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Oct. 12 2012

Lecture 12: Multivariable Calculus

Reading:
Kreyszig Sections: 9.5, 9.6, 9.7

The Calculus of Curves

In the last lecture, the derivatives of a vector that varied continuously with a parameter, ~r(t), were
considered. It is natural to think of ~r(t) as a curve in whatever space the vector ~r is defined. The most
familiar example is a curve in the plane: the two values (x(t), y(t)) are mapped onto the plane through
values as t sweeps through its range tinitial ≤ t ≤ tfinal. A curve in three-dimensional Cartesian space
is the mapping of three values (x(t), y(t), z(t)); and in cylindrical coordinates it is: (r(t), θ(t), z(t)). In
general, a curve is represented by N coordinates, as a single parameter (i.e., t) takes on a range of
numbers—the N coordinates form the embedding space.

Objects that have more dimensions than curves need more parameters. The number of parameters
is the dimensionality of the object and the number of coordinates is the dimensionality of the embedding
space. What we naturally call a surface is a two dimensional object embedded in a three-dimensional
space—for example, in Cartesian coordinates (x(u, v), y(u, v), z(u, v)) is a surface.

The two-dimensional surface (x(u, v), y(u, v), z(u, v)) can itself become an embedding space for
lower dimensional objects; for example, the curve (u(t), v(t)) is embedded in the surface (u, v) which
itself is embedded in (x, y, z). In other words, the curve (x(u(t), v(t)), y(u(t), v(t)), z(u(t), v(t))) can
be considered to be embedded in (u, v), or embedded in (x, y, z) and constrained to the surface
(x(u, v), y(u, v), z(u, v)).

In higher dimensions, there are many more possibilities and we can make a few introductory re-
marks about the language that is used to describe them. For application to physical problems, these
considerations indicate the number of degrees-of-freedom that are available and the conditions that a
system is over-constrained. An N -dimensional surface (sometimes called a hyper-surface) embedded
in an M -dimensional space is said to have codimension M − N . Some objects cannot be embedded
in a higher dimensional space; these are called non-embeddable, and examples include the Klein bottle
which cannot be embedded in our three-dimensional space.
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Lecture 12 Mathematica R© Example 1
Embedding Curves in Surfaces in Three Dimensions

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2012.

An example is constructed that visualizes a two-dimensional surface in three dimensions and then visualizes a

one-dimensional curve constrained to that surface.

Create an example function that returns a position {x, y, z} as a function of
two parameters

1
FlowerPot@u_, v_D := 8H3 + Cos@vDL Cos@uD,
Sin@uD + H3 + Cos@vDL Sin@uD,
H3ê2 + Cos@u + vDL Sin@vD<

Visualize it.

2

Flowerplot = ParametricPlot3D@
FlowerPot@u, vD, 8u, 0, 2 Pi<,
8v, 0, 2 Pi<, PlotPoints -> 8120, 40<,
PlotStyle Ø Directive@Brown, Opacity@0.6D,
Specularity@White, 40DD, Mesh Ø NoneD

A Curve on a parameritized surface
Now,  we  call  the  function  again,  but  make  the  two  parameters  {u,v},
depend on a single parameter t (*note when visualizing this curve, it has
been scaled in and out a little so it will be visible in subsequent visualiza-
tions*)

3

Vines@t_D := FlowerPot@t Cos@tD, -t^2 Sin@ tDD
vineplot = ParametricPlot3D@

81.05*Vines@tD, 0.95*Vines@tD<,
8t, 0, 2 Pi<, PlotStyle Ø
88Thickness@0.025D, Darker@GreenD<,
8Thickness@0.025D, Darker@GreenD<<,

PlotRange Ø AllD
This is the paramertized surface with a curve embedded in the surface.

4Show@vineplot, FlowerplotD

1: FlowerPot takes two arguments and returns a vector. As the argu-
ments sweep through domains, the vector will trace out a surface.

2: Using the ParametricPlot3D, the surface is visualized. Here we
use Directive to make the surface brown with Opacity to make
the surface about 40% transparent. Specularity is used to make
the surface text look a bit shiny here. The resulting graphics are
assigned to the symbol Flowerplot.

