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Sept. 24 2012

Lecture 8: Complex Numbers and Euler’s Formula

Reading:
Kreyszig Sections: 13.1, 13.2, , 13.3, 13.4, 13.6

Complex Numbers and Operations in the Complex Plane

Consider, the number zero: it could be operationally defined as the number, which when multiplied by
any other number always yields itself; and its other properities would follow.

Negative numbers could be defined operationally as something that gives rise to simple pat-
terns. Multiplying by −1 gives rise to the pattern 1,−1, 1,−1, . . . In the same vein, a number, ı,
can be created that doubles the period of the previous example: multiplying by ı gives the pattern:
1, ı,−1,−ı, 1, ı,−1,−ı, . . . Combining the imaginary number, ı, with the real numbers, arbitrarily long
periods can be defined by multiplication; applications to periodic phenonena is probably where complex
numbers have their greatest utility in science and engineering

With ı ≡
√
−1, the complex numbers can be defined as the space of numbers spanned by the

vectors: (
1
0

)
and

(
0
ı

)
(8-1)

so that any complex number can be written as

z = x

(
1
0

)
+ y

(
0
ı

)
(8-2)

or just simply as
z = x+ iy (8-3)

where x and y are real numbers. Rez ≡ x and Imz ≡ y.
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Lecture 08 Mathematica R© Example 1
Operations on complex numbers

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2012.

Straightforward examples of addition, subtraction, multiplication, and division of complex numbers are demon-

strated. An example that demonstrates that Mathematica R© doesn’t make a priori assumptions about

whether a symbol is real or complex. An example function that converts a complex number to its polar form is

constructed.

1imaginary = Sqrt@-1D

2H-imaginaryL^2
Complex numbers are composed of a real part + an imaginary part

3z1 = a + Â b;
z2 = c + Â d;

4compadd = z1 + z2;

5compmult = z1*z2;

6Simplify@compmult, a œ Reals &&
b œ Reals && c œ Reals && d œ Reals D

Mathematica does not assume that symbols are necessarily real...

7Re@compaddD
Im@compaddD

However, the Mathematica  function ComplexExpand  does assume that
the variables are real....

8ComplexExpand@Re@compaddDD

9ComplexExpand@Im@compaddDD

10ComplexExpand@Re@z1êz2DD

11ComplexExpand@compmultD

12ComplexExpand@Re@z1^3DD
ComplexExpand@Im@z1^3DD

Function to convert to Polar Form

13Pform@z_D := Abs@zD Exp@Â Arg@zDD
Note:  the function Arg[z]  returns an angle  in  the range -p  to  p  which
measures the inclination of z with respect to the +Re axis in the complex
plane.

14Pform@z1D

15Pform@z1 ê. 8a Ø 2, b Ø -p<D

16ComplexExpand@Pform@z1DD

1–2: Just like Pi is a mathematical constant, the imaginary number is
defined in Mathematica R© as something with the properties of ı

3: Here, two numbers that are potentially, but not necessarily complex
are defined.

4–5: Addition and multiplication are defined as for any symbol; here
the results do not appear to be very interesting because the other
symbols could themselves be complex. . .

6: And, Simplify doesn’t help much even with assumptions.

7: The real and imaginary parts of a complex entity can be extracted
with Re and Im. This demonstrates that Mathematica R© hasn’t
made assumptions about a, b, c, and d.

8-12: However, ComplexExpand does make assumptions that symbols are
real and, here, demonstrate the rules for addition, multiplication,
division, and exponentiation.

13–16: Abs calculates the magnitude (also known as modulus or abso-
lute value) and Arg calculates the argument (or angle) of a com-
plex number. Here, they are used to define a function (Pform )
to convert and expression to an equivalent polar form of a complex
number.

http://pruffle.mit.edu/3.016-2012/Notebooks/L08/Lecture-08.nb
http://pruffle.mit.edu/3.016-2012/pdf/L08/Lecture-08-1-COL.pdf
http://pruffle.mit.edu/3.016-2012/pdf/L08/Lecture-08-1-BW.pdf
http://pruffle.mit.edu/3.016-2012/html/Lecture-08/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2012
http://pruffle.mit.edu/3.016-2012/html/Lecture-08/HTMLLinks/index_1.html
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Complex Plane and Complex Conjugates

Because the complex basis can be written in terms of the vectors in Equation 8-1, it is natural to plot
complex numbers in two dimensions—typically these two dimensions are the “complex plane” with
(0, ı) associated with the y-axis and (1, 0) associated with the x-axis.

