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Recapitulation

Last time we covered:

1. Phase Space

2. Gibbs ensemble

3. Statistical Physic Postulate

4. Microcanonical Ensemble

Today, we will finish up Gibbs ensemble by discussing details in canonical ensemble where we
will introduce (1) partition function, (2) energy in the canonical ensemble, and (3) relation with
other thermodynamic potential. We will also discuss about Grand-Canonical Ensemble and
provide a summary for Gibbs ensemble.

Moreover, we will calculate the distribution of particles on different levels of energy. We will
introduce three different kinds of statistics, such as

1. Maxwell Boltzmann

2. Fermi-Dirac

3. Bose-Einstein

Canonical Ensemble

Partition Function

When the system can exchange heat with a reservoir, but not work and matter, there is a larger
number of microstates. We have to account for the microstates 1 ≤ i ≤ Ω(Uj) accessible to the
system which has a given energy Uj. This is known as the canonical ensemble.
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Figure 0-1: The system is in contact with the reservoir. The heat is exchanged between the system
and the reservoir.
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The reservoir maintains the temperature T constant and the total energy, U0 = Uj + UT , of
the system plus its reservoir is constant. The total number of microstates N accessible for the
system and the reservoir will be given by

N (U0) = Ω(Uj)ΩT (U0 − Uj) (1)

which is constant with regard to all the possible variations Uj because the total energy is
constant. The probability Pij to find the system in the microstate i of the energy Uj will be
proportional to

Pij ∝
1

Ω(Uj)
(2)

at equilibrium; this probability is also proportional to

Pij ∝ ΩT (U0 − Uj) (3)

e.g., to the number of microstates accessible to the thermostat. The normalization requirement
on probabilities leads to

Pij =
ΩT (U0 − Uj)∑

j

∑
i

ΩT (U0 − Uj)
(4)

The thermostat that many more degrees of freedom than the system (Nj/NT � 1) as well
as Uj � U0, thus

ΩT (U0 − Uj) = ΩT (U0)− (
∂ ln ΩT

∂U
)U=U0Uj + . . . (5)

The partial derivative of the first order is 1/kBT (kB is the Boltzmann constant or R/Navdgro).
We have

ln ΩT (U0 − Uj) = ln ΩT (U0)−
Uj
kBT

ΩT (U0 − Uj) = ΩT (U0) exp(− Uj
kBT

)

(6)

The probability Pij of a particular microstate ij is

Pij =
1

Z
exp(− Uj

kBT
) (7)

where Z is the quantity that normalizes the probabilities. Z is considered the most important
quantity in statistical thermodynamics, because it can be used to derive so many quantities.

Z =
∑
j

∑
i

exp(− Uj
kBT

) (8)

This function is called partition function. It is a function of T , V , and N . This function plays
a very important role.

In the canonical ensemble, there is a statistical weight associated at each microstate. This
statistical weight is the exponential of the internal energy normalized by the thermal agitation
kBT . This last term is the energy term associated with the Boltzmann constant, kB. We may
note that at high temperature, all the microstates have the same probability of occurrence
whatever the energy of these configurations. At low temperatures, the states with low energy
are favored. This result should be familiar: nature prefers that a system minimize its energy at
low temperatures, and maximize its entropy at high temperatures.
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Energy in the canonical ensemble

The partition function Z allows to calculate the average energy 〈U〉 of the system–the average
is given by

〈U〉 =
∑
j

∑
i

PijUj (9)

Using the Boltzmann factor and by normalizing by Z, we have

〈U〉 =
1

Z

∑
j

∑
i

Uj exp(−βUj) (10)

It is traditional to introduce a thermodynamic scale for energy: β ≡ Echar/Ei where Echar
is the characteristic thermal energy kBT . The symbol β plays the role of an ‘inverse’
temperature in expressions like exp(−βE) ≡ exp(−E/kBT ) This expression can be written
as

〈U〉 =
1

Z

∑
j

∑
i

∂

∂β
[exp(−βUj)] (11)

By extracting the derivative operator of the sum, we obtain

〈U〉 = − 1

Z

∂Z

∂β

〈U〉 = kBT
2(
∂ lnZ

∂T
)

(12)

We can also estimate the fluctuations of energy (∆U)2 = 〈U2〉 − 〈U〉2

〈U2〉 =
1

Z

∑
j

∑
i

U2
j exp(−βUj)

〈U2〉 =
1

Z

∂2Z

∂β2
=
∂2 lnZ

∂β2
+ 〈U〉2

(13)

We finally obtain that:

