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Recap

Before the break we were concerned with the conditions of thermodynamic stability of a material
and derived that there are material-physical constraints on the second derivatives of energy
quantities. For example:
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However, in everything that preceded, we didn’t consider that the chemical content of a body
may be variable.

Considerations of an Open System (one which exchange

different kinds of chemical species with the environment)

We now consider a system that can exchange chemical specifies with its environment.
For historical reasons, the system in question is called a phase. It will be supposed that the

phase is a spatially continuous subsystem. The entire system is composed of the subsystem and
the rest of the system. The rest of the system may also have phases.

Extra Information and Notes
Potentially interesting but currently unnecessary
To be more concrete, we usually think of a phase as a liquid, solid, or vapor. These may
be distinguished by their separate state functions.
The state function (or, practically, our model of a state function) determines the material
properties as a function of the independent thermodynamic variables. This state function
will determine how we might distinguish two phases; i.e., there may be a density change, or
a bulk modulus change, that can be measured as we cross an phase-separating interface,
or interphase boundary.
We will defer a strict definitions of phase and the position of a phase boundary. surface.
Each type of simple, intuitive, phase described above, can have further catagories of
distinct phases; for example:

1. Two solid phases could differ in their crystal structure.

2. Two liquid phases may differ in their equilbrium compositions.

3. Solid phases may differ in their equilbrium compositions

4. etc.

Just as we used a picture to represent an isolated, or adiabatic, etc, system, there is a picture
that is traditionally used to represent a phase that exchanges chemicals with its environment:
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Figure 0-1: Van’t Hoff Reaction Box: Each independent species can be exchanged with the
environment by adding or subracting an amount of that species dN : the chemical potential or each
species is defined as the µi = Fi(dxi/dNi) fo each equilibrium Fi. (Box design inspired by Tina
Turner’s Acid Queen scene in Ken Russell’s 1975 film “Tommy,” Cav. Not, Prof. Kenneth Russel
the materials scientist famous for his work on nucleation)

Consider a general case that additional work (other than PV work) on the system
is composed by various forces, and the total work done can be represented as∑

i

Fidxi, i = a, b, . . . ,m (2)

where xi were the extensive variables that changed according to those forces.

Now consider a chemical system that the additional work is generated by m
syringes. These syringes are adding or subtracting Ni number of species. The work
done by each syringe i on the system is

Fidxi = µidNi, i = a, b, . . . ,m (3)

With a positive or negative sign in equation (3), it refers to adding or subtract-
ing species in the system (i.e., exchanging species with the environment). µi is
the chemical potential of each species and is defined as µi = Fi(dxi/dNi) for each
equilibrium Fi.

Before going details of chemical potential, µi, let’s discuss the differences between
number of species, Ni ( ~N) and the average composition, Xi ( ~X). (Note, later in the
lecture of multiphase system, we will introduce the “actual composition”, which
is different from the average composition aforementioned)
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Total amount of species in this chemical system can be represented as

Ntot = | ~N | = Na + Nb + Nc + . . . + Nm =
m∑
i

Ni (4)

The fractions of the species, i, in this chemical system is

Xi =
Ni

Ntot

, i = a, b, . . . ,m

~X =
~N

Ntot

(5)

Note, in equation (5) Ni is an extensive variable but Xi is an derived intensive
variable.
If we sum up all fractions of the all species, i = a, b, . . . ,m

m∑
i

Xi = Xa + Xb + Xc + . . . + Xm

=
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Ntot

+
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+
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=
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(6)

Extra Information and Notes
Potentially interesting but currently unnecessary
Students should compare this graphical illustration to those that were used to derive the
equilibrium conditions Pα = P β, Tα = T β. They are, in principle the same, and we
will get the same result; i.e., µα

i = µβ
i —a necessary condition for two phases that can

exchange a chemical species i must have the same chemical potential in each phase. This
is another example of, “everything is the same when reduced to the same mathematical
structure”.

This introduces the concept of an ideal open system. Each of the needles is capped by an
osmotic membrane that allows passage of the relevant chemical species only. Thus, we relate
the chemical potential of each possible chemical species within each phase to a physical force
that we can measure.

The emphasis in the last paragraph should be taken quite seriously. Errors creep in if the
student doesn’t recognize the physical distinction between the sub-scripts and super-scripts in
Nα

i .
As in any idealization, the picture should be understood conceptually. It would be impossible

to construct such a Van’t Hoff box physically: there are no perfect osmotic membranes, and it
is impossible to purify any substance so that only one chemical species is isolated. However, the
concept does not prevent us from using the idea as a limiting case, and then just proceeding.
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Extra Information and Notes
Potentially interesting but currently unnecessary
How many needles are needed to define a chemical system? We need one for each inde-
pendent chemical species for the constituents that are under consideration. For example,
with hydrogen, oxygen, water, and hydrogen peroxide, how many needles are needed? It’s
two, because there are two mass balance equations that reduce the four possible amounts
to two—if we had more needles, we couldn’t vary one of the independent parameters (i.e.,
S, V , Ni) without having one of the needles (or S or V ) necessarily change in a reversible
equilibrium process.