The reflection of a complex number across the real axis is a useful operation. The image of a
reflection across the real axis has some useful qualities and is given a special name—“the complex
conjugate.”

(0, i)

(1, 0)

z=x + iy z=x + iy

z=x − iy−z=−x − iy

−z= −x + iy

Re z

Im z

Figure 8-4: Plotting the complex number z in the complex plane: The complex conjugate
(z̄) is a reflection across the real axis; the minus (−z) operation is an inversion through the
origin; therefore −(z̄) = ¯(−z) is equivalent to either a reflection across the imaginary axis or
an inversion followed by a reflection across the real axis.
The real part of a complex number is the projection of the displacement in the real direction
and also the average of the complex number and its conjugate: Rez = (z + z̄)/2. The
imaginary part is the displacement projected onto the imaginary axis, or the complex average
of the complex number and its reflection across the imaginary axis: Imz = (z − z̄)/(2ı).

Polar Form of Complex Numbers

There are physical situations in which a transformation from Cartesian (x, y) coordinates to polar (or
cylindrical) coordinates (r, θ) simplifies the algebra that is used to describe the physical problem.

An equivalent coordinate transformation for complex numbers, z = x + ıy, has an analogous sim-
plifying effect for multiplicative operations on complex numbers. It has been demonstrated how the
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complex conjugate, z̄, is related to a reflection—multiplication is related to a counter-clockwise
rotation in the complex plane. Counter-clockwise rotation corresponds to increasing θ.

The transformations are:

(x, y)→ (r, θ)

{
x = r cos θ
y = r sin θ

(r, θ)→ (x, y)

{
r =

√
x2 + y2

θ = arctan y
x

(8-4)

where arctan ∈ (−π, π].

Multiplication, Division, and Roots in Polar Form

One advantage of the polar complex form is the simplicity of multiplication operations:

DeMoivre’s formula:
zn = rn(cosnθ + ı sinnθ) (8-5)

n
√
z = n
√
z(cos

θ + 2kπ

n
+ ı sin

θ + 2kπ

n
) (8-6)
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Lecture 08 Mathematica R© Example 2
Numerical Properties of Operations on Complex Numbers

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2012.

Several examples demonstrate issues that arise when complex numbers are evaluated numerically.

1ExactlyOne = Exp@2 p ÂD

2NumericallyOne = Exp@N@2 p ÂDD

3Chop@NumericallyOneD

4Round@NumericallyOneD

5ExactlyI = Exp@p Âê2D

6NumericallyI = Exp@N@p Âê2DD

7Round@NumericallyID

8Chop@NumericallyID

9
ExactlyOnePlusI =

ComplexExpandB 2  Exp@p Âê4DF

10
NumericallyOnePlusI =

ComplexExpandB 2  Exp@N@p Âê4DDF

11Chop@NumericallyOnePlusID

12Round@NumericallyOnePlusID

13Round@1.5 - 3.5 Sqrt@-1DD

14Re@NumericallyOnePlusID

15Im@NumericallyOnePlusID

1: The relationship e2πi = 1 is exact.

2: However, e2.0πi is numerically 1.

3: Chop removes small evalues that are presumed to be the result of
numerical imprecision; it operates on complex numbers as well.

4: Round is useful for mapping a number to a simpler one in its neigh-
borhood (such as the nearest integer).

5–8: Here, the difference between something that is exactly ı and is nu-
merically 1.0× ı is demonstrated. . .

[: 9–15] And, this is similar demostration for 1+ ı using its polar form
as a starting point.

Exponentiation and Relations to Trignometric Functions

Exponentiation of a complex number is defined by:

ez = ex+iy = ex(cos y + ı sin y) (8-7)

http://pruffle.mit.edu/3.016-2012/Notebooks/L08/Lecture-08.nb
http://pruffle.mit.edu/3.016-2012/pdf/L08/Lecture-08-2-COL.pdf
http://pruffle.mit.edu/3.016-2012/pdf/L08/Lecture-08-2-BW.pdf
http://pruffle.mit.edu/3.016-2012/html/Lecture-08/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2012
http://pruffle.mit.edu/3.016-2012/html/Lecture-08/HTMLLinks/index_2.html
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Exponentiation of a purely imaginary number advances the angle by rotation:

eıy = cos y + ı sin y (8-8)

combining Eq. 8-8 with Eq. 8-7 gives the particularly useful form:

z = x+ ıy = reıθ (8-9)

and the useful relations (obtained simply by considering the complex plane’s geometry)

e2πı = 1 eπı = −1 e−πı = −1 e
π
2
ı = ı e−

π
2
ı = −ı (8-10)