3: Vines takes a single argument and then calls FlowerPot with two
arguments that are functions of that single argument—the result
must be a curve embedded in the surface. In this case, the function
is repeated and is scaled in and out a little, so the curves will be
visible later.

4: Here, both the embedded curve and the surface are shown together.

Because the derivative of a curve with respect to its parameter is a tangent vector, the unit tangent
can be defined immediately:

û =
d~r
dt

‖d~rdt ‖
(12-1)

It is convenient to find a new parameter, s(t), that would make the denominator in Eq. 12-1 equal

http://pruffle.mit.edu/3.016-2012/Notebooks/L12/Lecture-12.nb
http://pruffle.mit.edu/3.016-2012/pdf/L12/Lecture-12-1-COL.pdf
http://pruffle.mit.edu/3.016-2012/pdf/L12/Lecture-12-1-BW.pdf
http://pruffle.mit.edu/3.016-2012/html/Lecture-12/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2012
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to one. This parameter, s(t), is the arc-length:

s(t) =

∫ t

to

ds

=

∫ t

to

√
dx2 + dy2 + dz2

=

∫ t

to

√
(
dx

dt
)2 + (

dy

dt
)2 + (

dz

dt
)2dt

=

∫ t

to

√
(
d~r

dt
) · (d~r

dt
)dt

(12-2)

and with s instead of t,

û(s) =
d~r

ds
(12-3)

This is natural because ‖~r‖ and s have the same units (i.e., meters and meters, foots and feet, etc)
instead of, for instance, time, t, that makes d~r/dt a velocity and involves two different kinds of units
(e.g., furlongs and hours).

With the arc-length s, the magnitude of the curvature is particularly simple,

κ(s) = ‖dû
ds
‖ = ‖d

2~r

ds2
‖ (12-4)

as is its interpretation—the curvature is a measure of how rapidly the unit tangent is changing direction.
Furthermore, the rate at which the unit tangent changes direction is a vector that must be normal

to the tangent (because d(û · û = 1) = 0) and therefore the unit normal is defined by:

p̂(s) =
1

κ(s)

dû

ds
(12-5)

There are two unit vectors that are locally normal to the unit tangent vector û′(s) and the curve
unit normal p̂(s) × û and û(s) × p̂. This last choice is called the unit binormal, b̂ ≡ û(s) × p̂ and the
three vectors together form a nice little moving orthogonal axis pinned to the curve. Furthermore,

there are convenient relations between the vectors and differential geometric quantities called the Frenet
equations.

Using Arc-Length as a Curve’s Parameter

However, it should be pointed out that—although re-parameterizing a curve in terms of its arc-length
makes for simple analysis of a curve—achieving this re-parameterization is not necessarily simple.

Consider the steps required to represent a curve ~r(t) in terms of its arc-length:

integration The integral in Eq. 12-2 may or may not have a closed form for s(t).

If it does, then we can perform the following operation:

inversion s(t) is typically a complicated function that is not easy to invert, i.e., solve for t in terms
of s to get a t(s) that can be substituted into ~r(t(s)) = ~r(s).

These difficulties usually result in treating the problem symbolically and resorting to numerical
methods of achieving the integration and inversion steps.
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Lecture 12 Mathematica R© Example 2
Calculating arclength

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2012.

Examples of computing a curve’s arc-length s from the relation ds = |d~x| =
√
dx2 + dy2 + dz2 are presented.

Make up two functions that will illustrate the difference between a curve's
parameter and its arclength

1PrettyFlower@t_D :=
1

4
+
3

4
 Cos@3 tD  

8 Cos@tD^3, Sin@tD^3, Sin@tD Cos@tD^2< 

2Bendy@t_ D := 8 Cos@tD, Sin@tD, Sin@tD Cos@tD<

Here is a general way to take a function of a general parameter, t, and
compute the arc length traversed as t varies from one value to another:

3dFlowerDt = Simplify@D@PrettyFlower@tD, tDD
This is the arclength up to the parameter t, the integral does not have a
closed-form