(∆U)2 = 〈U2〉 − 〈U〉2 = kBT
2(
∂〈U〉
∂T

) = kBT
2Cv (14)

We then can describe the system and their fluctuations around the equilibrium. Besides, the
fluctuations of energy are linked to the heat capacity Cv of the system. For a perfect gas, we
have 〈U〉 = 3

2
NkBT and the relative fluctuations of energy are

∆U

〈U〉
=

√
2

3N
(15)

These fluctuations are low because the number of particles are generally higher than 1023.
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Relation with other thermodynamic potentials

In the canonical ensemble, that are the variables T , V , and N that are pertinent. The free
energy F (T, V,N) is then the accurate thermodynamic potential to describe the system. The
different microstates of the canonical ensemble are characterized by the same free energy. All
the thermodynamics of the system will be obtained from the relation:

Z = exp(− F

kBT
) (16)

By the way, the relation

〈U〉 = F + TS = F − T (
∂F

∂T
)V,N (17)

is well defined when F = −kBT lnZ. We can also derive the entropy

S = −(
∂F

∂T
)N,V = kB lnZ − kBT

Z
(
∂Z

∂T
)N,V (18)

Grand Canonical Ensemble

In the grand canonical ensemble, we consider the microstates for which the system can exchange
both heat and particles with the reservoir.

system

T

dU

dN

Reservoir

T

Figure 0-2: The system is in contact with the reservoir. Both heat and particles are exchanged
between the system and the reservoir.

In this ensemble, we generalize the case of the canonical ensemble with a variable number of
particles. The reservoir maintains a temperature T constant. The total energy U0 = Uj + UT
and the total number of particles N0 = N +NT are also constant. The probability PijN to find
the system in the microstate i of N particles and at the energy Uj will be proportional to

ΩT (U0 − Uj, N0 −N) (19)

e.g., tot he number of microstate accessible to the thermostat. The condition of normalization
of probabilities leads to

PijN =
ΩT (U0 − Uj, N0 −N)∑

N

∑
j

∑
i

ΩT (U0 − Uj, N0 −N)
(20)
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We will use a thermostat that has a number of degree of freedom much higher than the system
and we also have Uj � U0 as well as Nj � N0. We can then perform a limited development
around ΩT (U0, N0)

ln ΩT (U0 − Uj, N0 −N) = ln ΩT (U0, N0)− (
∂ ln ΩT

∂U
)U=U0 Uj − (

∂ ln ΩT

∂N
)N=U0 N + . . . (21)

We can evaluate up to first-order term and ignore other higher order terms. Both partial
derivatives of the first order term corresponding to

(
∂ ln ΩT

∂U
)U=U0 =

1

kBT
= β

(
∂ ln ΩT

∂N
)N=U0 = − µ

kBT
= −βµ

ln ΩT (U0 − Uj, N0 −N) = ln ΩT (U0, N0)−
Uj
kBT

+
µN

kBT

ΩT (U0 − Uj, N0 −N) = ΩT (U0, N0) exp(−βUj + βµN)

(22)

Then the probability PijN becomes

PijN =
1

Q
exp(βµN − βUj) (23)

with the grand canonical partition function Q which represents the normalization of all the
probabilities, we have

Q(T, V, µ) =
∑
N

∑
j

∑
i

exp(βµN − βUj) (24)

It is a function of T , V , and µ which generalize Z whatever the number of particles via

Q(T, V, µ) =
∑
N

exp(βµN) Z(T, V,N) (25)

The thermodynamic potential corresponding to their variables is the grand potential J (T, V, µ)
constructed from the Legendre transformation following

J = F − µN (26)

where the three equations of states are respectively

N = −(
∂J
∂µ

)T,V S = −(
∂J
∂T

)V,µ P = −(
∂J
∂V

)T,µ (27)

The average number of particles 〈N〉 that can be associated to the first equation of state is given
by

〈N〉 =
1

Q

∞∑
N=0

N exp(βµN)Z(T, V,N)

〈N〉 = kBT
∂

∂µ
lnQ

(28)
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It is the number of particles at equilibrium. Hence, we associate the grand potential to J =
−kBT lnQ. We can also show that the average energy in the grand canonical ensemble is given
by

〈U〉 =
1

Q

∑
N

∑
j

∑
i

Uj exp(βµN − βUj)

〈U〉 = − ∂

∂β
lnQ

(29)

The grand canonical partition function Q also allows to calculate the fluctuation of the number
of particles around the thermodynamic equilibrium. For example, we can demonstrate that

(∆N)2 = 〈N2〉 − 〈N〉2 = kBT
∂

∂µ
〈N〉 (30)

Summary

The table below summarize the domain of application and the properties of the three partition
functions Ω, Z,Q.

