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Sept. 17 2012

Lecture 6: Linear Algebra I

Reading:
Kreyszig Sections: 4.0, 7.1, 7.2, 7.3, 7.4, 7.5

Vectors

Vectors as a list of associated information

~x =

 number of steps to the east
number of steps to the north
number steps up vertical ladder

 (6-1)

~x =

 3
2.4
1.5

 determines position

 xeast
xnorth
xup

 (6-2)

The vector above is just one example of a position vector. We could also use coordinate systems that
differ from the Cartesian (x, y, z) to represent the location. For example, the location in a cylindrical
coordinate system could be written as

~x =

 x
y
z

 =

 r cos θ
r sin θ

z

 (6-3)

i.e., as a Cartesian vector in terms of the cylindrical coordinates (r, θ, z).
The position could also be written as a cylindrical, or polar vector

~x =

 r
θ
z

 =


√

x2 + y2

tan−1 y
x

z

 (6-4)

where the last term is the polar vector in terms of the Cartesian coordinates. Similar rules would apply
for other coordinate systems like spherical, elliptic, etc.
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However, vectors need not represent position at all, for example:

~n =



number of Hydrogen atoms
number of Helium atoms
number of Lithium atoms
...
number of Plutonium atoms
...


(6-5)

Scalar multiplication

1
Navag.

~n ≡



number of H
Navag.

number of He
Navag.

number of Li
Navag.

...
number of Pu

Navag.
...


=



moles of H
moles of He
moles of Li
...
moles of Pu
...


= ~m (6-6)

Vector norms

‖~x‖ ≡(x2
1 + x2

2 + . . . x2
k)

1/2 = euclidean separation (also called l2-norm) (6-7)
‖~n‖ ≡nH + nHe + . . . n132? = total number of atoms (related to the Manhatten norm) (6-8)

Unit vectors
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unit direction vector mole fraction composition (6-9)

x̂ =
~x

‖~x‖
X̂ =

~N

‖ ~N‖
(6-10)

Extra Information and Notes
Potentially interesting but currently unnecessary

If < stands for the set of all real numbers (i.e., 0, −1.6, π/2, etc.), then we can use a
shorthand to specify the position vector, ~x ∈ <N (e.g., each of the N entries in the vector
of length N must be a real number, or must be in the set of real numbers, ‖~x‖ ∈ <.)
For the unit (direction) vector: x̂ = {~x ∈ <3 | ‖~x‖ = 1} (i.e, the unit direction vector is the
set of all position vectors such that their length is unity—or, the unit direction vector is the
subset of all position vectors that lie on the unit sphere. ~x and x̂ have the same number of
entries, but compared to ~x, the number of independent entries in x̂ is smaller by one.
For the case of the composition vector, it is unphysical to have a negative number of atoms,
therefore the mole fraction vector ~n ∈ (<+)elements (<+ is the real non-negative numbers)
and m̂ ∈ (<+)(elements-1).

Matrices and Matrix Operations

Consider methane (CH4), propane (C3H8), and butane (C4H10).

MHC =

H-column C-column
number of H

methane molecule
number of C

methane molecule
number of H

propane molecule
number of C

propane molecule
number of H

butane molecule
number of C

butane molecule

 methane row
propane row
butane row

(6-11)

MHC =

 4 1
8 3
10 4

 =

 M11 M12

M21 M22

M31 M32

 (6-12)



MIT 3.016 Fall 2012 Lecture 6 c© W.C Carter 87

Matrices as a linear transformation of a vector

~NHC = (number of methanes,number of propanes,number of butanes) (6-13)
= (NHC m, NHC p, NHC b) (6-14)
= (NHC 1, NHC 2, NHC 3) (6-15)

(6-16)

~NHCMHC ≡
3∑

i=1

NHC iMHC ij = ~N (6-17)

The “summation” convention is often used, where a repeated index is summed over all its possible
values:

p∑
i=1

NHC iMHC ij ≡ NHC iMHC ij = Nj (6-18)

For example, suppose

~NHC = (1.2× 1012 molecules methane, 2.3× 1013 molecules propane, 3.4× 1014 molecules butane)
(6-19)
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~NHCMHC =

(1.2× 1014 methanes, 2.3× 1013 propanes, 3.4× 1012 butanes)


4 atoms H
methane

1 atoms C
methane

8 atoms H
propane

3 atoms C
propane

10 atoms H
butane

4 atoms C
butane


=(7.0× 1014 atoms H, 2.0× 1014 atoms C)

(6-20)

Matrix transpose operations

Above, the lists (or vectors) of atoms were stored as rows, but often it is convenient to store them as
columns. The operation to take a row to a column (and vice-versa) is called a “transpose”.

MHC
T =

methane-column propane-column butane-column number of H
methane molecule

number of H
propane molecule

number of H
butane molecule

number of C
methane molecule

number of C
propane molecule

number of C
butane molecule

 hydrogen row
carbon row

(6-21)

~NHC
T

=

 number of methanes
number of propanes
number of butanes

 =

 NHC m

NHC p

NHC b

 (6-22)

MHC
T ~NHC

T
= ~NT

(
4 8 10
1 3 4

)  number of methanes
number of propanes
number of butanes

 =
(

number of H-atoms
number of C-atoms

)
(6-23)

Matrix Multiplication
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The next example supposes that some process produces hydrocarbons and can be modeled with the
pressure P and temperature T . Suppose (this is an artificial example) that the number of hydrocarbons
produced in one millisecond can be related linearly to the pressure and temperature:

number of methanes = αP + βT

number of propanes = γP + δT

number of butanes = εP + φT

(6-24)

or

~NHC
T

=

 α β
γ δ
ε φ

 (
P
T

)
(6-25)

Lecture 06 Mathematica R© Example 1
Matrices

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2012.

