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Lecture 9: Eigensystems of Matrix Equations

Reading:
Kreyszig Sections: 8.1, 8.2, 8.3, 8.4

Eigenvalues and Eigenvectors of a Matrix

The conditions for which general linear equation

A~x = ~b (9-1)

has solutions for a given matrix A, fixed vector ~b, and unknown vector ~x have been determined.
The operation of a matrix on a vector—whether as a physical process, or as a geometric transfor-

mation, or just a general linear equation—has also been discussed.

Eigenvalues and eigenvectors are among the most important mathematical concepts with a very
large number of applications in physics and engineering.

An eigenvalue problem (associated with a matrix A) relates the operation of a matrix multiplication
on a particular vector ~x to its multiplication by a particular scalar λ.

A~x = λ~x (9-2)

This equation indicates that the matrix operation can be replaced—or is equivalent to—a stretching
or contraction of the vector: “A has some vector ~x for which its multiplication is simply a scalar
multiplication operation by λ.” ~x is an eigenvector of A and λ is ~x’s associated eigenvalue.

The condition that Eq. 9-2 has solutions is that its associated homogeneous equation:

(A− λI)~x = ~0 (9-3)

has a zero determinant:
det(A− λI) = 0 (9-4)

Eq. 9-4 is a polynomial equation in λ (the power of the polynomial is the same as the size of the square
matrix).

The eigenvalue-eigenvector system in Eq. 9-2 is solved by the following process:

1. Solve the characteristic equation (Eq. 9-4) for each of its roots λi.

2. Each root λi is used as an eigenvalue in Eq. 9-2 which is solved for its associated eigenvector ~xi
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Lecture 09 Mathematica R© Example 1
Calculating Matrix Eigenvalues and Eigenvectors

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2012.

The symbolic computation of eigenvalues and eigenvectors is demonstrated for simple 2×2 matrices. This example

is illustrative—more interesting uses would be for larger matrices. In this example, a “cheat” is employed so

that a matrix with “interesting” eigenvalues and eigenvectors is used as computation fodder.

1mymatrix = 882 + Pi, -2 + Pi<, 8-2 + Pi, 2 + Pi<<;
mymatrix êê MatrixForm

2 + p -2 + p

-2 + p 2 + p

Solve the characteristic equation for the two eigenvalues:

2Solve@
Det@mymatrix - l IdentityMatrix@2DD ã 0, lD
Compute the eigenvectors:

3Eigenvectors@mymatrixD

48evec1, evec2< = Eigenvectors@mymatrixD
Eigensystem  will solve for eigenvalues and corresponding eigenvectors
in one step:

5Eigensystem@mymatrixD

882 p, 4<, 881, 1<, 8-1, 1<<<

Note the output format above: the first item in the list is a list of the two
eigenvalues; the second item in the list is a list of the two corresponding
eigenvectors.  Thus,  the eigenvector corresponding  2 p is (1,1).

1: A “typical” 2 × 2 matrix mymatrix is defined for the calculations
that follow. We will calculate its eigenvalues directly and with a
built-in function.

2: Its eigenvalues can be obtained by by using Solve for the charac-
teristic equation Eq. 9-4 in terms of λ.

3: And, its eigenvectors could be obtained by putting each eigenvalue
back into Eq. 9-2 and then solving ~x for each unique λ. However,
this tedious procedure can also be performed with Eigenvectors

4: Here, a matrix of eigenvectors is defined with named rows evec1

and evec2.

5: Eigensystem generates the same results as Eigenvectors and
Eigenvalues in one step.

http://pruffle.mit.edu/3.016-2012/Notebooks/L09/Lecture-09.nb
http://pruffle.mit.edu/3.016-2012/pdf/L09/Lecture-09-1-COL.pdf
http://pruffle.mit.edu/3.016-2012/pdf/L09/Lecture-09-1-BW.pdf
http://pruffle.mit.edu/3.016-2012/html/Lecture-09/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2012
http://pruffle.mit.edu/3.016-2012/html/Lecture-09/HTMLLinks/index_1.html
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The matrix operation on a vector that returns a vector that is in the same direction is an eigensys-
tem. A physical system that is associated can be interpreted in many different ways:

geometrically The vectors ~x in Eq. 9-2 are the ones that are unchanged by the linear transformation
on the vector.

iteratively The vector ~x that is processed (either forward in time or iteratively) by A increases (or
decreases if λ < 1) along its direction.

In fact, the eigensystem can be (and will be many times when they are) generalized to other interpre-
tations and generalized beyond linear matrix systems.