The system pictured above is meant to convey as an adiabatic and constant volume (or
mechanical work) example, which are the conditions for the internal energy U(S, V ) And thus,
we extend our definition of internal energy to include chemical work terms explicitly:

For an entire sytem as a black box (ignoring the possibility of multiple phases)
dU = dqrev + dw all forms of work
dU = TdS + dw all forms of work
dU(S, V ) = TdS − PdV PV work only
dU(S, V, Na, Nb, . . . Nm) = TdS − PdV +

∑m
i=1 µidNi PV and chemical work only

dU(S, V, Na, Nb, . . . Nm) = TdS − PdV + µidNi PV and chemical work only, summa-
tion convention

dU(S, V, ~N) = TdS − PdV + ~µ · d ~N PV and chemical work only, vector no-
tation

dU = T (S, V, ~N)dS − P (S, V, ~N)dV + ~µ(S, V, ~N) · d ~N PV and chemical work only, vector
notation—function dependence in dif-
ferential coefficients

dU( ~E) = ~I( ~E) · d ~E maximally dense and obscure, written
in terms of extensive variables and in-
tensive differential coefficients; useful
for comparison

If one is concerned about the internal distribution of species, entropy, and volume, then there
must be a summation over all the phases that are present inside the system. Using a double
summation condition—one sum over all the phases (j for α, β, γ, . . . , ζ) and one over all the
independent chemical species (i for Na, Nb, Nc, . . . , Nm):

dU = TdS − PdV + µj
idN j

i (7)

for the total system entropy and volume change in each phase, and where PdV is the only work
involved. We could write the total entropy and volume in terms of each phase, e.g.,

dS =
∑

j

dSj; dV =
∑

j

dV j (8)

where dV j is the change in volume of each consituent phase—but there is one relation between
all of the (dV α, dV β, . . . , dV ζ) and therefore they are not all independent. In other words, we
cannot specify dV and all of the dV j independently. However, if it were desireable, one could
pick the changes of volume of each phase to be independent; but then dV for the entire system
would be dependent on the sum. The same statements of independence and choice of variables
applies to the system’s total entropy and that of the phases.
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Conditions for Internal Equilibrium for Phases that can

Exchange a Chemical Component

These conditions for internal equilibrium will be derived in the same manner in which it was
shown that T and P must be uniform when S and V can be exchanged between two phases.

Extra Information and Notes
Potentially interesting but currently unnecessary
This is the general rule: “If a extensive quantity can be exchange between two subsystems
(e.g., phases), then a necessary condition for thermodynamic equilibrium is that that
extensive quantity’s conjugate intensive quantity must be uniform (i.e., the same in all
phases)”. I think this is simple, organized, easy to remember, and beautiful.

We will consider two phases α and β that can exchange a chemical species i. This result
is easily generalized to an arbitrary number of phases and species—the result will always be
the same: µj

i = µk
i for any species, i that can be transfered between phases j and k (note once

again, the equality refers to the sub-scripts (chemical species) and not super-scripts (phase)).
We consider a closed, isolated, system that is composed of two phases α and β in contact

which can exhange dNi. Because the Ni can carry heat and volume with them, then it follows
that the pressure and temperature in α and β must be the same and uniform at equilibrium—
there is no need to carry a super-script.

Thus, for the entire closed system dNi = 0 = dNα
i + dNβ

i , and the total volume and entropy
cannot change (or the internal energy at fixed volume and entropy is minimized at equilibrium)
dS = dV = 0:

dU = µα
i dNα

i + µβ
i dNβ

i

= (µα
i − µβ

i )dNα
i because dNβ

i = −dNα
i

(9)

There are three cases:

(µα
i − µβ

i ) > 0 Then, dNα
i will be negative, i will flow from α to β resulting in a total internal

energy decrease at constant S and V (i.e., dU < 0)

(µα
i − µβ

i ) < 0 Then, dNα
i will be positive, i will flow to β from α resulting in a total internal

energy decrease at constant S and V (i.e., dU < 0)

µα
i = µβ

i Then, dNα
i is unrestricted, but there is no benefit in going either way: this is equilibrium—

and we can drop the super-script for phase at equilbrium for any i that can be exchanged.

Conditions of Equilbrium for Other Types of Systems

Here, we could redraw the boxes to indicated that the system is in equilbrium with a reservoir
that fixes an intensive variables (i.e., constant P or T ), in these cases we derive:

Fundamental Equation Natural Variables

dU(S, V, ~N) = T (S, V, ~N)dS − P (S, V, ~N)dV + ~µ(S, V, ~N) · d ~N S, V, ~N

dH(S, P, ~N) = T (S, P, ~N)dS + V (S, P, ~N)dV + ~µ(S, P, ~N) · d ~N S, P, ~N

dF (T, V, ~N) = S(T, V, ~N)dS − P (T, V, ~N)dV + ~µ(T, V, ~N) · d ~N T, V, ~N

dG(T, P, ~N) = −S(T, P, ~N)dT + V (T, P, ~N)dV + ~µ(T, P, ~N) · d ~N T, P, ~N
And, we will derive the Gibbs-Duhem relations by doing an integration of U over its intensive

variables.


