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Lecture 22: Differential Operators, Harmonic Oscillators

Reading:
Kreyszig Sections: 2.3, 2.4, 2.7, 2.8, 2.9

Differential Operators

The idea of a function as “something” that takes a value (real, complex, vector, etc.) as “input” and
returns “something else” as “output” should be very familiar and useful.

This idea can be generalized to operators that take a function as an argument and return another
function.

The derivative operator operates on a function and returns another function that describes how the
function changes:

D[f(x)] =
df

dx

D[D[f(x)]] = D2[f(x)] =
d2f

dx2

Dn[f(x)] =
dnf

dxn

D[αf(x)] =αD[f(x)]

D[f(x) + g(x)] =D[f(x)] +D[g(x)]

(22-1)

The last two equations above indicate that the “differential operator” is a linear operator.
The integration operator is the right-inverse of D

D[I[f(x)]] = D[

∫
f(x)dx] (22-2)

but is only the left-inverse up to an arbitrary constant.
Consider the differential operator that returns a constant multiplied by itself

Df(x) = λf(x) (22-3)

which is another way to write the the homogeneous linear first-order ODE and has the same form as
an eigenvalue equation. In fact, f(x) = exp(λx), can be considered an eigenfunction of Eq. 22-3.

For the homogeneous second-order equation,(
D2 + βD − γ

)
[f(x)] = 0 (22-4)

It was determined that there were two eigensolutions that can be used to span the entire solution space:

f(x) = C+e
λ+x + C−e

λ−x (22-5)

Operators can be used algebraically, consider the inhomogeneous second-order ODE(
aD2 + bD + c

)
[y(x)] = x3 (22-6)
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By treating the operator as an algebraic quantity, a solution can be found12

y(x) =

(
1

aD2 + bD + c

)
[x3]

=

(
1

c
− b

c2
D +

b2 − ac
c3

D2 − b(b2 − 2ac)

c3
D3 +O(D4)

)
x3

=
x3

c
− 3bx2

c2
+

6(b2 − ac)x
c3

− 6b(b2 − 2ac)

c4

(22-7)

which solves Eq. 22-6.
The Fourier transform is also a linear operator:

F [f(x)] =g(k) =
1√
2π

∫ ∞
−∞

f(x)eıkxdx

F−1[g(k)] =f(x) =
1√
2π

∫ ∞
−∞

g(k)e−ıkxdk

(22-8)

Combining operators is another useful way to solve differential equations. Consider the Fourier
transform, F , operating on the differential operator, D:

F [D[f ]] =
1√
2π

∫ ∞
−∞

df(x)

dx
eikxdx (22-9)

Integrating by parts,

=
1√
2π
f(x) |x=∞

x=−∞ −
ık√
2π

∫ ∞
−∞

f(x)eikxdx (22-10)

If the Fourier transform of f(x) exists, then typically13 limx→±∞ f(x) = 0. In this case,

F [D[f ]] = −ikF [f(x)] (22-11)

and by extrapolation:

F [D2[f ]] = −k2F [f(x)]

F [Dn[f ]] = (−1)nınknF [f(x)]
(22-12)

Operational Solutions to ODEs

Consider the heterogeneous second-order linear ODE which represent a forced, damped, harmonic
oscillator that will be discussed later in this lecture.

M
d2y(t)

dt2
+ V

dy(t)

dt
+Ksy(t) = cos(ωot) (22-13)

Apply a Fourier transform (mapping from the time (t) domain to a frequency (ω) domain) to both
sides of 22-13:

F [M
d2y(t)

dt2
+ V

dy(t)

dt
+Ksy(t)] = F [cos(ωot)]

−Mω2F [y]− ıωV F [y] +KsF [y] =

√
π

2
[δ(ω − ωo) + δ(ω + ωo)]

(22-14)

12This method can be justified by plugging back into the original equation and verifying that the result is a solution.
13 It is not necessary that limx→±∞ f(x) = 0 for the Fourier transform to exist but it is satisfied in most every case.

The condition that the Fourier transform exists is that
∫∞
−∞ |f(x)|dx exists and is bounded.
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because the Dirac Delta functions result from taking the Fourier transform of cos(ωot).
Equation 22-14 can be solved for the Fourier transform:

F [y] =

√
−π
2

[δ(ω − ωo) + δ(ω + ωo)]

Mω2 + ıωV −Ks
(22-15)

In other words, the particular solution Eq. 22-13 can be obtained by finding the function y(t) that
has a Fourier transform equal the the right-hand-side of Eq. 22-15–or, equivalently, operating with the
inverse Fourier transform on the right-hand-side of Eq. 22-15.

Mathematica R© does have built-in functions to take Fourier (and other kinds of) integral trans-
forms. However, using operational calculus to solve ODEs is a bit clumsy in Mathematica R© .
Nevertheless, it may be instructive to force it—if only as an an example of using a good tool for the
wrong purpose.

Lecture 22 Mathematica R© Example 1
Linear Operators and Derivatives

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2012.

A check is made to see if FourierTransform obeys the rules of a linear operator (Eq. 22-1) and define rule-

patterns for those cases where it doesn’t.

Does  Mathematica   apply  the  Fourier
Transform/Derivative  Rule
Automagically?

1FourierTransform@
D@f@xD, 8x, 1<D, x, kD
Does   Mathematica  apply  the  rules
according  to  the  Fourier  Transform
being a linear operator?

