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Recapitulation and today’s lecture

Last time, we discussed the stability of phase transitions with two physical examples: liquid/gas,
and a ferro/paramagnetic transition that can be analyzed in terms of simple order parameters.
We also discussed the microscopic origin of the transition and order of the transition. Today,
we will continue with the topic of phase transitions and its relation with the partition function.

We will introduce the Ising model, which can be used to describe ferromagnetism (and many
other simple systems), which arises when the spins of many atoms cooperatively align so that
their associated magnetic moments all point in the same direction (spin is a vector) and yields
a net macroscopic magnetic moment. We will also introduce a powerful method to study phase
transitions: the Monte Carlo Simulation. The Monte Carlo simulation uses randomly generated
thermal perturbations—in the case of the Ising model, the spins are randomly flipped and
exhibits a temperature—applied-field dependent phase transition.

Transitions and the Partition Function

In general, the choice of the variables with which we want to study a system (in particular
during a phase transition) imposes the choice of the thermodynamic potential. The appropriate
thermodynamic potential is the one that is minimized for particular constraints on the system—
and thus, the choice of potential in modeling a phase transitions depends on the experiment
that is being modeled. Hence, when we work with the variables P and T , the free energy
G = U − TS + PV which is the appropriate potential. In the case where we want to study
a system as a function of its fixed T and V , it is the free energy F = U − TS which is the
pertinent potential. We have the following relation:

dU = TdS − PdV, dF = −SdT − PdV,

dH = TdS + V dP, dG = SdT + V dP
(1)

We can think of the PV term as a place-holder for how reversible work is being stored. Consider
a system that only stores work by responding to applied magnetic field ~H. Thus, the case of a
magnetic system in presence of a magnetic induction ~B and ~H being the applied magnetic field,
we could have the potentials:

F = U − TS and G = U − TS − ~H · ~B (2)

Below, we will drop the vector notation and consider it understood that a dot product like ~F ·d~x
or ~H · d ~B. From these relations, we can deduce the following examples for a fluid system:

Cv = −T (
∂2F

∂T 2
)V and

kT = − 1

V
(
∂2G

∂P 2
)T

(3)

and for a magnetic system:

CB = −T (
∂2F

∂T 2
)B and

kT =
1

B
(
∂2G

∂H2
)T

(4)
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Thus, in the case of a magnetic system, we have analogous expression: the magnetic suscepti-
bility being the analogous of the compressibility for a fluid.

To model a particular material’s equilibrium and phase transition properties, one needs the
potential (which is generic for the particular experiment) and the relations between the deriva-
tives of the potential (which are material properties). For example, we need G(H, T ) and, for
example, ∂B(H, T )/∂T . To proceed, We must choose a model which is a simplified representa-
tion of the physical reality, and which is simple enough to calculate the thermodynamic potential
as a function of the useful variables of states.

For example, we can take a case of a liquid or solid binary solution with two constituents, A
and B with compositions respectively equal to xA and xB.

We can take the free energy of the solution G(xA, xB) to be given by the Regular Solution
model : (Here we work on a per mole basis, so that all free energies below are molar free energies.)

G(xA, xB) = xAG0
A + xBG0

B + uxAxB + RT (xA ln xA + xb ln xB) (5)

where the G0
A and G0

B are the free energy of pure A and pure B and R is the ideal gas constant.

In this expression, we assume that the interaction energy between constituents A and B of
the mixing is proportional to the product of their concentrations (it is the term uxAxB).

This expression (5) can be derived from the following assumptions:

• The particles have the same number of nearest neighbors.

• The mixing is perfectly random.

• We have short range interactions between particles and we can take into account only the
nearest neighbors— this is the origin of the u factor.

The Rx log x terms in equation (5) collectively define the ideal mixing entropy, −∆Sid. mix and
contribute to the free energy via ∆G = ∆H − T∆S. The regular-solution enthalpy of mixing,
∆H can be identified directly.

A solution where the energy is given by the equation of G is called a regular solution. This
expression for G fully determines the phase transitions (with respect to composition changes) of
the regular-solution model. In particular, we can find the limit of meta-stability which is given
by the condition of

∂2G

∂xA
2

= 0 (6)

where xA + xB = 1
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Figure 0-1: A phase diagram with a spinodal miscibility gap. The spinodals are indicated by the
dashed lines and are the positions xA(T ) where ∂2G/∂x2

A = 0

This figure can be compared to the pair of diagrams for a single component system where
molar volume is the order parameter:
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Figure 0-2: Phase diagram for a single component system

Setting x = xA and xA + xB = 1, we have xB = 1− x. We can rewrite equation (5) as

G = xG0
A + (1− x)G0

B + ux(1− x) + RT [x ln x + (1− x) ln(1− x)] (7)

δ2G becomes −2ux(1− x) + RT = 0.
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This is the equation of a curve which gives the shape of the spinodal. There is a critical
point at coordinates x = 1/2 and Tc = u/2R. Above Tc, the constituents A and B form an
homogeneous solution over the entire composition range—below that temperature, there is a
range of composition where the system is composed of two phases that differ in the compositions
at the end of the tie-lines.