Subtraction of powers in Eq. 8-8 and generalization gives known relations for trigonometric functions:

cos z =
eız + e−ız

2
sin z =

eız − e−iz

2ı

cosh z =
ez + e−z

2
sinh z =

ez − e−z

2
cos z = cosh ız ı sin z = sinh ız

cos ız = cosh z sin ız = ı sinh z

(8-11)

Complex Numbers in Roots to Polynomial Equations

Complex numbers frequently arise when solving for the roots of a polynomial equation. There are many
cases in which a model of system’s physical behavior depends on whether the roots of a polynomial
are real or imaginary, and if the real part is positive. While evaluating the nature of the roots is
straightforward conceptually, this often creates difficulties computationally. Frequently, ordered lists
of solutions are maintained and the behavior each solution is followed.
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Lecture 08 Mathematica R© Example 3
Complex Roots of Polynomial Equations

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2012.

Here we construct an artificial example of a model that depends on a single parameter in a quadratic polynomial

and illustrate methods to analyze and visualize its roots. Methods to “peek” at the form of long expressions are

also demonstrated.

1sols = Solve@Hx^4 - x^3 + x + 1L ã 0, xD

2x ê. sols

3Im@x ê. solsD

4ComplexExpand@Im@x ê. solsDD

5ComplexExpand@Im@x ê. solsDD êê N

6ComplexExpand@Re@x ê. solsDD êê N

Generalize the above to a family of solutions.

7bsols = Solve@Hx^4 - x^3 + b*x + 1L ã 0, xD

8Dimensions@bsolsD
Short@bsols, 4D

9SolsbImag = ComplexExpand@Im@x ê. bsolsDD;

10Dimensions@SolsbImagD
Short@SolsbImag@@1DDD

11SolsbReal = ComplexExpand@Re@x ê. bsolsDD;

12Plot@Evaluate@SolsbImagD, 8b, -10, 10<D

13Plot@Evaluate@SolsbImagD, 8b, -10, 10<,
PlotStyle Ø Table@8Hue@1 - aê6D<, 8a, 1, 4<DD

14Plot@Evaluate@SolsbRealD, 8b, -10, 10<,
PlotStyle Ø Table@8Hue@1 - aê6D<, 8a, 1, 4<DD

15
Plot@Evaluate@SolsbRealD, 8b, -10, 10<,
PlotStyle Ø Table@8Hue@1 - aê6D,

Thickness@0.05 - .01*aD<, 8a, 1, 4<DD

16Plot@Evaluate@x ê. bsolsD,
8b, -10, 10<, PlotStyle Ø ThickD

1–6: Using a prototype fourth order equation, a list of solutions are ob-
tained; the real and imaginary parts are computed.

7: The above is generalized to a single parameter b in the quartic
equation; the conditions that the roots are real will be visualized.
bsols, the list of solution rule-lists is long and complicated.

8: First, one must consider the structure of bsols. Dimensions

indicates it is a list of four lists, each of length 1. Dimensions and
Short used together, provides a practical method to observe the

structure of a complicated expression without filling up the screen
display.

9–11: Here, the real and complex parts of each of the solutions is obtained
with Re and Im where the parameter b is assumed to be real via
the use of ComplexExpand. These may take a long time to
evaluate on some computers.

12–13: Which of the solutions (i.e., 1,2,3, or 4) is identified by a different
color (if Evaluate is used inside the Plot function). In the first
case, Mathematica R© ’s default indexed colors are used, and in
the second case they are set explicitely using Hue in PlotStyle.

14: Similarly, the real parts appear to converge to a single value when
the imaginary parts (from above) appear. . .

15: But, the actual behavior is best illustrated by using Thickness to
distinguish superimposed values. The behavior of real parts of this
solution have what is called a pitchfork structure.

16: As of Mathematica R© 6, it is not necessary that the plotted
function evaluate to a real value at each point. Now, only those
points that evaluate to a real number will be graphed.

http://pruffle.mit.edu/3.016-2012/Notebooks/L08/Lecture-08.nb
http://pruffle.mit.edu/3.016-2012/pdf/L08/Lecture-08-3-COL.pdf
http://pruffle.mit.edu/3.016-2012/pdf/L08/Lecture-08-3-BW.pdf
http://pruffle.mit.edu/3.016-2012/html/Lecture-08/HTMLLinks/index_3.html
http://pruffle.mit.edu/3.016-2012
http://pruffle.mit.edu/3.016-2012/html/Lecture-08/HTMLLinks/index_3.html
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