2FourierTransform@
a f@xD + b g@xD, x, kD
Apparently not--so we make some rules
that  can  be  applied.  It  may  be
instructive to see how to do this.

ATwo rules are defined for 
Linear Operators

4
FourierTransform@
a g@xD f@xD , x,
kD êê. ConstantRule

5

FourierTransform@
a x f@xD +
b v@xD g@xD +
d p@xD, x, kD êê.

DistributeRule êê.
ConstantRule

1: As of Mathematica R© 5.0, FourierTransform automatically
implements Eqs. 22-12.

2: However, this will demonstrate that the “distribution-rule” isn’t
implemented automatically (n.b., although Distribute would im-
plement this rule).

A: Define rules so that the FourierTransform acts as a linear functional
operator (definitions suppressed in class-notes). ConstantRule is
an example of a RuleDelayed ( :>) that will allow replacement
with patterns that will be evaluated when the rule is applied with
ReplaceAll ( /.); in this case, a Condition ( /;) is appended to
the rule so that those cofactors which don’t depend on the trans-
formation variable, x, can be identified with FreeQ and those that
depend on x can be identified with MemberQ. DistributeRule uses
Distribute to replace the Fourier transform of a sum with a sum

of Fourier transforms.

4–5: The linear rules are dispatched by a ReplaceRepeated ( //.) that
will continue to use the replacement until the result stops changing.
These are examples of F [ag(x)] = aF [g(x)] and F [ag(x)+ bh(x)] =
aF [g(x)] + bF [h(x)].

http://pruffle.mit.edu/3.016-2012/Notebooks/L22/Lecture-22.nb
http://pruffle.mit.edu/3.016-2012/pdf/L22/Lecture-22-1-COL.pdf
http://pruffle.mit.edu/3.016-2012/pdf/L22/Lecture-22-1-BW.pdf
http://pruffle.mit.edu/3.016-2012/html/Lecture-22/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2012
http://pruffle.mit.edu/3.016-2012/html/Lecture-22/HTMLLinks/index_1.html
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Lecture 22 Mathematica R© Example 2
Fourier Transforming the Linear-Damped-Forced Harmonic Oscillator Equation into the Frequency
Domain

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2012.

The left- and right-hand sides of the damped harmonic oscillator ODE are Fourier transformed, producing an

algebraic equation between the the solution in Fourier-space and the Fourier k-parameter.

Here  is  the  second-order  ODE  for  a
damped harmonic oscillator

1

ODE2nd =
Mass D@y@tD, 8t, 2<D +
Viscosity
D@y@tD, tD +
SpringK y @tD

SpringK y@tD +
Viscosity y£@tD +
Mass y££@tD

Let's   Fourier  Transform  the  left-hand
side of a second-order ODE:

2

FrrODE2nd = Factor@
FourierTransform@

ODE2nd, t, wD êê.
DistributeRule êê.
ConstantRule

D
And  now  Fourier  Transform  the  right-
hand  side  for  a  prototype  "forced"
oscillator with an arbitary frequency w0.
(i.e., K y''  + h y' + m y = cos(w0 t)

3
rhs =
FourierTransform@
Cos@ w0 tD , t, wD

1: This is the linear second-order for the “internal forc-
ing” term of the harmonic oscillator. One could read
this equation as Inertial Force + Frictional Force +
Force to Restore to Minimal Potential Energy or ma + ηv + kx =
mẍ+ ηẋ+ kx

2: Fourier transforming (with FourierTransform) into the time do-
main converts the differential equation in the space domain into an
algebraic equation in the time-domain.

3: If there is no “external force” on the harmonic oscillator, then
the sum of the internal forces is zero. For the periodically-forced
harmonic-oscillator, the right-hand-side of the equation can be ex-
panded in a Fourier series. Here is a prototype of a right-hand-side,
cos(ωot), where ωo is the forcing frequency. The forced-damped
linear equation in the time-domain is obtained by transforming the
external forces, or right-hand-side, of the harmonic oscillator.

http://pruffle.mit.edu/3.016-2012/Notebooks/L22/Lecture-22.nb
http://pruffle.mit.edu/3.016-2012/pdf/L22/Lecture-22-2-COL.pdf
http://pruffle.mit.edu/3.016-2012/pdf/L22/Lecture-22-2-BW.pdf
http://pruffle.mit.edu/3.016-2012/html/Lecture-22/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2012
http://pruffle.mit.edu/3.016-2012/html/Lecture-22/HTMLLinks/index_2.html
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Lecture 22 Mathematica R© Example 3
Fourier Transform Solution to the Damped-Forced Linear Harmonic Oscillator

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2012.

The harmonic oscillator is algebraically solved in the time-domain, and then the solution is back-transformed

into the real-space domain.

1
ftsol =
Solve@FrrODE2nd ã rhs,
FourierTransform@
y@tD, t, wDD

2

DampedHOAssumptions=
w0 > 0 &&
Mass > 0 &&
Viscosity > 0 &&
SpringK > 0;

3

FullSimplify@
InverseFourierTransfÖ
orm@
FourierTransform@
y@tD, t, wD ê.
Flatten@ftsolD, w,
tD, Assumptions Ø
DampedHOAssumptionsD

4

GenSol = DSolve@
Mass D@y@tD, 8t,

2<D + Viscosity
D@y@tD, tD +
SpringK y@tD ã
Cos@wo tD, y@tD, tD

5
FullSimplify@y@tD ê.
Flatten@GenSolD,
Assumptions Ø
DampedHOAssumptionsD

1: Solve is used to find the algebraic solution to the Fourier-
transformed solution to the harmonic oscillator.