The critical point, which is the top of both the spinodal and the coexistence curve, is a point
of the second-order transition as defined by Ehrenfest.

The coexistence curve is calculated from the the condition that chemical potential of µA is the
same in each phase (that µα

B = µβ
B is satisfied when µα

A = µβ
A follows from the fact that there is

only one free composition variable—this gives rise to the famous common tangent construction.
In the case of a regular solution, we easily find that the equation of the curve of coexistence is
given by:

1− x

x
= exp(

(1− 2x)u

RT
) (8)

(Students should see if they can derive this expression)
This model describing the regular solution is very general.

In a general manner, we use the correspondence between the thermodynamic quantities and
the statistical physics. Thus, the internal energy which is the mean energy of the system can
be written as

U =

∑
i

Ei exp(−βEi)

Z
(9)

The above equation has a physical interpretation that illuminates the meaning of the partition
function Z and its relation to the average energy U . The terms inside the sum a factors, Ei,
of the energy of each state; and the number of states ∝ exp(−βi) that have that energy. (i.e.,
the average age of people in the room is the sum of factors: Agei and the number of people of
that age Ni divided by a normalization factor Ntotal). The partition function plays the role of
normalization.

We have a sum which runs over all the microscopic states of the system of energy Ei, where
Z being the partition function:

Z =
∑

i

exp(−βEi) (10)

where β = 1/(kBT ) is the inverse the Boltzmann temperature. So, we can have

G = − 1

β

∂(V ln Z)

∂V
,

U = −(
∂ ln Z

∂β
)V ,

F = −kBT ln Z,

P = −(
∂F

∂V
)T =

1

β
(
∂ ln Z

∂V
)T ,

Cv = (
∂U

∂T
)V = kBβ2(

∂2 ln Z

∂β2
)V

(11)
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The calculation of the thermodynamic quantities is then always a function of the partition
function Z. If the Z can be computed from a microscopic model of the system—then the macro-
scopic physics can be computed from the statistics of the microscopic physics. To model the
microscopic physics, one usually tries to find a model for a function of many variables that
describes the energy: e.g., the Hamiltonian H. The choice of H, depends on what kind of inter-
actions occur within the material that we are modeling: a liquid, a gas, an alloy, a ferromagnetic
material, . . . .

From previous lectures, we have a phenomenological representation of what is a phase tran-
sition. Nevertheless, certain questions remain unanswered. How to explain the occurence of
a singularity within the macroscopic quantity from a microscopic description? Which physical
mechanisms are hidden behind these transitions? How are ordered or not the microscopic enti-
ties at the critical point? What is the role of the fluctuation?

Ising Model

Consider a solid consisting of N identical atoms arranged in a regular lattice. Each atom has
a net electronic spin S and associated magnetic moment µ. (Here we model the spin of having
only two states, up and down, and neglect the vector nature of spin; “up” means aligned with
the applied magnetic field.) The magnetic moment of an atom is related to its spin by µ = gµ0S
where µ0 is the Bohr magneton and the g factor is of order of unity. In presence of an externally
applied magnetic field H0 along th z direction, the Hamiltonian H0 representing the interactions
of atoms with this field is

H0 = −gµ0

N∑
j=i

Sj ·H0 = −gµ0H0

N∑
j=1

Sij (12)

In addition, each atom interacts with neighboring atoms. To produce a ferromagnetic transition,
this interaction must be more than the magnetic dipole-dipole interaction due to the magnetic
field produced by one atom at the position of another one. Another much stronger interaction is
responsible for the interaction energy and this is known as “exchange” interaction. The exchange
interaction is a consequence of the Pauli exclusion principle: two electrons cannot occupy the
same state (spin and positions), electrons with parallel spins on neighboring atoms repel each
other. On the other hand, no such restriction applies if the electrons have anti-parallel spins.
That is, they are already in different states, and there is no exclusion-principle restriction and
their is no repelling force. Since different spatial separations of the electron give rise to different
electrostatic interactions between them. This qualitative discussion shows that the electrostatic
interaction between two neighboring atoms does also depend on the relative orientations of their
electrons’ spins. This is the origin of the exchange interactions, which for two atoms j and k, it
can be written as:

Hjk = −2JSjzSkz (13)

J is a parameter which describes the strength of the exchange interaction. If J > 0, the
interaction energy Hjk is lower when the spins are parallel than they are anti-parallel. The state
of lowest energy will then be one which leads to produce ferromagnetism.
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The Hamiltonian H′ representing the interaction energy between their atoms can then be
written as:

H′ =
1

2
(−2J

N∑
j=1

N∑
k=1

SjzSkz) (14)

J is the exchange constant for neighboring atoms and the index that refers to atoms in the
nearest neighbor shell surrounding the atom j. The factor 1/2 is introduced because the inter-
action between the same atoms is counted twice while summing up the energy.