Here are some examples where eigenvalues arise. These examples generalize beyond matrix eigen-
values.

• As an analogy that will become real later, consider the “harmonic oscillator” equation for a mass,
m, vibrating with a spring-force, k, this is simply Newton’s equation:

m
d2x

dt2
= kx (9-5)

If we treat the second derivative as some linear operator, Lspring on the position x, then this
looks like an eigenvalue equation:

Lspringx =
k

m
x (9-6)

• Letting the positions xi form a vector ~x of a bunch of atoms of mass mi, the harmonic oscillator
can be generalized to a bunch of atoms that are interacting as if they were attached to each other
by springs:

mi
d2xi
dt2

=
∑

i’s near neighbors j

kij(xi − xj) (9-7)
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For each position i, the j-terms can be added to each side, leaving and operator that looks like:

Llattice =



m1
d2

dt2
−k12 0 −k14 . . . 0

−k21 m2
d2

dt2
−k23 0 . . . 0

...
. . .

...
... mi

d2

dt2
...

. . .

mN−1
d2

dt2
−kN−1 N

0 0 . . . −kN N−1 mN
d2

dt2


(9-8)

The operator Llattice has diagonal entries that have the spring (second-derivative) operator and
one off-diagonal entry for each other atom that interacts with the atom associated with row i.
The system of atoms can be written as:

k−1Llattice~x = ~x (9-9)

which is another eigenvalue equation and solutions are constrained to have unit eigenvalues—these
are the ‘normal modes.’

• To make the above example more concrete, consider a system of three masses connected by
springs.

Figure 9-5: Four masses connected by three springs

The equations of motion become:
m1

d2

dt2
−k12 −k13 −k14

−k12 m2
d2

dt2
0 0

−k13 0 m2
d2

dt2
0

−k14 0 0 m2
d2

dt2




x1

x2

x3

x4

 =


k12 + k13 + k14 0 0 0

0 k12 0 0
0 0 k13 0
0 0 0 k14




x1

x2

x3

x4


(9-10)
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which can be written as
L4×4~x = k~x (9-11)

or
k−1L4×4~x = ~x (9-12)

As will be discussed later, this system of equations can be “diagonalized” so that it becomes four
independent equations. Diagonalization depends on finding the eigensystem for the operator.

• The one-dimensional Shrödinger wave equation is:

− h̄2

2m

d2ψ(x)

dx2
+ U(x)ψ(x) = Eψ(x) (9-13)

where the second derivative represents the kinetic energy and U(x) is the spatial-dependent

potential energy. The “Hamiltonian Operator” H = − h̄2

2m
d2

dx2 + U(x), operates on the wave-
function ψ(x) and returns the wave-function’s total energy multiplied by the wave-vector;

Hψ(x) = Eψ(x) (9-14)

This is another important eigenvalue equation (and concept!)

Symmetric, Skew-Symmetric, Orthogonal Matrices

Three types of matrices occur repeatedly in physical models and applications. They can be placed into
three categories according to the conditions that are associated with their eigenvalues:

All real eigenvalues Symmetric matrices—those that have a ”mirror-plane” along the northwest–
southeast diagonal (A = AT )—must have all real eigenvalues.

Hermitian matrices—the complex analogs of symmetric matrices—in which the reflection across
the diagonal is combined with a complex conjugate operation (aij = āji), must also have all real
eigenvalues.

All imaginary eigenvalues Skew-symmetric (diagonal mirror symmetry combined with a minus)
matrices (−A = AT ) must have all complex eigenvalues.

Skew-Hermitian matrices—-the complex analogs of skew-symmetric matrices (aij = −āji)—have
all imaginary eigenvalues.

Unitary Matrices: unit determinant Real matrices that satisfy AT = A−1 have the property that
product of all the eigenvalues is ±1. These are called orthogonal matrices and they have or-
thonormal rows. Their determinants are also ±1.

This is generalized by complex matrices that satisfy Ā
T

= A−1. These are called unitary matrices
and their (complex) determinants have magnitude 1. Orthogonal matrices, A, have the important
physical property that they preserve the inner product: ~x ·~y = (A~x) · (A~y). When the orthogonal
matrix is a rotation, the interpretation is that the vectors maintain their relationship to each
other if they are both rotated.
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Imaginary axis: (0, i)

Real Axis (1, 0)

|λ|=1

Unitary
Hermitian

Skew−Hermitian

Figure 9-6: The Symmetric (complex Hermetic), Skew-Symmetric (complex Skew-Hermitian),
Orthogonal, and Unitary Matrix sets characterized by the position of their eigenvalues in the
complex plane.
(Hermits live alone on the real axis; Skew-Hermits live alone on the imaginary axis)

Orthogonal Transformations

Multiplication of a vector by an orthogonal matrix is equivalent to an orthogonal geometric transfor-
mation on that vector.