2: DampedHOAssumptions is a collection of physical solution that
will be passed to FullSimplify.

3: The real-space solution is obtained with
InverseFourierTransform operating on the general form
FourierTransform[y[t], t, ω] as a pattern-replacement for the rule
obtained by Solve. This produces only the particular solution
(i.e., the homogeneous solutions that depend on undetermined
constants is not part of the particular solution.)

4–5: Here, DSolve is used to produced the full solution for comparison to
the Fourier technique. It is the solution to the homogeneous equa-
tion plus the particular solution that was obtained by the Fourier
transform method. The solution is extracted from the solution-rule
and simplified with the DampedHOAssumptions .

Functionals and the Functions that Minimize Them:Breaking the Cycle of Derivative and
Function Minimization

Equally powerful is the concept of a functional which takes a function as an argument and returns
a value. For example S[y(x)], defined below, operates on a function y(x) and returns its surface of
revolution’s area for 0 < x < L:

S[y(x)] = 2π

∫ L

0
y

√
1 +

(
dy

dx

)2

dx (22-16)

This is the functional to be minimized for the question, “Of all surfaces of revolution that span from
y(x = 0) to y(x = L), which is the y(x) that has the smallest surface area?”

http://pruffle.mit.edu/3.016-2012/Notebooks/L22/Lecture-22.nb
http://pruffle.mit.edu/3.016-2012/pdf/L22/Lecture-22-3-COL.pdf
http://pruffle.mit.edu/3.016-2012/pdf/L22/Lecture-22-3-BW.pdf
http://pruffle.mit.edu/3.016-2012/html/Lecture-22/HTMLLinks/index_3.html
http://pruffle.mit.edu/3.016-2012
http://pruffle.mit.edu/3.016-2012/html/Lecture-22/HTMLLinks/index_3.html
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This idea of finding “which function maximizes or minimizes something” can be very powerful and
practical.

Suppose you are asked to run an “up-hill” race from some starting point (x = 0, y = 0) to some
ending point (x = 1, y = 1) and there is a ridge h(x, y) = x2. Of all the possible routes, which is the
shortest route y(x)? The solution y(x) is called the geodesic.

As an introductory example, we write a functional that returns a scalar length associated with a
curve y(x) that starts at xb and terminates at xb.

F [y(x)] =

∫ (xe,y(xe))

(xb,y(xb))
ds =

∫ (xe,y(xe))

(xb,y(xb))

√
dx2 + dy2 =

∫ xe

xb

√
1 +

(
dy

dx

)
dx (22-17)

In Equation 22-17, F takes any y(x) (with some technical restrictions, such as integrability) and
returns the arc-length associated with that y(x) between two fixed points. The geodesic is defined by
the function that minimizes Equation 22-17

0
0.2

0.4
0.6

0.8
1 0

0.2

0.4
0.6

0.8
1

0
0.25
0.5

0.75
1

0
0.2

0.4
0.6

0.8

h(x)

y1(x)

y2(x)

y

x

Figure 22-27: The terrain separating the starting point (x = 0, y = 0) and ending point
(x = 1, y = 1). What is the shortest path between the starting and ending points? If the
rate of climbing (or descending) is a known function of the slope, what is the quickest path?
Assuming a model for how much running speed slows with the steepness of the path—which
route would be quicker, one (y1(x)) that starts going up-hill at first or another (y2(x)) that
initially traverses a lot of ground quickly?

These problems have some similarity to extrema in basic calculus—what is the parameter, variable,
or point at which a given function is a maximum or a minimum. However, there is an important
difference in the nature of the question that is being asked—what is the function that minimizes or
maximizes a given functional. For basic calculus, the solution, or solutions, come from domain of
possible solutions is the domain x over which the function f(x) is defined (a line). In multivariable
calculus, the solution(s) typically come from areas, volumes, and higher-dimensional spaces. For func-
tionals, the solutions come from a “much larger” space. There is no obvious way to enumerate the set
of trajectories that begin and end at a given point; such functions are uncountable.

The methods for finding such extremal functions derive from variational calculus, and the extension
of basic calculus’ derivative to functionals is called the variational derivative.

Introduction to Variational Calculus: Variation of Parameters

To introduce the idea of variational calculus, we will minimize the functional Equation 22-17, but only
for an enumerable set of functions.
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Suppose the starting point is xb, y(xb)) = (0, 0) and the ending point is (1, 1). Instead of choosing
from all functions that connect the two points, we consider a smaller set of quadratic polynomials:

y(x) = a+ bx+ cx2 (22-18)

The two boundary conditions xb and xe constrain two of the three parameters (a, b, c). Inserting
Equation 22-18 into Equation 22-17, the problem is reduced to a basic calculus problem of minimizing
over a single variable (e.g., b if the boundary conditions are used to solve for a and c). This method is
demonstrated in the following examples.

Lecture 22 Mathematica R© Example 4
Approximating the Geodesic

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2012.

The quadratic polynomials (three parameters a, b, and c) is used to match boundary conditions, leaving a single

parameter b. The constrained polynomial is used in the integral for total length, Equation 22-17.