The total Hamiltonian of the N atoms is then

H = H0 +H′ (15)

The goal is to calculate the thermodynamic function of this system, e.g., its mean magnetic
moment 〈M〉, as a function of the temperature T and the applied magnetic field H0. The pres-
ence of interaction is what makes this problem interesting. The problem is fairly straightforward
in one dimensions. It is quite complicated to do, but the problem has been solved exactly for a
two-dimensional array of spin for the special case H0 = 0. No one has solved the 3D problem.

We can however attack the problem by another way—by simulation. We can compute very
interesting properties for very complicated systems—barriers such as not having a solution in
3D need not stop progress.

Monte Carlo Method

The Monte Carlo Method has been introduced in 1953 at the beginning of the computer science.
It generates a large set of states i, j, k, · · · by stochastic (i.e., random with transition rules built-
in) process. As we will see, the probability to obtain one instance of a collection of states
depends on the temperature, and the characteristic energy differences from its prior state. From
this, statistical distributions of physical macroscopic properties can be derived. One goal of the
statistical physics is to calculate the mean value 〈X〉 of thermodynamic quantities characteristic
of the system (energy, pressure, magnetization, etc . . . ). 〈X〉 can be written in the space phase
as:

〈X〉 =

∑
i

Xi exp(−βHi)∑
i

exp(−βHi)
(16)

where H is the Hamiltonian of the system in the configuration i. For example, consider a
magnetic material represented by an Ising model (two values for the spins) comprising a lattice
with N states: its Hamiltonian can be calculated by brute force. We can perform by repeated
computation by generating random numbers and sum on 〈X〉 which run over 2N states. This
number of states, or configurations, is an increased function of, N , the number of atoms in the
lattice. For N = 3 × 3 × 3, we have 29 = 512 possible states and for N = 100, the number of
possible configurations is 2100 ≈ 1030. Numerical calculation of this mean value then becomes
impossible—however, we can compute the nature of convergence as the number of states sampled
increases.

Furthermore, we can improve our convergence if we take into account the fact that in statisti-
cal physics, we know that the system will spend the major part of its time in states for which we
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can associate thermodynamic quantities closed to those at equilibrium. We can imagine a strat-
egy of calculation limits the number of states that we take to realize the average-calculation.
This is accomplished with a famous algorithm, the Metropolis Algorithm, for the calculation
of Monte Carlo simulations. The principle of this calculation can be described with the Ising
model. If we take for example the spin model, the following steps will be:

1. We start from an initial state with N spins representing a certain state (i) (the state is
the set of all spins).

2. Perform one or more than one random exchange, ↑→↓, we will obtain a possible new state
called a trial state. Taking Ei and Ef , which are respectively the current and trial energy
of the system, we will have ∆E = Ei − Ef , which is the energy change associated to the
reversal of spin.

3. If ∆E < 0, we accept the trial state and continue; otherwise:

(Boltzmann) We calculate a Boltzmann factor, depending on the difference in energy
and the system temperature, T

w = exp(−∆E

kBT
) (17)

(Random) Chose a random number r for a uniform distribution, 0 < r < 1,

(Comparison) Compare r and w.

(Reject) If w < r, we reject the trial state and leave the system in its current configu-
ration and continue. (No change.)

(Accept) If w > r, we accept the trial state. (Incremental change).

In such an algorithm, the thermodynamic quantities associated with the progression of states
f is obtained. It has the property that at low temperatures, the system evolves towards the lower
energy configuration—-but it can become stuck if the “energy landscape” is too rough. At high
temperatures, the system samples many more configurations of higher energy—its entropy is
increased.

This method is a stochastic method; it generates states following a Markov chain (i.e., each
state depends only on its proceeding state and no other). Thus a Markov process is a random
chain of event which occurs randomly, the system maintains no long-term history, and most
importantly, doesn’t depend on the starting state.

The Monte Carlo method and the Metropolis Algorithm allows us to simulate behavior of
system using the Gibbs distribution function. The probability of transition from a state to
another one must satisfy the principle of microscopic reversibility, this is also known as the
condition of detailed balance.
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If P (i → f) is the probability of transition from a state to another one, wi, and wf , are the
probability to find the system in states (i) and (f), we should have:

wiP (i → f) = wfP (f → i) (18)

In other words, many states may exchange, but if the probability of transition is unaffected by
the local changes, then the system is in equilibrium.


