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Recapitulation and today’s lecture

Last week, we finished Gibbs ensemble, we talked about partition functions for three types
ensembles: (1) Microcanonical ensemble, (2) canonical ensemble, and (3) grand ensemble. We
derived their partition functions as well as their relationships to the thermodynamic potentials.
We also briefly talked about the Maxwell-Boltzmann distribution, where particles behave dif-
ferently under different temperatures.

Today, we will discuss the stability and transition and the Phase Transition with two exam-
ples (1) Liquid/Gas and (2) Ferro/paramagnetic. We will also discuss the microscopic origin of
the transition, order of the transition, and its relation with the partition function.

Stability and Transition

A phase transition occurs when a phase becomes unstable in a given thermodynamic condition
described by the intensive variables (P, T,H, U , etc). Hence, at atmospheric pressure (P = 1
atm), ice is no longer a solid stable phase when the temperature is higher than 0◦C Ic melts
and we observe a solid/liquid transition.

We can predict the thermodynamic state of a material with the thermodynamic potentials
obtained by the Legendre transformation. We can also calculate these thermodynamic potential
via the physics statistics if we knew the partition function of the system. These potentials can be
expressed with both intensive and extensive state variables, which characterize the system. The
choice of the variable to study the system imposed the potential. If we work with the variables
(T, V ), we use the free energy F but if we work with the variables (P, T ), we use the free energyG.

We can demonstrate in thermodynamics that a stable phase corresponds to a minimum of the
potentials F and G. More generally, imagine a virtual transformation ∆ of the thermodynamic
quantities x from the equilibrium, we have a criterion of stability of the equilibrium condition
which can be given by:

∆U + P ∆V − T∆S ≥ 0 (1)

where ∆U , ∆S, and ∆V are the virtual variations of the internal energy U , the entropy S, and
the volume V , from the equilibrium. It is the stability criterion of Gibbs-Duhem.

From this equation, we can deduce that a stable criterion is characterized by a minimum of
the potential F (T and V are constant), G (at T and P are constant), . . . .

This condition which allows us to find a criterion of stability of the equilibrium must be
examined in a strict manner. This criterion and its variants allow us to specify the equilibrium
condition. Thus, important physic states of the matter, the glassy state for example, leads to
state that the equilibrium of a system supposed stable, can be modified by application of a per-
turbation (thermal, mechanical, . . . ). We then must specify the situations in which the system
is applicable to the Gibbs-Duhem criteria.
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The equilibrium also corresponds to a maximum of the entropy and we then have for all the
infinitesimal virtual variation: δS = 0. We have different situations: The conditions δS = 0 and
∆S < 0 are satisfied whatever the virtual perturbation of the variables. Hence, if we perform
Taylor expansion on ∆S at the equilibrium, we have:

∆S = δS +
1

2!
δ2S +

1

3!
δ3S +

1

4!
δ4S + · · · (2)

where δ2S, δ3S, and δ4S are the differentials of second-, third-, and fourth-order terms with
respect to the state variables. We then have δ2S, δ3S, δ4S, · · · < 0 for the equilibrium is stable.

The conditioned (δS = 0, δ2S < 0) are checked for all the virtual perturbations but the
condition ∆S < 0 is not true for certain perturbations. We can have delta3S, δ4S > 0; the
equilibrium is called metastable

Certain perturbations satisfy the condition δ2S > 0, the equilibrium is called unstable.

So we have introduced the notion of metastbility of an equilibrium, which can be intermediate
state between the stability and instability. The condition δ2S = 0 gives the metastable limit
of the equilibrium. When a material from an initial stable equilibrium state is subjected to a
transformation which satisfy to the condition. It gets from the metastability to the instablility,
we observe a phase transition.

Figure 0-1: The surface of G as a function of P and T .

The curve corresponding to this limit condition of metastability is called spinodal. we can
analitically determine the curve by writing the limi condition of metastability with other ther-
modynamic potentials: δ2G = 0, δ2F = 0.