4sFlower = Integrate@
Sqrt@Simplify@dFlowerDt.dFlowerDtDD, tD
In other words,

ds2 = dx2 + dy2 + dz2 so integrating
the square root of this is the arclength

Applying this to the function Bendy defined above:

5dBendyDt = D@Bendy@tD, tD
This  is  the  arclength  up  to  the  parameter  t,  the integral  does  have a
closed-form, but is not easily invertible.
The arc length in this case is  given by a tabulated  function called an
elliptic integral and after checking its behavior at t = 0 we can plot it over
the range {t,0,2p}:

6sBendy ê. t Ø 0

However, the inverse exits, we can find a t(s) (the curve parameter t for
any arclength s)

7Plot@sBendy, 8t, 0, 2 Pi<D
Alternatively, we can evaluate the expression for arc length numerically
using the following:

8
Plot@Evaluate@
NIntegrate@Sqrt@dFlowerDt.dFlowerDtD,
8t, 0, uplim<DD, 8uplim, 0, 6.4<D

1–2: Two example functions of a single parameter t that return a vector
~x are defined for this example.

3: Here, the tangent-vector for the function, PrettyFlower defined
above, is computed.

4: This is an attempt to find a closed-form solution for arclength s(τ)−
s(0) =

∫ τ
0

√(
dc
dt

)2
dt. A closed-form solution doesn’t exist.

5: However, a closed-form solution does exist for the arclength of the
Bendy function defined earlier. If the closed-form s(t) could be
inverted (i.e., t(s)) then the curve c(t) could be expressed in terms
of its natural variable c(s) = c(t(s)).

6–7: The plot, s(t), is monotonically increasing, and therefore the func-
tion could always be inverted numerically.

8: Even for the arc-length that could not be evaluated in closed-form
(i.e., PrettyFlower ), a numerical integration could be used to per-
form the inversion.

Scalar Functions with Vector Argument

In Materials Science and Engineering, the concept of a spatially varying function arises frequently:
For example:

Concentration ci(x, y, z) = ci(~x) is the number (or moles) of chemical species of type i per unit
volume located at the point ~x.

Density ρ(x, y, z) = ρ(~x) mass per unit volume located at the point ~x is ρ(x, y, z) = ρ(~x).

Energy Density u(x, y, z) = u(~x) energy per unit volume located at the point ~x.

The examples above are spatially-dependent densities of “extensive quantities.”

http://pruffle.mit.edu/3.016-2012/Notebooks/L12/Lecture-12.nb
http://pruffle.mit.edu/3.016-2012/pdf/L12/Lecture-12-2-COL.pdf
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http://pruffle.mit.edu/3.016-2012/html/Lecture-12/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2012
http://pruffle.mit.edu/3.016-2012/html/Lecture-12/HTMLLinks/index_2.html
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There are also spatially variable intensive quantities:

Temperature T (x, y, z) = T (~x) is the temperature which would be measured at the point ~x.

Pressure P (x, y, z) = P (~x) is the pressure which would be measured at the point ~x.

Chemical Potential µi(x, y, z) = µi(~x) is the chemical potential of the species i which would be
measured at the point ~x.

Each example is a scalar function of space—that is, the function associates a scalar with each point
in space.

A topographical map is a familiar example of a graphical illustration of a scalar function (altitude)
as a function of location (latitude and longitude).

How Confusion Can Develop in Thermodynamics

However, there are many other types of scalar functions of several arguments, such as the state function:
U = U(S, V,Ni) or P = P (V, T,Ni). It is sometimes useful to think of these types of functions a scalar
functions of a “point” in a thermodynamics space.

However, this is often a source of confusion: notice that the internal energy is used in two different
contexts above. One context is the value of the energy, say 128.2 Joules. The other context is the
function U(S, V,Ni). While the two symbols are identical, their meanings are quite different.

The root of the confusion lurks in the question, “What are the variables of U?” Suppose that
there is only one (independent) chemical species, then U(·) has three variables, such as U(S, V,N).
“But if S(T, P, µ), V (T, P, µ), and N(T, P, µ) are known functions, then what are the variables of
U?” The answer is that they are any three independent variables, one could write U(T, P, µ) =
U(S(T, P, µ), V (T, P, µ), N(T, P, µ)), and there are six other natural choices.