1
h = x^2;
$Assumptions =
b œ Reals;

YGen = a + b x + c x2;

AIllustrate this surface/end 
points

3

YBCs = YGen ê.
HSolve@8HYGen ê.

x Ø 0L ã 0,
HYGen ê. x Ø 1L ã
1<, 8a, c<D êê

FlattenL

4

TotalDistanceQuad =
FullSimplify@
Integrate@Sqrt@1 +

HD@YBCs, xDL^2 +
HD@h, xDL^2D,

8x, 0, 1<DD

BInteractive Path/Length 

B

Distance!2.27822

0.0

0.5

1.0

0.00.51.0 0.0

0.5

1.0

1: The shape of the surface over which the trajectories is defined as
a function of x, as is the general quadratic that will be used as
the function for variation of parameters. Here, we use a kernel
default-assumption, $Assumptions, that will be automatically for
functions such as Integrate and Simplify.

A: A graphic, TheSurface , is constructed with indicated initial- and
end-points.

3: Here, the quadratic approximation is constrained to its initial- and
end-points with replacement and the rule produced by Solve.

4: The will produce a closed form for the total distance as a function
of a single parameter, b

B: Manipulate is used to produce an interactive graphic that illus-
trates the quadratic approximation as a function of b and the com-
puted length.

http://pruffle.mit.edu/3.016-2012/Notebooks/L22/Lecture-22.nb
http://pruffle.mit.edu/3.016-2012/pdf/L22/Lecture-22-4-COL.pdf
http://pruffle.mit.edu/3.016-2012/pdf/L22/Lecture-22-4-BW.pdf
http://pruffle.mit.edu/3.016-2012/html/Lecture-22/HTMLLinks/index_4.html
http://pruffle.mit.edu/3.016-2012
http://pruffle.mit.edu/3.016-2012/html/Lecture-22/HTMLLinks/index_4.html


MIT 3.016 Fall 2012 Lecture 22 c© W.C Carter 289

Lecture 22 Mathematica R© Example 5
Variation of Parameters for the Geodesic Approximation

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2012.

This example shows that the quadratic approximation obtained by variation of parameters is close to the exact

geodesic that is calculated by the calculus of variations. The method to find the exact geodesic is described

below.

1
Plot@
TotalDistanceQuad,
8b, -2, 6<D

2
BminsolGeodesicQuad=
FindMinimum@
TotalDistanceQuad,
8b, 0, 1<D

Use  the  minimizing  b  to  find  the
approximation.

3
GeodesicQuadSolution =
YBCs ê.
BminsolGeodesicQuad@
@2DD

4

GeodesicQuadPlot =
Plot@
GeodesicQuadSolution
, 8x, 0, 1<,
PlotStyle Ø ThickD

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1.0

1: Plotting the remaining parameter shows that a minimum exists.

2: FindMinimum returns a list with the minimal value and a rule for
the minimizing b.

3–4: Using the minimizing rule for b, we can replace b in the constrained
quadratic approximation and plot it. This is the quadratic ap-
proximation to the geodesic for the given surface and boundary
conditions.

http://pruffle.mit.edu/3.016-2012/Notebooks/L22/Lecture-22.nb
http://pruffle.mit.edu/3.016-2012/pdf/L22/Lecture-22-5-COL.pdf
http://pruffle.mit.edu/3.016-2012/pdf/L22/Lecture-22-5-BW.pdf
http://pruffle.mit.edu/3.016-2012/html/Lecture-22/HTMLLinks/index_5.html
http://pruffle.mit.edu/3.016-2012
http://pruffle.mit.edu/3.016-2012/html/Lecture-22/HTMLLinks/index_5.html
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Lecture 22 Mathematica R© Example 6
Comparison of the Approximation to the Exact Geodisic

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2012.

The quadratic polynomial is shown to have a minimum length with respect to a single unconstrained parameter.

The minimizing approximation is computed and visualized.

The exact minimizing path can be found
by  using  Calculus  of  Variations
(demonstrated  below).  The  solution  is
obtained  from  a  boundary-value
problem which we do not take up at this
point,  but  it  is  interesting  to  see  the
exact  solution and compare it  with the
approximate  one  we  obtained  above.
The  closed-form  expression  for  the
function  that  minimizes  the  climbing
time is:

1

GeodesicExact =

2 x 1 + 4 x2 +

ArcSinh@2 xD ì

J2 5 + ArcSinh@2DN

AGraphical Comparisons

4

Distance@f_D :=
Integrate@Sqrt@
1 + HD@f, xDL^2 +
HD@h, xDL^2D,

8x, 0, 1<D

5Distance@
GeodesicExactD

6

Distance@
GeodesicExactD <
Distance@
GeodesicQuadSolution
D < Distance@xD

1: GeodesicExact is the exact geodesic for the specified surface (h =
x2) and boundary conditions. (This calculation is provided in a
subsequent example).

A: Visual comparisons between the approximation and the exact so-
lution show that the approximation is quite good. This is not a
general rule, and we cannot know in advance if an approximation
by variation of parameters will be good or not.

4–5: The functional is encoded in this Distance function, which takes a
function of x as an argument and integrates over 0 < x < 1.

6: This shows that the geodesic is shorter than the approximation,
and the approximation is shorter than a straight line (y(x) = x)
projected onto the x–y plane.