In a case of a material composed of one chemical constituent and whom the molecules are
isotropic, we can use the free energy G to describe its property, if we modify the equilibrium by
physics with the variables (P, T ). We can represent the function G(P, T ) by a surface in a space
at 3-dimentsions; A state of the system (P and T fixed) corresponds to a point on his surface of
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coordinate (G,P, T ). If we assume that the material can exist under two shapes of solid phases
(solid 1 and solid 2), a liquid phase, and a gas phase. We will have four parts on this surface
corresponding to four phases with the potential GS1, GS2, GL, and Gg. That can be separated
by lines. By definition, if we follow along these lines, we can find the equality of the potentials
and the coexistence with the corresponding phases.

The direct application of Gibbs-Duhem criteria indicates that the stable equilibrium state
corresponds to a phase which has the smallest potential (minimum of G). when crossing over
these lines, the material undergoes a phase transformation. At point C, the liquid and gas
phases are strictly identical. It is a singular point called critical point. At points B and D, three
phases can coexist because the coexistence lines merge into a point, which is the intersection of
the three surfaces. These are called triple points.

It is useful to project the surface shown in figure above on a plane (P, T ) with the lines of
coexistence AB,BE,BD, and DC. Hence, we obtain a phase diagram at equilibrium which
represent in a plane with three different phases of the material.

Figure 0-2: A single component phase diagram. On the right figure, the color represents a molar
extensive quantities (i.e., blue is a low value of V and red is a large value of V ) that apply to
each phase at that particular P and T .

Phase Transition

Liquid-gas transition, ferromagnetic-paramagnetic transition are phenomenon called phase tran-
sition. A transition occurs when it exists a singularity in a thermodynamic function or in the
derivative of these. The physics of transitions is a complex but very interesting domain which
will be developed in this chapter.
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Examples

(1) Liquid-Gas Transition

To illustrate the liquid-gas transition, we generally use a phase diagram (T, P ). simple
substances are capable of existing in phase of three types: solid, liquid and gas. The phase
equilibrium lines separating these phases, appears typically as shown in Figure (0-2):

These lines, separate solid from liquid, liquid from gas, and gas solid from gas. The three
lines meet at one common point Tr called triple point. At this unique temperature and pressure,
arbitrary amount of all of phases can therefore coexist in equilibrium with each other. At point
C, called critical point, the liquid-gas equilibrium line ends. The volume change ∆V between
liquid and gas has then approached zero. Beyond point C, there is no further phase transfor-
mation since there exists only one fluid phase.

By crossing the vaporization line from high pressure to low pressure, we can observe an abrupt
change from liquid state of density ρL to a gas state of density ρg. An important variation of
density ∆ρ ≡ (ρL − ρg) appears in the system. The volume of the system is extended. This
phase transition also go with a jump of entropy ∆S, which is expressed by the presence of a
latent heat L = T∆S necessary to the vaporization. In thermodynamics, we link the change of
entropy to the shape of the curve of vaporization via the Clausius-Clapeyron relation:

dP

dT
=

L

T∆V
=

∆S

∆V
(3)

which is obtained by equaling the chemical potentials of both phases along the line of coexistence.

If we plot a diagram for the density ρL of a liquid phase and the density ρg of a gas phase
along the curve of coexistence, we can see that the variation of density is canceled above the
critical temperature Tc.

Figure 0-3: Densities of both liquid and gas phases along the curve of coexistence.
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(2) Ferromagnetism paramagnetism transition

Another phase transition is observed in Ferromagnetic materials. These materials have a
permanent magnetism in the absence of external magnetic field. This ferromagnetism can be
observed in certain materials, such as iron, cobalt, and nichol. If we increase the temperature
of a ferromagnetic materials above its critical temperature Tc, the ferromagnetism disappears
to take place to the paramagnetism. If we cool this matter under Tc, a spontaneous magnetism
can reappear again. This critical temperature is called the temperature of curie.

Figure 0-4: Magnetization of a rod of Ni as a function of the temperature.