The trouble arises when variations of a function like U are queried—then the variables that are
varying must be specified.

For this reason, it is either a good idea to keep the functional form explicit in thermodynamics, i.e.,

dU(S, V,N) =
∂U(S, V,N)

∂S
dS +

∂U(S, V,N)

∂V
dV +

∂U(S, V,N)

∂N
dN

dU(T, P, µ) =
∂U(T, P, µ)

∂T
dT +

∂U(T, P, µ)

∂V
dV +

∂U(T, P, µ)

∂µ
dµ

(12-6)

or use, the common thermodynamic notation,

dU =

(
∂U

∂S

)
V,N

dS +

(
∂U

∂V

)
S,N

dV +

(
∂U

∂N

)
S,V

dN

dU =

(
∂U

∂T

)
P,µ

dT +

(
∂U

∂P

)
T,µ

dP +

(
∂U

∂µ

)
T,P

dµ

(12-7)

Total and Partial Derivatives, Chain Rule

There is no doubt that a great deal confusion arises from the following question, “What are the variables
of my function?”

For example, suppose we have a three-dimensional space (x, y, z), in which there is an embedded
surface (x(w, v), y(w, v), z(w, v)) ~x(w, v) = ~x(~u) where ~u = (v, w) is a vector that lies in the surface,
and an embedded curve (x(s), y(s), z(s)) = ~x(s). Furthermore, suppose there is a curve that lies within
the surface (w(t), v(t)) = ~u(t).

Suppose that E = f(x, y, z) is a scalar function of (x, y, z).
Here are some questions that arise in different applications:
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1. How does E vary as a function of position?

2. How does E vary along the surface?

3. How does E vary along the curve?

4. How does E vary along the curve embedded in the surface?
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Lecture 12 Mathematica R© Example 3
Total Derivatives and Partial Derivatives: A Mathematica Review

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2012.

Demonstrations of 1) the three spatial derivatives of F (x, y, z); 2) the two independent derivatives on a two-

dimensional surface embedded in x–y–z; 3) the complete derivative of F (x, y, z) along a curve (x(t), y(t), z(t)).

AScalarFunction is defined everywhere in (x,y,z)

1AScalarFunction@x_ , y_ , z_D :=
SomeFunction@x, y, zD

2AScalarFunction@x, y, zD
The following lines print and they define expressions.

3
dFuncX = D@AScalarFunction@x, y, zD, xD
dFuncY = D@AScalarFunction@x, y, zD, yD
dFuncZ = D@AScalarFunction@x, y, zD, zD

x(w,v), y(w,v), z(w,v) is a restriction of all space to a surface parameter-
ized by (w,v), 
AScalarFunction is now defined on the surface as a function of (w,v)

4AScalarFunction@x@w, vD, y@w, vD, z@w, vDD
Because it is now a function of w and v, the derivative with respect to x
will vanish:

5D@AScalarFunction@
x@w, vD, y@w, vD, z@w, vDD, xD

Two more flavors of derivatives, these are partial derivatives evaluated on
the surface

6dFuncW = D@AScalarFunction@
x@w, vD, y@w, vD, z@w, vDD, wD

7dFuncV = D@AScalarFunction@
x@w, vD, y@w, vD, z@w, vDD, vD

On the surface x(w,v), y(w,v), z(w,v), we can prescribe a curve w(t), v(t),
.now we have AScalarFunction defined on that curve

8AScalarFunction@x@w@tD, v@tDD,
y@w@tD, v@tDD, z@w@tD, v@tDDD
The following is a derivative of the function along the curve parameterized
by t

9dFuncT = D@AScalarFunction@x@w@tD, v@tDD,
y@w@tD, v@tDD, z@w@tD, v@tDDD, tD

10dFuncT =
D@AScalarFunction@x@tD, y@tD, z@tDD, tD

1–2: AScalarFunction is a symbolic representation of a function—it will
be a place-holder for examples of partial derivatives.

3: This will print Mathematica’s representation of derivatives with
respect to one of several arguments—e.g., ∂F (x, y, z)/∂y is written
as F(0,1,0)[x,y,z].