Shortest Time Paths: The Brachiostone

The geodesic gave the shortest-distance path between two points—a related question is, “Given a
velocity, what is the quickest (shortest time) path between two points?” The answer is related the
brachistochrone which is the path of most rapid descent with constant acceleration. I don’t know what
to call the shortest-time path, so I am making up a name “ brachiostone”. Perhaps a better name would
be the Fermatic, becase the curve is related to a generalized Fermat’s theorem. However, this could
be confused with fermata which is a pause of unspecified length; so I suppose that MiniFermatizoid
might be the best choice of all. However, in future editions to these notes, I am going to change the
name to Brakkes’ Chrone, in honor of one of my heros, Ken Brakke http://www.susqu.edu/brakke/.
Neologisms are so entertaining—and a delightful waste of time.

http://pruffle.mit.edu/3.016-2012/Notebooks/L22/Lecture-22.nb
http://pruffle.mit.edu/3.016-2012/pdf/L22/Lecture-22-6-COL.pdf
http://pruffle.mit.edu/3.016-2012/pdf/L22/Lecture-22-6-BW.pdf
http://pruffle.mit.edu/3.016-2012/html/Lecture-22/HTMLLinks/index_6.html
http://pruffle.mit.edu/3.016-2012
http://pruffle.mit.edu/3.016-2012/html/Lecture-22/HTMLLinks/index_6.html
http://www.susqu.edu/brakke/
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For traversing a hill, it is a reasonable model for running speed to be a decreasing function of
climbing-angle α, and to have the speed fall to zero when the trajectory is “straight-up.” Thus, we
select a model such as

v(s) = cos(α(s)) (22-19)

where s is the arclength along the path. The maximum speed occurs on flat ground α = 0 and running
speed monotonically falls to zero as α→ π/2. To calculate the time required to traverse any path y(x)
with endpoints y(0) = 0 and y(1) = 1,

ds

dt
= v(s) = cos(α(s)) =

local horizontal

local arclength
=

√
dx2 + dy2√

dx2 + dy2 + dh2

therefore dt =
ds

v(s)
=
dx2 + dy2 + dz2√

dy2 + dx2
=

1 + dy
dx

2
+ dh

dx

2√
1 + dy

dx

2
dx

therefore time[y(x)] =

∫ xe

xb

1 + dy
dx

2
+ dh

dx

2√
1 + dy

dx

2
dx

(22-20)

The hill h(x) = x2 can be inserted into Equation 22-20 for the time as a functional of the path between
fixed points (0, 0, 0) and (1, 1, 1).
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Lecture 22 Mathematica R© Example 7
Approximating the Brachiostone by Variation of Parameters

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2012.

The same method for finding an approximation to the geodesic is applied to the minimum-time functional in

Equation 22-20. (See preceding text on definition of brachiostone.)

1

TotalTimeQuad =
FullSimplify@
Integrate@
H1 + D@YBCs, xD^2 +

D@h, xD^2LêSqrt@
1 + D@YBCs, xD^2D,

8x, 0, 1<D,
Assumptions Ø b ≠ 1D

A
Visualizing the 
Approximation to the 
Brachiostone

4Plot@TotalTimeQuad,
8b, -2, 2<D

5
BminsolBrachioQuad =
FindMinimum@
TotalTimeQuad,
8b, 0, 1<D

6
BrachioQuadSolution =
YBCs ê.
BminsolBrachioQuad@@
2DD

7

BrachioQuadPlot =
Plot@
BrachioQuadSolution,
8x, 0, 1<,
PlotStyle Ø ThickD

1: The same quadratic (constrained to the boundary conditions) as
was used for the geodesic is utilized for the brachiostone (Equa-
tion 22-20). In this case, there is a closed-form solution for the
undetermined parameter, but this not typical for other functionals.

A: The brachiostone approximation is visualized by superposing onto
the “hill” with the exact geodesic.

4: Plotting the time as a function of b indicates that there is a mini-
mizing b.

5–7: The minimizing b is inserted back into the quadratic approximation

Introduction to Calculus of Variations

Suppose the functional depends on one function of single variable, y(x), and its derivative, y′(x).
Furthermore, consider the fixed end-point problem (i.e., y(xb) = yb and y(xe) = ye are specified.

The general form of the functional is:

F [y(x)] =

∫ xe

xb

f [x, y(x), y′(x)] dx (22-21)

We want to introduce a notation for functions that are “nearby” to a function y(x)14 To do this,
let a function near to y(x) be described as y(x) + v(x)∆t. (It may be useful to think of t as a time-

14A precise definition of “closeness” of functions is somewhat arbitrary and depends on the ‘norm’ defined for functions

http://pruffle.mit.edu/3.016-2012/Notebooks/L22/Lecture-22.nb
http://pruffle.mit.edu/3.016-2012/pdf/L22/Lecture-22-7-COL.pdf
http://pruffle.mit.edu/3.016-2012/pdf/L22/Lecture-22-7-BW.pdf
http://pruffle.mit.edu/3.016-2012/html/Lecture-22/HTMLLinks/index_7.html
http://pruffle.mit.edu/3.016-2012
http://pruffle.mit.edu/3.016-2012/html/Lecture-22/HTMLLinks/index_7.html
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like variable and v(x) is the instantaneous local velocity away from y(x); but, generally, t, could be
any scalar parameter.) Because y(x) is assumed to match the boundary conditions, any admissible
variation y + v∆t must also match the boundary conditions, so the ‘velocity’ v(x) at the boundaries
must vanish. Therefore, for functions near to y(x),

F [y + v∆t] =

∫ xe

xb

f [x, y(x) + v(x)∆t, y′(x) + v′(x)∆t] dx (22-22)

Both sides depend on the scalar quantity ∆t, and so we will expand about ∆t = 0. We treat the
integrand f(x, y, y′) as a function of three variables (it is after all, because f is being evaluated point-
wise in the integral). Therefore, partial derivative must appear in the expansion:

F [y] +
δF

δy

∣∣∣∣
∆t=0

v∆t =

∫ xe

xb

f [x, y(x), y′(x)] dx+

∫ xe

xb

[
∂f

∂y
v(x) +

∂f

∂y′
v′(x)

] ∣∣∣∣
∆t=0

∆t dx (22-23)

where we use a “δ” to indicate the variational derivative of a functional. Canceling common terms and
integrating by parts,

δF

δy

∣∣∣∣
∆t=0

v∆t = ∆t

{
y(x)v(x)

∣∣∣∣xe
xb

+

∫ xe

xb

[(
∂f

∂y
− d

dx

∂f

∂y′

) ∣∣∣∣
∆t=0

v(x)

]
dx

}
(22-24)

Because v(x) must vanish at the end-points, and because the terms that are being evaluated at t = 0
do not depend on t, then

δF

δy
· v =

∫ xe

xb

[
∂f

∂y
− d

dx

∂f

∂y′

]
v(x) dx (22-25)

Because v(x) is arbitrary (except for satisfying the boundary conditions), the only way that the func-
tional derivative can vanish is for

∂f

∂y
− d

dx

∂f

∂y′
= 0 (22-26)

which is called the Euler equation and is the condition for a functional to be extremal with respect to
a variation of its function-argument, y(x).

We could also think of Equation 22-25 as representing the integral-sum of the instantaneous changes
in the scalar value of the functional as its function y(x) changes. The functional is stationary (i.e., a
necessary condition for an extremum) if the variational derivative vanishes everywhere on xb < x <
xe. Because we have a condition as a function of a single variable, the form of Euler’s equation in
Equation 22-26 is an ordinary differential equation of derivatives of y(x) in x.

For example, consider the geodesic problem from the above example on the surface h(x) = x2, with
fixed end-points y(x = 0) = 0 and y(x = 1) = 1. The functional is

F [y(x)] =

∫ 1

0

√
1 +

dy

dx

2

+
dh

dx

2

dx =

∫ 1

0

√
1 +

dy

dx

2

+ 4x2 dx (22-27)

(and because gradients have a length and a direction, variational gradients also depend on the norm). Typically, variational
calculus is introduced with the l2-norm, f(x) · g(x) ≡

∫
f(x)g(x)dx, and the resulting variation becomes δF · v∆t =∫

[∂F/∂y− (d/dx)∂F/∂y′]v∆t which, for any h that satisfies the boundary conditions, can equal zero only if the integrand
of the variation vanishes (i.e, if the variation is ‘orthogonal’ to an arbitrary h. For several applications of other norms to
materials science, see ”Variational methods for microstructural-evolution theories”, Carter W.C., Taylor J.E, Cahn J.W.,
JOM (Journal of the Materials Soc.), 49(12) 30–36, 1997
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therefore,

∂f

∂y
=0 and

∂f

∂y′
=

dy
dx√

1 + 4x2 + dy
dx

2

d

dx

∂f

∂y′
=

d2y
dx2√

1 + 4x2 + dy
dx

2
−

dy
dx

(
8x+ 2 dydx

d2y
dx2

)
(

1 + 4x2 + dy
dx

2
)3/2

=

(
1 + 4x2

) d2y
dx2
− 4x dydx(

1 + 4x2 + dy
dx

2
)3/2

(22-28)

The Euler equation becomes

4x dydx − (1 + 4x2) d
2y
dx2

(1 + 4x2 + dy
dx

2
)3/2

= 0 (22-29)

The numerator can be set equal to zero, and the result is an integrable second-order linear ODE.
This and the example for the brachiostone is demonstrated in the following examples.
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Lecture 22 Mathematica R© Example 8
Euler’s equation and Exact Solution to Geodesic

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2012.

The variational derivative from the package VariationalMethods is used with DSolve to calculate the exact

geodesic for which an approximate solution was found above.

1
Needs@
"VariationalMethods "̀
D

2
DistanceIntegrand =
Sqrt@
H1 + HD@y@xD, xDL^

2 + HD@h, xDL^2LD

3
VariationalD@
DistanceIntegrand,
y@xD, xD

4
DistanceExtremalCondiÖ
tion = EulerEquations@
DistanceIntegrand,
y@xD, xD

5

DistanceMinimizingFunÖ
ction = DSolve@
8DistanceExtremalCoÖ
ndition,
y@0D ã 0, y@1D ã 1<,
y@xD, xD

6
DistanceYExactSolution
= y@xD ê.
DistanceMinimizingFÖ
unction@@1DD

1: The VariationalMethods package has functions for many methods
in the calculus of variations. We will use only a few of the simpler
methods in this and the following example.

2: DistanceIntegrand is the integrand for total length; it will play the
role of f [x, y, y′] in Equation 22-26

3: VariationalD computes the right-hand-side of the expression in
Equation 22-25.

4: EulerEquations gives the equations, for a given integrand, for the
extremal solution. DistanceExtremalCondition will be the ordinary
differential equation, Equation 22-28.

4–5: Using DSolve to solve Euler’s equation with the boundary condi-
tions produces the exact solution.

http://pruffle.mit.edu/3.016-2012/Notebooks/L22/Lecture-22.nb
http://pruffle.mit.edu/3.016-2012/pdf/L22/Lecture-22-8-COL.pdf
http://pruffle.mit.edu/3.016-2012/pdf/L22/Lecture-22-8-BW.pdf
http://pruffle.mit.edu/3.016-2012/html/Lecture-22/HTMLLinks/index_8.html
http://pruffle.mit.edu/3.016-2012
http://pruffle.mit.edu/3.016-2012/html/Lecture-22/HTMLLinks/index_8.html
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Lecture 22 Mathematica R© Example 9
Euler’s equation and Numerical Solution to Brachiostone

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2012.