To represent such transition, we can plot the magnetism M of a material as a function of
the temperature. Under Tc, the magnetism is non-equal to 0 and can be negative and positive
according to the averaged magnetism of the microscopic magnetic moments. When T > Tc, the
magnetism is canceled. We obtain a diagram similar to the diagram obtained in the case of
the variation of density ∆ρ of the gas-liquid transition. By crossing the temperature of curie,
we will observe a jump of magnetism. In the other hand, we will observe a divergence of the
magnetic susceptibility, χ, e.g., a divergence of the first derivative of M , H is the magnetic field.
We have

M

H
= χ =

C
|T − Tc|

(4)

which is the law of Curie-Weiss. In the other hand, the entropy is continue in Tc. There will
not be latent heat for such transition.

Microscopic Origin of the Transition

From previous examples, we can note that a phase transition is characterized by an abrupt
change at the critical point. This microscopic quantity has two distinct values for both phases
which surround the critical point. This quantity is chosen as order parameter to describe the
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transition. The order parameter is different for each case. It could be the density in the case
of the liquid-gas transition, the magnetism M in the case of the ferromagnetic-paramagnetic
transition.

What is the origin of the microscopic transition? We have seen that nothing happens for
a perfect gas while a critical point appears for a Van der Waals (VDW) gas. The perfect gas
is constituted of independent particles while the VDW gas is constituted of particles which in-
teract with each other. In the same way, independent magnetic moments lead to the simple
paramagnetism of curie while the magnetic moment of a crystal of N particles which interact
with each others leads to a ferro-paramagnetic transition.

Interaction between microscopic entities are responsible of the transition. It is surprising to
note that simple short range interactions are capable to induce a change of the state through
all the system.

Order of Transition

Even though previous example are quantitively close, we are going to distinguish them. Ehren-
fest suggested the following clarification. The first-order transition are those for which there is
a discontinuity of at least one first derivative of the free energy. This implies a jump of entropy
∆S during the transition and the existence of a latent heat L = T∆S. The specific heat Cv and
the compressibility kT diverge.

The second-order phase transition exhibit discontinuities of the second derivative of the free
energy. Thus, the entropy is continue but the first derivative of the entropy exhibits different
values according to the phases. The specific heat Cv exhibits in general a discontinuous jump
at the transition and the susceptibility χ diverges.

Order 1 2

Definition discontinuity of ∂F
∂T

discontinuity of ∂2F
∂T 2

Properties ∆S 6= 0 ∆S = 0
latent heat no latent heat
∆ρ 6= 0 ∆ρ = 0
Cv diverge jumps in Cv

kT (β) diverge χ diverges
Examples liquid-gas ferro-para

The thermodynamics well describes the first-order phase transition via the Clausius-Clapeyron
relation but but is not accurate for the second order. It can then be powerful to use statistical
physics to describe the second-order phase transition.

The classification of Ehrenfest is very useful but not sufficient. Landau remarked that a
phase transition without latent heat goes with a change of symmetry. Hence, in the case of a
magnetic molecule, it doesn’t have a permanent magnetic moment above the temperature of
curie. Under this temperature, it has an oriented permanent magnetization in certain direction
(ferro-magnetic state). This phenomenon is called a broken symmetry at the transition.
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Figure 0-5: First-order transition in T0, discontinuity of S.

Figure 0-6: Second-order transition in Tc, discontinuity of Cv.

The question of symmetric is very important. In the study of the phase transition, Landau
associated this phenomenon of the broken symmetry with the notion of order parameter. The
order parameter is an extreme physical quantity, which equals to zero when the phase is more
symmetric (or less ordered) and different to zero in the phase that is less symmetric (more or-
dered).

With this notion of order parameter, we can distinguish two types of transitions: the tran-
sition without order parameter for which the group of symmetry of both phases are such that
no phases is strictly included in the other one; it is the first-order transition as described by
Ehrenfest. Transitions for which we can define order parameter and that are such that the group
of symmetry of the phase. The less symmetric is a under-group of the group of the symmetry of
the phase the most symmetry. If the order parameter is discontinuous at the transition, it is a
first-order transition, as defined by Ehrenfest, otherwise, (if it is continuous)it is a second-order
transition.