4: AScalarFunction becomes a function of two variables when x,
y, and z are restricted to a surface parameterized by (u, v):
(x(w, v), y(w, v), z(w, v))

5–6: Caution: the distinction between the symbol x and the symbol
x[w,v] is important; the following two examples show how the
derivatives should appear.

7: This and the previous example show how the chain rule is computed,
these two terms are the components of the gradient in the surface.

8: In this case, the previous AScalarFunction becomes a function of a
single variable by specifying a curve in the surface with (w(t), v(t)).

9: Now, a total derivative of the curve embedded in the surface can
be calculated with the chain rule. This is nearly equivalent to the
following along a specified curve.

10: Here is the total derivative along a specific curve (x(t), y(t), z(t),
but here there is no constraint to the surface ~x(w, v)

Taylor Series

The behavior of a function near a point is something that arises frequently in physical models. When
the function has lower-order continuous partial derivatives (generally, a “smooth” function near the
point in question), the stock method to model local behavior is Taylor’s series expansions around a
fixed point.

Taylor’s expansion for a scalar function of n variables, f(x1, x2, . . . , xn), which has continuous first

http://pruffle.mit.edu/3.016-2012/Notebooks/L12/Lecture-12.nb
http://pruffle.mit.edu/3.016-2012/pdf/L12/Lecture-12-3-COL.pdf
http://pruffle.mit.edu/3.016-2012/pdf/L12/Lecture-12-3-BW.pdf
http://pruffle.mit.edu/3.016-2012/html/Lecture-12/HTMLLinks/index_3.html
http://pruffle.mit.edu/3.016-2012
http://pruffle.mit.edu/3.016-2012/html/Lecture-12/HTMLLinks/index_3.html
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and second partial derivatives near the point ~ξ = (ξ1, ξ2, . . . , ξn), is:

f(ξ1, ξ2, . . . , ξn) = f(x1, x2, . . . , xn)

+
∂f

∂x1

∣∣∣∣
~ξ

(ξ1 − x1) +
∂f

∂x2

∣∣∣∣
~ξ

(ξ2 − x2) + . . .+
∂f

∂xn

∣∣∣∣
~ξ

(ξn − xn)

+
1

2
[

∂2f

∂x1
2

∣∣∣∣
~ξ

(ξ1 − x1)2) +
∂2f

∂x1∂x2

∣∣∣∣
~ξ

(ξ1 − x1)(ξ2 − x2) + . . .+
∂2f

∂x1∂xn

∣∣∣∣
~ξ

(ξ1 − x1)(ξn − xn)

+
∂2f

∂x2∂x1

∣∣∣∣
~ξ

(ξ2 − x2)(ξ1 − x1) +
∂2f

∂x2
2

∣∣∣∣
~ξ

(ξ2 − x2)2 + . . .+
∂2f

∂x2∂xn

∣∣∣∣
~ξ

(ξ2 − x2)(ξn − xn)

... . . .
...

+
∂2f

∂xn∂x1

∣∣∣∣
~ξ

(ξn − xn)(ξ1 − x1) +
∂2f

∂xn∂x2

∣∣∣∣
~ξ

(ξn − xn)(ξ2 − x2) + . . .+
∂2f

∂xn2

∣∣∣∣
~ξ

(ξn − xn)2

]

+O
[
(ξ1 − x1)3

]
+O

[
(ξ1 − x1)2(ξ2 − x2)

]
+O

[
(ξ1 − x1)(ξ2 − x2)2

]
+O

[
(ξ2 − x2)3

]
+ . . .+O

[
(ξ1 − x1)2(ξn − xn)

]
+O [(ξ1 − x1)(ξ2 − x2)(ξn − xn)] + . . .+O

[
(ξn − xn)3

]

(12-8)

or in a vector shorthand:

f(~x) = f(~ξ) + ∇~xf |~ξ · (~ξ − ~x) + (~ξ − ~x) · (∇~x∇~xf)|~ξ · (~xi− ~x) +O
[
‖~ξ − ~x‖3

]
(12-9)