The Euler’s equation for the total-time function defined in Equation 22-20 is solved by numerical methods.

We wish to simulate the deflection of a
diving  board  as  a  diver  walks  toward
the  end.   A  diving  board  may  be
modeled as beam with constant cross-
section.  The  boundary  conditions  are
that  the  board  is  clamped  at  the
beginning;  has  a  pivot  located
somewhere  near  the  center;  and  the
"diving"  end  .  For  "competitive"  diving
boards,  the  pivot  point  is  adjustable.
Here we fix the pivot at x=1/2.
This next function is a silly little graphic
for the walking diver.

A
Graphics Functions for 
Animating Board and Diver

: >

1: TimeIntegrand is the term that was derived in Equation 22-20 and
used in the approximate method for the brachiostone calculation.

2: The Euler equations for this integrand produces a non-linear
second-order ODE that doesn’t have a closed form solution.

3–4: However, a numerical solver NDSolve can be employed. In this case
NDSolve runs into a few numerical difficulties around x = 0.5, but it
produces a very reasonable solution that ‘beats’ the approximation
given above.

http://pruffle.mit.edu/3.016-2012/Notebooks/L22/Lecture-22.nb
http://pruffle.mit.edu/3.016-2012/pdf/L22/Lecture-22-9-COL.pdf
http://pruffle.mit.edu/3.016-2012/pdf/L22/Lecture-22-9-BW.pdf
http://pruffle.mit.edu/3.016-2012/html/Lecture-22/HTMLLinks/index_9.html
http://pruffle.mit.edu/3.016-2012
http://pruffle.mit.edu/3.016-2012/html/Lecture-22/HTMLLinks/index_9.html
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Lecture 22 Mathematica R© Example 10
Visualizing the Brachiostone and Comparison to the Approximation Obtained by Variation of Param-
eters

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2012.

The numerical solution obtained above is plotted and compared to the approximate solution.

1

BrachioExactPlot =
Plot@
BrachioNumerical,
8x, 0, 1<,
PlotStyle Ø 8Thick,
Darker@GreenD<D

2

GraphicsRow@8Show@
BrachioQuadPlot,
BrachioExactPlotD ,
Show@ Plot@
BrachioNumerical-
BrachioQuadSolutÖ
ion, 8x, 0,
1<, PlotStyle Ø
8Thickness@
0.005D,
Hue@1D<DD<D

3
Time@f_D := Integrate@
TimeIntegrand ê.
y'@xD Ø D@f, xD,

8x, 0, 1.0<D

4

N@Time@
BrachioNumericalDD <

Chop@Time@
BrachioQuadSolution
DD < Time@xD

True

1–2: This visualized the computed brachiostone. It indicates that a bet-
ter (and reasonable) strategy that it is advantageous to run up-hill
when the slope is small, and then traverse over a longer distance
with reduced slope (as in a “switch-back” in a hiking trail). In this
case, the quadratic approximation is still quite good, but not as
good as in the geodesic.

3: This function takes a function of x for an argument and returns the
total time assuming the v(s) = cosα(s) model on a hill given by
h = x2.

4: This demonstrate that the numerical solution to the Euler equation
has a shorter time than the quadratic approximation which, in turn,
is shorter than the ”projected-straight-line.” In this inequality, we
use N with Integrate which is equivalent to using NIntegrate.
The quadratic solution has a small imaginary part that arises from
numerical imprecision—this is removed with Chop.

Harmonic Oscillators

There is a set of three well-worked examples, worked out in increasing levels of sophistication located at
http://pruffle.mit.edu/3.016/mathematica-paradigms.html. These could be useful as a future
resource.

Methods for finding general solution to the linear inhomogeneous second-order ODE

a
d2y(t)

dt2
+ b

dy(t)

dt
+ cy(t) = F (t) (22-30)

have been developed and worked out in Mathematica R© examples.

http://pruffle.mit.edu/3.016-2012/Notebooks/L22/Lecture-22.nb
http://pruffle.mit.edu/3.016-2012/pdf/L22/Lecture-22-10-COL.pdf
http://pruffle.mit.edu/3.016-2012/pdf/L22/Lecture-22-10-BW.pdf
http://pruffle.mit.edu/3.016-2012/html/Lecture-22/HTMLLinks/index_10.html
http://pruffle.mit.edu/3.016-2012
http://pruffle.mit.edu/3.016-2012/html/Lecture-22/HTMLLinks/index_10.html
http://pruffle.mit.edu/3.016/mathematica-paradigms.html


MIT 3.016 Fall 2012 Lecture 22 c© W.C Carter 298

Eq. 22-30 arises frequently in physical models, among the most common are:

Electrical circuits: L
d2I(t)

dt2
+ ρlo

dI(t)

dt
+

1

C
I(t) = V (t)

Mechanical oscillators: M
d2y(t)

dt2
+ ηlo

dy(t)

dt
+Ksy(t) = Fapp(t)

(22-31)

where:
Mechanical Electrical

Second
Order

Mass M : Physical measure of the ratio
of momentum field to velocity

Inductance L: Physical measure of the
ratio of stored magnetic field to current

First
Order

Drag Coefficient c = ηlo
(η is viscosity lo is a unit displacement):
Physical measure of the ratio environ-
mental resisting forces to velocity—or
proportionality constant for energy
dissipation with square of velocity

Resistance R = ρlo
(ρ is resistance per unit material length
lo is a unit length): Physical measure of
the ratio of voltage drop to current—or
proportionality constant for power dissi-
pated with square of the current.