Ensemble Variable Exchanges Partition Function Potential
Microcanonical U, V,N - Ω =

∑
i

1 S = kB ln Ω

Canonical T, V,N U Z =
∑
j

∑
i

exp(− Uj
kBT

) F = −kBT lnZ

Grand canonical T, V, µ U,N Q =
∑
N

exp( Nµ
kBT

)Z J = −kBT lnQ

Distribution

The calculation of a partition function allows to estimate the probability to observe a system
at a given total energy. This calculation considers the Boltzmann factor of the total energy. In
numerous cases, the different microscopic entities are the same and occupy different levels of
energy. It could be useful to calculate the most probable number of entities occupying a chosen
level of energy or to calculate the distribution of particles on different levels of energy. We can
distinguish three different kinds of statistics, those which come or doesn’t come from quantum
effects:

1. Maxwell Boltzmann Distribution

2. Fermi-Dirac Distribution

3. Bose-Einstein Distribution

Maxwell Boltzmann Distribution

The system is composed of N identical and distinguishable particles, which occupy K different
levels of energy εi. We can find ni particles on the level of energy εi for a total energy U and a
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number of particle N , we have the following relations:

K∑
i=1

niεi = U

K∑
i=1

ni = N

(31)

As these quantities are assumed to be constant, the system is entirely determined by the distri-
bution {ni} of particles on the K levels. The space phase is a space at K dimensions:

Ei

1
1
0
2
1

ni

Figure 0-3: The different level of energy εi is determined by the distribution of {ni} of particles.

The system being completely isolated, we work in the microcanonical ensemble. As the
particles are distinguishable, it resists a high number Ω of possible microscopic configurations
that are compatible with the distinguishable {ni}:

Ω{ni} =
N !

n1! n2! . . . nK !
(32)

Nevertheless, we have neglected the possible degeneracy of levels. If there are gi under-levels,
where the energy equals to εi, the previous relation cab be rewritten as

Ω{ni} = N !
gn1
1 gn2

2 . . . gnKK
n1! n2! . . . nK !

(33)

We want the most probable distinguishable n̄i, that is, the distribution which maximizes the
volume Ω{ni} of the accessible area by the system in the space phase. To determine this
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extremum n̄i, we will find the maximum of ln Ω{ni}, e.g., the maximum of entropy. This
distribution of n̄i corresponds to a thermodynamic equilibrium:

ln Ω{ni} = lnN ! + n1 ln g1 + n2 ln g2 + . . .+ nK ln gK − lnn1! − lnn2! − . . .− lnnK ! (34)

Using the Stirling formula lnn! ≈ n lnn− n, we have

ln Ω{ni} = N lnN −N + n1 ln g1 + n2 ln g2 + . . .+ nK ln gK

− (n1 lnn1 − n1)− (n2 lnn2 − n2)− . . .− (nK lnnK − nK)

ln Ω{ni} = N lnN −
∑
i

ni ln
ni
gi

(35)

To determine the extremum of ln Ω, we will differentiable the expression taking into account
that dN = 0. We have

d(ln Ω) = −
∑
i

(dni) ln
ni
gi
−

∑
i

nid(ln
ni
gi

)

= −
∑
i

(dni) ln
ni
gi
−

∑
i

dni

= −
∑
i

(dni) ln
ni
gi

(36)

This differentiated expression of ln Ω equals to 0 at its extremum:

− d(ln Ω) =
∑
i

(dni) ln
ni
gi

= 0 (37)

There are two additional condition imposed to the system:

The conservation of the number of particle N .

The conservation of the total energy U .

Under the differential forms, we have:∑
i

dni = 0∑
i

εidni = 0
(38)

To find the extrema for the specified fixed constraint, we use Lagrange multipliers. This is
a method that permits us to find stationary points of differentiable functions of one or many
variables. (Note the similarity between a Lagrange multiplier and a Legendre transformation.)
The distribution is then given by:∑

i

[ln
ni
gi

+ α + βεi] dni = 0 (39)

When the number of level K is high, we can consider that the fluctuations dni are independent.
Hence, we have

ln
n̄i
gi

+ α + βεi = 0 or

n̄i = gi exp(−α− βεi)
(40)



MIT 3.046 Spring 2008 Lecture Outline 24 April 2008 c© W.C Carter 9

which is the distribution of Maxwell-Boltzmann with the coefficients α and β determined re-

spectively from the conditions
K∑
i=1

ni = N and
K∑
i=1

niεi = U (eqn (31)).