In the following example, visualization of local approximations will be obtained for a scalar function
of two variables, f(x, y). This will be extended into an approximating function of four variables by
expanding it about a point (ξ, η) to second order. The expansion is now a function of four variables—
the first two variables are the point the function is expanded around (x and y), and the second two
are the variable of the parabolic approximation at that point (ξ and η): fappx(ξ, η;x, y) = f(x, y) +
∂f
∂x

∣∣∣
x,y

(ξ − x) + ∂f
∂y

∣∣∣
x,y

(η − y) + Q where Q ≡ 1
2
∂2f
∂x2

∣∣∣
x,y

(ξ − x)(ξ − x) + ∂2f
∂x∂y

∣∣∣
x,y

(ξ − x)(η − y) +

1
2
∂2f
∂y2

∣∣∣
x,y

(η − y)(η − y) or fappx(ξ, η, x, y) = f(x, y) + ∇f ·
(
ξ − x
η − y

)
+ 1

2Qform where Qform ≡

(ξ − x, η − y)

 ∂2f
∂x2

∣∣∣
x,y

∂2f
∂x∂y

∣∣∣
x,y

∂2f
∂y∂x

∣∣∣
x,y

∂2f
∂y2

∣∣∣
x,y

( ξ − x
η − y

)
The function fappx(ξ, η, x, y) will be plotted as a function of ξ and η for |ξ−x| < δ and |η− y| < δ

for a selected number of points (x, y).
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Lecture 12 Mathematica R© Example 4
Taylor Expansions of a Scalar Function of ~v in the Neighborhood of Zero

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2012.

This will demonstrate how to produce an expression-form for a first-order expansion to a function of three

variables.

This  is   symbolic  representation of a first  order expansion (keeping all
terms) of a function near x,y,z

1
SmallChangeSeries =
Expand@Series@AScalarFunction@x + dx,

y + dy, z + dzD, 8dx, 0, 1<, 8dy, 0, 1<,
8dz, 0, 1<DD - AScalarFunction@x, y, zD

Using normal converts the approximation into an expression, but higher
order terms are still present

2dScalarFunction =
Expand@Normal@SmallChangeSeriesDD
The next step eliminates second- and third-order terms… (remember, dx,
dy, and dz are small)

3dScalarFunction = dScalarFunction ê.
8dx dy Ø 0, dy dz Ø 0, dx dz Ø 0<

dz SomeFunctionH0,0,1L@x, y, zD +

dy SomeFunctionH0,1,0L@x, y, zD +

dx SomeFunctionH1,0,0L@x, y, zD

The above form is like the thermodynamic expression :

dF =
∂ F

∂ x
 dx +

∂ F

∂ y
 dy +

∂ F

∂ z
 dz

1: Here, we get a symbolic representation of the approximation of
F (x + dx, y + dy, z + dz) near the point (x, y, z) = (0, 0, 0) to first
order. The Series function first expands about the last iterator-
argument. This produces a result that multiplies the expansion
parameters dx, dy, and dz by the order of approximation functions
O[dx2].

2: Using Normal and Expand on the series-result above yields an
expression for the approximation, but it is not first-order as we
might have intended. The dx dy-terms are a result of expanding
the result of the three sequential expansions in the first command.

3: Here, a rule is applied to remove the second-order terms. The result
has the same form as the thermodynamic expression:

dG =

(
∂G

∂P

)
T,n

dP +

(
∂G

∂T

)
n,P

+

(
∂G

∂n

)
P,T

= V (P, T, n)dP − S(P, T, n)dT + µ(P, T, n)dn

http://pruffle.mit.edu/3.016-2012/Notebooks/L12/Lecture-12.nb
http://pruffle.mit.edu/3.016-2012/pdf/L12/Lecture-12-4-COL.pdf
http://pruffle.mit.edu/3.016-2012/pdf/L12/Lecture-12-4-BW.pdf
http://pruffle.mit.edu/3.016-2012/html/Lecture-12/HTMLLinks/index_4.html
http://pruffle.mit.edu/3.016-2012
http://pruffle.mit.edu/3.016-2012/html/Lecture-12/HTMLLinks/index_4.html
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Lecture 12 Mathematica R© Example 5
Approximating Surfaces at Points

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2012.

