observe

the generated unit cell by observing the crystal view seen in Fig. 7.2 as well as their fractional

coordinates in the unit cell atoms panel.

Figure 7.5: Ordered Cu3Au visualization. Corner atoms are Au, face-centered atoms are Cu.

43



Building disordered Cu3Au

Disordered Cu3Au is FCC with each site having an average occupancy of 75% Cu and 25% Au.

Therefore the diffraction pattern should look very similar to that of FCC copper. In order to build

FCC copper, the space group must be defined in the space group panel as Fm3̄m (no. 225) and

the lattice constant is a = 3.6150Å. The single generator atom is a Cu — really an average of Cu

and Au — atom at (0,0,0) for this structure.

Figure 7.6: FCC copper unit cell visualization.

X-Ray diffraction comparison

The reduction in symmetry when the Cu3Au is in its ordered state causes addition “superlattice”

diffraction peaks to be visible, as seen in Fig. 7.7. For example, the the 100 and 110 peaks are not

visible in an FCC structure, but appear in a primitive cubic structure.

In this lesson the extremal conditions of perfect order and complete disorder were investigated.

Real crystals will never be fully ordered or disordered, so experimental data will lie between these

two extremes. However, understanding the diffraction pattern of the limiting cases is useful because

a sample that is partially ordered will exhibit aspects of both and makes it possible to use the

powder-pattern to determine the order parameter of the system.
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Figure 7.7: Comparison of x-ray powder diffraction patterns of (a) ordered and (b) disordered
Cu3Au . Note that (b) is FCC and only hkl unmixed are visible, while (a) is primitive cubic and
all hkl appear.

7.3 Cubic-to-tetragonal transition

The expansion or compression of a cubic lattice along a single four-fold symmetry axis causes

a transition to tetragonal symmetry. When this expansion or compression occurs it produces

additional interplanar spacings that were not present in the cubic phase, and thus changes the

x-ray diffraction pattern. This type of transition occurs in many systems, but is most well-known

in the martensitic transformation of steel.

In pure iron, the high temperature to low temperature transition leads to the conversion from

FCC austenite to BCC ferrite. When carbon is added to the system, a transition to tetragonal

martensite occurs as carbon atoms get stuck in interstitial sites during rapid quenching. This

transition in steel consists of a compression of the FCC unit cell in the [001] direction. This leads

to a shortened tetragonal lattice which appears to be face-centered, but by convention is referred to

an equivalent body-centered tetragonal Bravais lattice. This lesson provides a comparison of x-ray

diffraction between FCC austenite and these two definitions of tetragonal martensite.

Building austenite

Austenite is the term used for high temperature FCC phase of iron (γ-Fe) in the Fe-C steel system.

The space group of austenite is Fm3̄m, but in this lesson it will be defined as a special case of
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the tetragonal space group P4/mmm (no. 123). Since this is actually a cubic crystal, the lattice

constants must be set equal in the space group panel a = b = c = 3.6065Å [13] as seen in Fig

7.8. The resulting x-ray diffraction pattern is shown in Fig. 7.12a. Three generator atoms are

required to create the face-centered structure on the primitive tetragonal lattice. (0,0,0) generates

the corner atoms, (1
2 , 1

2 , 0) generates the tetragonal axis face-center atoms, and (0, 1
2 , 1

2) generates

the remaining of the face-center atoms.

Figure 7.8: Space group panel definition of austenite.

Building martensite

Martensite structure is a result of the non-equilibrium compression of the c-axis in FCC austenite.

Taking the crystal structure of austenite that was just created, it is simple to apply this compression

by decreasing the lattice constant c by a small percentage in the space group panel as seen in Fig.

7.9. (By convention the tetragonal axis is in the c direction.) This is not the conventional unit

cell definition of martensite, but it illustrates peak splitting without redefinition of hkl values. The

resulting x-ray diffraction pattern is shown in Fig. 7.12b.

Redefining martensite

The martensite structure is conventionally defined on a body-centered tetragonal Bravais lattice.

The deformed face-centered structure is that was just created is compared with this BCT lattice in

Fig. 7.10. This geometry leads to a I4/mmm symmetry and lattice constants a′ = b′ =
√

2
2 a and

c′ = c as seen in the space group panel in Fig. 7.11.
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Figure 7.9: Space group panel definition of martensite.

Figure 7.10: The geometric relationship between the compressed face-centered structure to the
body-centered tetragonal (BCT) lattice. Dotted lines outline the BCT unit cell [14].

Figure 7.11: Space group panel definition of BCT martensite.
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X-ray diffraction comparison

In austenite, the cubic symmetry makes {200} family planes have the same spacing and therefore

the same diffraction angle. The tetragonal martensite phase (defined as face-centered), however,

has the same lattice spacing for (200) and (020) but not in for (002). This has the effect of splitting

the {200} family peak to form one peak from scattering on (200) and (020) planes, and a separate

peak from scattering on (002) planes. This peak splitting can be seen by comparing the calculated

x-ray diffraction patterns in Figures 7.12a and 7.12b. Using the conventional BCT definition of

martensite, the x-ray diffraction pattern will not change, but the designation of hkl values will, as

seen in the comparison between Figures 7.12b and 7.12c.

a

b

c

Figure 7.12: (a) Austenite (FCC) x-ray diffraction pattern. (b) Martensite (face-centered definition)
x-ray diffraction pattern. (c) Martensite (BCT) x-ray diffraction pattern. Note the splitting of the
(200) peak from (a) to (b). (b) and (c) are identical except for the designation of hkl values.
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Chapter 8

Conclusions

AtomicControl was designed to fit a specific need of replacing Cerius2 in the MIT classroom. It

succeeds in making building a crystal a user-friendly process. The hope is that it will be adopted as

a teaching tool by the instructors of the new crystallography and diffraction subjects in 3.012 and

3.014. No software is complete and AtomicControl is not an exception. AtomicControl still needs

to be tested more fully with more complex crystal structures and its graphic user interface could be

improved. The modular object-oriented design of AtomicControl makes it easy to be extended and

modified. The source code of AtomicControl will be released to the public under a public license

so that others can modify AtomicControl to fit their needs. The hope is that AtomicControl will

become useful to the materials science community at large.
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