Zeroth
Order

Spring Constant Ks: Physical measure
of the ratio environmental force developed
to displacement—or proportionality con-
stant for energy stored with square of dis-
placement

Inverse Capacitance 1/C: Physical
measure of the ratio of voltage storage
rate to current—or proportionality con-
stant for energy storage rate dissipated
with square of the current.

Forcing
Term

Applied Voltage V (t): Voltage applied
to circuit as a function of time.

Applied Force F (t): Force applied to
oscillator as a function of time.

For the homogeneous equations (i.e. no applied forces or voltages) the solutions for physically
allowable values of the coefficients can either be oscillatory, oscillatory with damped amplitudes, or,
completely damped with no oscillations. (See Figure 21-25). The homogeneous equations are sometimes
called autonomous equations—or autonomous systems.

Simple Undamped Harmonic Oscillator

The simplest version of a homogeneous Eq. 22-30 with no damping coefficient (b = 0, R = 0, or η = 0)
appears in a remarkably wide variety of physical models. This simplest physical model is a simple
harmonic oscillator—composed of a mass accelerating with a linear spring restoring force:

Inertial Force = Restoring Force

MAcceleration = Spring Force

M
d2y(t)

dt2
= −Ksy(t)

M
d2y(t)

dt2
+Ksy(t) = 0

(22-32)

Here y is the displacement from the equilibrium position–i.e., the position where the force, F =
−dU/dx = 0. Eq. 22-32 has solutions that oscillate in time with frequency ω:

y(t) = A cosωt+B sinωt

y(t) = C sin(ωt+ φ)
(22-33)

where ω =
√
Ks/M is the natural frequency of oscillation, A and B are integration constants written

as amplitudes; or, C and φ are integration constants written as an amplitude and a phase shift.
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The simple harmonic oscillator has an invariant, for the case of mass-spring system the invariant
is the total energy:

Kinetic Energy + Potential Energy =

M

2
v2 +

Ks

2
y2 =

M

2

dy

dt

2

+
Ks

2
y2 =

A2ω2M

2
cos2(ωt+ φ) +A2Ks

2
sin2(ωt+ φ) =

A2(ω2M

2
cos2(ωt+ φ) +

Mω2

2
sin2(ωt+ φ) =

A2Mω2 = constant

(22-34)

There are a remarkable number of physical systems that can be reduced to a simple harmonic oscillator
(i.e., the model can be reduced to Eq. 22-32). Each such system has an analog to a mass, to a spring
constant, and thus to a natural frequency. Furthermore, every such system will have an invariant that
is an analog to the total energy—an in many cases the invariant will, in fact, be the total energy.

The advantage of reducing a physical model to a harmonic oscillator is that all of the physics follows
from the simple harmonic oscillator.

Here are a few examples of systems that can be reduced to simple harmonic oscillators:

Pendulum By equating the rate of change of angular momentum equal to the torque, the equation
for pendulum motion can be derived:

MR2d
2θ

dt2
+MgR sin θ = 0 (22-35)

for small-amplitude pendulum oscillations, sin(θ) ≈ θ, the equation is the same as a simple
harmonic oscillator.

It is instructive to consider the invariant for the non-linear equation. Because

d2θ

dt2
=
dθ

dt

(
ddθdt
dθ

)
(22-36)

Eq. 22-35 can be written as:

MR2dθ

dt

(
ddθdt
dθ

)
+MgR sin(θ) = 0 (22-37)
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d

dθ

[
MR2

2

(
dθ

dt

)2

−MgR cos(θ)

]
= 0 (22-38)

which can be integrated with respect to θ:

MR2

2

(
dθ

dt

)2

−MgR cos(θ) = constant (22-39)

This equation will be used as a level-set equation to visualize pendulum motion.

Buoyant Object Consider a buoyant object that is slightly displaced from its equilibrium floating
position. The force (downwards) due to gravity of the buoy is ρbouygVbouy The force (upwards)
according to Archimedes is ρwatergVsub where Vsub is the volume of the buoy that is submerged.
The equilibrium position must satisfy Vsub−eq/Vbouy = ρbouy/ρwater.

If the buoy is slightly perturbed at equilibrium by an amount δx the force is:

F =ρwaterg(Vsub−eq + δxAo)− ρbuoygVbuoy
F =ρwatergδxAo

(22-40)

where Ao is the cross-sectional area at the equilibrium position. Newton’s equation of motion for
the buoy is:

Mbuoy
d2y

dt2
− ρwatergAoy = 0 (22-41)

so the characteristic frequency of the buoy is ω =
√
ρwatergAo/Mbouy.

Single Electron Wave-function The one-dimensional Schrödinger equation is:

d2ψ

dx2
+

2m

h̄2 (E − U(x))ψ = 0 (22-42)

where U(x) is the potential energy at a position x. If U(x) is constant as in a free electron in a
box, then the one-dimensional wave equation reduces to a simple harmonic oscillator.

In summation, just about any system that oscillates about an equilibrium state can be reduced to a
harmonic oscillator.
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