For orthogonal transformation, the inner product between any two vectors is invariant. That is,
the inner product of two vectors is always the same as the inner product of their images under an
orthogonal transformation. Geometrically, the projection (or the angular relationship) is unchanged.
This is characteristic of a rotation, or a reflection, or an inversion.

Rotations, reflections, and inversions are orthogonal transformations. The product of orthogonal
matrices is also an orthogonal matrix.
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Lecture 09 Mathematica R© Example 2
Coordinate Transformations to The Eigenbasis

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2012.

Here we demonstrate that a matrix, composed of columns of constructed eigenvectors of a matrix, can be used

to diagonalize a matrix, and the resulting diagonal entries are the matrix eigenvalues.

1simtrans = 8evec2, evec1< êê Transpose;
simtrans êê MatrixForm

2Inverse@simtransD.mymatrix.simtrans êê
Simplify êê MatrixForm

Ù Shows that the transformation to the diagonal basis is a rotation of p/4 

Ù Which makes sense considering in initialization steps that mymatrix was
created with a rotation on p/4 of a diagonal matrix
The  next  command produces  an  orthonormal  basis  of  the eigenspace
(i.e., the eigenvectors are of unit magnitude):

3Orthogonalize@Eigenvectors@mymatrixD,
Method Ø "GramSchmidt"D êê MatrixForm

The  command  RotationTransform  computes  a  matrix  that  will  rotate
vectors ccw about the origin in two dimensions, by a specified angle:

4RotationTransformBp

4
F@881, 0<, 80, 1<<D êê

MatrixForm

This last result  shows that the transformation to the eigenvector space
involves  rotation  by  p/4--and  that  the  matrix  corresponding  to  the
eigenvectors produces this same transformation
Here is a demonstration of the general result A x i  = li  x i , where x  is an
eigenvector and l its corresponding eigenvalue: 

5evec1
evec2

6mymatrix.evec1

7mymatrix.evec2

MatrixPower multiplies a matrix by itself n times…

8MatrixPower@mymatrix, 12D.evec2 êê Simplify

1: The matrix simtrans is constructed by assigning rows defined by
the eigenvectors from the previous example and then transposing (
Transpose) so that the eigenvectors are the columns.

2: The original matrix is left-multiplied by the inverse of simtrans
and right-multiplied by simtrans ; the result will be a diagonal

matrix with the original matrix’s eigenvalues as diagonal entries.

3: The eigenvectors are already orthogonal. There is a process called
Gram-Schmidt orthogonalization used to define a set of vectors that
are normal to each other. These orthogonalized vectors form a
convenient basis Linear combinations of the basis vectors can pro-
duce any other vector in same vector space; for the orthogonal-
ized basis, the basis vectors are as independent as possible. Here,
GramSchmidt produces vectors that are also normalized to unit vec-
tors. This, and other useful vector functions such as Normalize

are available for common vector operations.

4: The geometrical interpretation of this operation can be found by
comparing a matching MatrixTransform to the matric composed
of eigenvector columns. Here, we see that eigenvector-matrix is
equivalent to the π/4 rotation matrix.

6–7: These demonstrate that Eq. 9-2 is true.

8: This demonstrates that An~x = λn~x.

http://pruffle.mit.edu/3.016-2012/Notebooks/L09/Lecture-09.nb
http://pruffle.mit.edu/3.016-2012/pdf/L09/Lecture-09-2-COL.pdf
http://pruffle.mit.edu/3.016-2012/pdf/L09/Lecture-09-2-BW.pdf
http://pruffle.mit.edu/3.016-2012/html/Lecture-09/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2012
http://pruffle.mit.edu/3.016-2012/html/Lecture-09/HTMLLinks/index_2.html

	Lecture 9: Eigensystems of Matrix Equations
	Lecture 9: Eigenvalues and Eigenvectors of a Matrix
	Example 9-1: Calculating Matrix Eigenvalues and Eigenvectors

	Lecture 9: Symmetric, Skew-Symmetric, Orthogonal Matrices
	Orthogonal Transformations
	Example 9-2: Coordinate Transformations to The Eigenbasis