Visualization of quadratic approximations to a surface at points on that surface

1
CrazyFun@x_, y_D :=
Sin@5 p xD Sin@5 p yDêHx yL + Sin@5 p Hx - 1LD 
Sin@5 p Hy - 1LDêHHx - 1L H y - 1LL

2
theplot = Plot3D@CrazyFun@x, yD,

8x, 0.1, .9<, 8y, 0.1, .9<, PlotRange Ø All,
Mesh Ø False, PlotStyle Ø 8Opacity@0.5D<D

3
Approxfunction@x_, y_ , xo_ , yo_D :=
Series@CrazyFun@x, yD,

8x, xo, 2<, 8y, yo, 2<D êê Normal

4
anapprox = Plot3D@
Evaluate@Approxfunction@x, y, .7, .1DD,
8x, .7 - .1, .7 + .1<, 8y, .1 - .1, .1 + .1<D

5Show@ theplot, anapproxD

6Table@8xo@iD = RandomReal@D,
yo@iD = RandomReal@D<, 8i, 1, 100<D;

7

ApproxPlot@i_D := Plot3D@Evaluate@
Approxfunction@x, y, xo@iD, yo@iDDD,

8x, xo@iD - .1, xo@iD + .1<,
8y, yo@iD - .1, yo@iD + .1<, PlotPoints Ø 6,
Mesh Ø True, ColorFunctionØ
HRGBColor@0.9 xo@iD, 0.9 yo@iD, ÒD &LD

8GraphicsStack@1D = Show@ApproxPlot@1DD;

9GraphicsStack@i_D := GraphicsStack@iD =
Show@GraphicsStack@i - 1D, ApproxPlot@iDD

10Manipulate@Show@theplot, GraphicsStack@iDD,
88i, 3<, 1, 20, 1<D

1–2: CrazyFun is an example scalar function of two variables.

3–4: Using Normal to convert the Taylor Expansion obtained by Series

at a point xo, yo produces a function Approxfunction of four vari-
ables (the point it is approximated (xo, yo) and the local expansion
variables at that point (x, y)).

5: This illustrates how the local quadratic approximation fits the sur-
face locally at a particular point (0.7, 0.7) in a square of (half)-side-
length 0.1

6: Generate a list of random points at which to visualize the local
approximation.

7: ApproxPlot is an example that will plot the local approximation
for any indexed random point. The surface is colored by using the
value of the point as an indicator.

8-9: This is an example of producing a stack of graphics with a recursive
graphics function. It iteratively adds a new approximating surface
graphics object to the set of the previous ones.

10: This will produce a visualization of approximations at different
parts of the original surface.

Just a few of many examples of instances where Taylor’s expansions are used are:

linearization Examining the behavior of a model near a point where the model is understood. Even
if the model is wildly non-linear, a useful approximation is to make it linear by evaluating near
a fixed point.

approximation If a model has a complicated representation in terms of unfamiliar functions, a Taylor
expansion can be used to characterize the ‘local’ model in terms of a simple polynomial.

asymptotics Even when a system has singular behavior (e.g, the value of a function becomes infinite as
some variable approaches a particular value), how the system becomes singular is very important.
At singular points, the Taylor expansion will have leading order terms that are singular, for
example near x = 0,

sin(x)

x2
=

1

x
− x

6
+O(x3) (12-10)

http://pruffle.mit.edu/3.016-2012/Notebooks/L12/Lecture-12.nb
http://pruffle.mit.edu/3.016-2012/pdf/L12/Lecture-12-5-COL.pdf
http://pruffle.mit.edu/3.016-2012/pdf/L12/Lecture-12-5-BW.pdf
http://pruffle.mit.edu/3.016-2012/html/Lecture-12/HTMLLinks/index_5.html
http://pruffle.mit.edu/3.016-2012
http://pruffle.mit.edu/3.016-2012/html/Lecture-12/HTMLLinks/index_5.html
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The singularity can be subtracted off and it can be said that this function approaches∞ ”linearly”
from below with slope -1/6. Comparing this to the behavior of another function that is singular
near zero:

exp(x)

x
=

1

x
+ 1 +

x

2
+
x2

6
+O(x3) (12-11)

shows that the ex/x behavior is “more singular.”
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Figure 12-10: Behavior of two singular functions near their singular points.