The coefficient β is easier to understood than the coefficient α. Using the first condition, we
have

N =
∑
i

n̄i =
∑
i

gi exp(−α− βεi)

N = exp(−α)(
∑
i

gi exp(−βεi)) = exp(−α) Z1

(41)

Using the second condition

U =
∑
i

n̄i εi =
N

Z1

∑
i

giεi exp(−βεi)

U = −N ∂ lnZ1

∂β

(42)

We can note that if we associate β to the temperature via β = 1/(kBT ). We define the canonical
partition function Z1 of a single particle that cab be placed on K degenerated level. The N − 1
other particle play the role of the reservoir.

The coefficient β is the one we have defined previously. the coefficient α is linked to the
chemical potential µm but its value is determined according to each different case. We finally
obtain

n̄i =
gi

exp(α) exp( εi
kBT

)
(43)

The Boltzmann distribution is an important result and is the basis for understanding many
microscopic phenomena. Its interpretation is perhaps useful to state in words: When a system
has different energy states available, the occupation of each states is given by an exponential
distribution proportional to (minus) the energy of that state. The energy is divided by a thermal
energy (as it must to make the units work out), and therefore The low energy states tend to
have higher occupancy. Because the proportionality goes like 1/T , the differences in occupation
probability decrease with increasing temperature. Low energy states are densely occupied at low
temperature; as the temperature increases the distribution becomes more uniform as the higher
energy states become occupied.
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Ei

low temperature

high temperature

ni /gi

Figure 0-4: Maxwell-Boltzmann distribution under different temperatures.

Fermi-Dirac Distribution

It describes quantum systems composed of fermions. This system is composed of N indistin-
guishable particles which can be located on K levels of energy εi. Each level of energy εi is
degenerated gi times. Two particles called fermions can’t be in the same quantity state. It is
the exclusion principle of Pauli. Hence the number of microstates is simply given by:

Ω{ni} =
∏
i

Cni
gi

=
∏
i

gi!

ni!(gi − ni)!
(44)

and the Fermi-Dirac Distribution is given by

n̄i =
gi

exp(α + βεi) + 1
(45)

We can note that this distribution is the same as the one of Maxwelll-Boltzmann for high energy.
β plays the same role as the one in the distribution of Maxwell-Boltzmann and is linked to the
temperature.

The parameter α is linked to the Fermi level. At T = 0K, femions occupy the levels of
energy until the level εF . When the temperature increases, the superior levels are occupied and
the distribution spread over the fermi level.

The distribution of Fermi Dirac can then be rewritten as:

n̄i =
gi

exp( εi−εF
kBT

) + 1
(46)
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Ei

low temperature

high temperature

ni /gi

Figure 0-5: Fermi-Dirac distribution under different temperatures.

Bose-Einstein Distribution

Bosen are another types of quantum particles that would be indistinguishable located on all
the levels of energy. The Pauli principal is no longer applicable. We consider here a system
composed on N particles identical and indistinguishable that are located on K level of energy
εi. Each level of energy is degenerated gi � 1 time.

Hence the total number of microstate is given by:

Ω{ni} =
∏
i

Cni
ni+gi−1 =

∏
i

(ni + gi − 1)!

n! (gi − 1)!
(47)

The Bose-Einstein distribution is given by

n̄i =
gi

exp(α + βεi)− 1
(48)

This distribution is also the same as the Maxwell-Boltzmann distribution for high energies. Be-
sides, it can diverge when α + βεi = 0. The coefficients α and β can be determined by the
conditions on U and N .

In the grand canonical ensemble, a non-degenerated level j of energy εj can be occupied by
an arbitrarily number of particles.

We find that:
∞∑
n=0

exp(−nεj − µ
kBT

) =
1

1− exp(− εj−µ
kBT

)
(49)

and the total partition function is given by

Q =
∏
i

[1− exp(−εj − µ
kBT

)]−1 (50)
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where we have considered all the levels and under-levles. The average number of particles on
the no-degenerated level j is given by:

〈nj〉 = −kBT
∂

∂µ
{ln[1− exp(−εj − µ

kBT
)]} =

1

exp(
εj−µ
kBT

)− 1
(51)

Summarize

To summarize three conditions:

Statistics Particles Distributions
Maxwell-Boltzmann Distinguishable n̄i = gi

exp(
εi−µ
kBT

)

Fermi-Dirac Fermions n̄i = gi

exp(
εi−εF
kBT

)+1

Bose-Einstein Bosons n̄i = gi

exp(
εi−µ
kBT

)−1