stability If the expansion of energy about a point is obtained, then the various orders of expansion
can be interpreted:

zero-order The zeroth-order term in a local expansion is the energy of the system at the point
evaluated. Unless this term is to be compared to another point, it has no particular meaning
(if it is not infinite), as energy is always arbitrarily defined up to a constant.

first-order The first-order is related to the driving force to change the state of the system.
Consider:

∆E = ∇E · δ~x = −~F · δ~x (12-12)

If force exists, the system can decrease its energy linearly by picking a particular change δ~x
that is anti-parallel to the force.

For a system to be stable, it is a necessary first condition that the forces (or first
order expansion coefficients) vanish.
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second order If a system has no forces on it (therefore satisfying the necessary condition of
stability), then where the system is stable or unstable depends on whether a small δ~x can
be found that deceases the energy:

∆E =
1

2
δ~x · ∇(−~F ) · δ~x

=
1

2
· ∇∇E · δ~x

=
1

2

∂2E

∂xi∂xj

∣∣∣∣
x1,x2,...xn

δxiδxj

(12-13)

where the summation convention is used above and the point (x1, x2, . . . , xn) is one for which
∇E is zero.

numerics Derivatives are often obtained numerically in numerical simulations. The Taylor expan-
sion provides a formula to approximate numerical derivatives—and provides an estimate of the
numerical error as a function of quantities like numerical mesh size.

Gradients and Directional Derivatives

Scalar functions F (x, y, z) = F (~x) have a natural vector field associated with them—at each point ~x
there is a direction n̂(~x) pointing in the direction of the most rapid increase of F . Associating the
magnitude of a vector in the direction of steepest increase with the rate of increase of F defines the
gradient.

The gradient is therefore a vector function with a vector argument (~x in this case) and it is commonly
written as ∇F .

Here are some natural examples:

Meteorology The “high pressure regions” are commonly displayed with weather reports—as are the
”isobars” or curves of constant barometric pressure. Thus displayed, pressure is a scalar function
of latitude and longitude.

At any point on the map, there is a direction that points to a local high pressure center—this is
the direction of the gradient. The rate at which the pressure is increasing gives the magnitude
of the gradient.

The gradient of pressure should be a vector that is related to the direction and the speed of wind.

Mosquitoes It is known that hungry mosquitoes tend to fly towards sources (or local maxima) of
carbon dioxide. Therefore, it can be hypothesized that mosquitoes are able to determine the
gradient in the concentration of carbon dioxide.

Heat In an isolated system, heat flows from high-temperature (T (~x)) regions to low-temperature
regions.
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The Fourier empirical law of heat flow states that the rate of heat flows is proportional to the
local decrease in temperature.

Therefore, the local rate of heat flow should be proportional to the vector which is minus the
gradient of T (~x): −∇T

Finding the Gradient

Potentials and Force Fields

Force is a vector. Force projected onto a displacement vector ~dx is the rate at which work, dW , is done
on an object dW = −~F · ~dx.

If the work is being supplied by an external agent (e.g., a charged sphere, a black hole, a magnet,
etc.), then it may be possible to ascribe a potential energy (E(~x), a scalar function with vector argu-
ment) to the agent associated with the position at which the force is being applied.5 This E(~x) is the
potential for the agent and the force field due to the agent is ~F (~x) = −∇E(~x).

Sometimes the force (and therefore the energy) scales with the “size” of the object (i.e., the ob-
ject’s total charge in an electric potential due to a fixed set of charges, the mass of an object in the
gravitational potential of a black hole, the magnetization of the object in a magnetic potential, etc.).
In these cases, the potential field can be defined in terms of a unit size (per unit charge, per unit mass,
etc.). One can determine whether such a scaling is applied by checking the units.

5As with any energy, there is always an arbitrary constant associated with the position (or state) at which the energy
is taken to be zero. There is no such ambiguity with force. Forces are, in a sense, more fundamental than energies.
Energy appears to be fundamental because all observations of the first law of thermodynamics demonstrate that there is
a conserved quantity which is a state function and is called energy.
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