Here is an example operation that takes us from the processing vector (P, T )T to the number of hydrogens and
carbons.

MHC is our matrix that maps the three
hydrocarbons HmethaneCH4 , propaneC3  H8 ,
butaneC4  H10 , to number of hydrogens and carbons

1

MHC = 8
84, 1<,
88, 3<,
810, 4<

<

MHC êêMatrixForm

2Transpose@MHCD êê MatrixForm

PTmatrix is our matrix of kinetic data that
gives rates of change of a particular atomic species
HC or HL as a function of pressure and temperature
Hsee lecture notes corresponding to this MathematicanotebookL.

3

PTmatrix = 8
8a, b<,
8g, d<,
8e, f<

<;
PTmatrix êêMatrixForm

4MPT = MHC. PTmatrix

The matrix multiplication does not work 
because the sizes are inconsistent.

5Clear@MPTD

6MPT = TransposeAMHCE. PTmatrix;
MPT êêMatrixForm

1: The matrix (Eq. 6-12) is entered as a list of sublists. The sub-lists
are the rows of the matrix. The first elements of each row-sublist
form the first column; the second elements are the second column
and so on.
The Length of a matrix-object gives the number of rows, and the
second member of the result of Dimensions gives the number of
columns.
All sublists of a matrix must have the same dimensions.
It is good practice to enter a matrix and then display it separately
using MatrixForm. Otherwise, there is a risk of defining a symbol
as a MatrixForm-object and not as a matrix which was probably the
intent.

2: The Transpose function exchanges the rows and
columns. If Dimensions[Mat] returns {r,c}, then
Dimensions[Transpose[Mat]] returns {c,r}.

3: Dimensions[PTmatrix] is {3,2}.
4: This command will generate an error.

Matrix multiplication in Mathematica R© is produced by the
”dot” ( . ) operator—and not the ”multiplication” ( * ) operator.
For matrix multiplication, A.B, the number of columns of A must
be equal to the number of rows of B.

6: The Transpose “flips” a matrix by producing a new matrix which
has the original’s ith row as the new matrix’s ith column (or, equiv-
alently the jth column as the new jth row). In this example, a
3×2-matrix (PTmatrix) is being left-multiplied by a a 2×3-matrix.
The resulting matrix would map a vector with values P and T to
a vector for the rate of production of C and H.

http://pruffle.mit.edu/3.016-2012/Notebooks/L06/Lecture-06.nb
http://pruffle.mit.edu/3.016-2012/pdf/L06/Lecture-06-1-COL.pdf
http://pruffle.mit.edu/3.016-2012/pdf/L06/Lecture-06-1-BW.pdf
http://pruffle.mit.edu/3.016-2012/html/Lecture-06/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2012
http://pruffle.mit.edu/3.016-2012/html/Lecture-06/HTMLLinks/index_1.html
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Matrix multiplication is defined by:

AB =
∑

i

AkiBij (6-26)

The indices of the matrix defined by the multiplication AB = C are Ckj .

Matrix Inversion

Sometimes what we wish to know is: “What vector is it (~x), when transformed by some matrix (A),
that gives us a particular result (~b = A~x)?”

A~x = ~b

A−1A~x = A−1~b

~x = A−1~b

(6-27)

The inverse of a matrix is defined as: something, that when multiplied with the matrix, leaves a
product that has no effect on any vector. This special product matrix is called the identity matrix.
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Lecture 06 Mathematica R© Example 2
Inverting Matrices

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2012.

Our last example produced a linear operation that answered the question, “given a particular P and T , at what
rate will C and H be produced?”
To answer the converse question, “If I want a particular rate of production for C and H, at what P and T should
the process be carried out?”
To invert the question on linear processes, the matrix is inverted.

1
MPT = TransposeAMHCE. PTmatrix;
MPTinverse = Factor@Inverse@MPTDD;
MPTinverse êêMatrixForm

-
b+3 d+4 f

2 H2 b g-2 a d+3 b e+d e-3 a f-g fL
2 b+4 d+5 f

2 b g-2 a d+3 b e+d e-3 a f-g f

-
a+3 g+4 e

2 H-2 b g+2 a d-3 b e-d e+3 a f+g fL
2 a+4 g+5 e

-2 b g+2 a d-3 b e-d e+3 a f+g f

The  denominators  are  related  to  the  determinant---if  the  determinant
vanishes, then the inverse matrix is not defined.

2Det@MPTD
Checking to see if the the inverse multiplied by the original matrix is the
identity matrix:

3MPT.MPTinverse

It is not obvious unless simplified...

4Simplify@MPT.MPTinverseD êê MatrixForm

1 0

0 1

1: Inverting a matrix by hand is tedious and prone to error, Inverse
does this in Mathematica R© . In this example, Factor is called
on the result of Inverse. Factor is an example of a threadable
function—it recursively operates on all members of any argument
that is a list-object. Thus, each of the entries in the inverted matrix
is factored individually.

2: The determinant of a matrix is fundamentally linked to the exis-
tence of its inverse. In this example, it is observed that if the Det of
a matrix vanishes, then the entries of its inverse are undetermined.

3: The multiplication of a matrix by its inverse should produce the
identity matrix (i.e., a matrix with 1 at each diagonal entry, and
zero otherwise). That this multiplication gives the identity matrix
is not obvious. Unless, . . .

4: Simplify is called on each of the entries.

http://pruffle.mit.edu/3.016-2012/Notebooks/L06/Lecture-06.nb
http://pruffle.mit.edu/3.016-2012/pdf/L06/Lecture-06-2-COL.pdf
http://pruffle.mit.edu/3.016-2012/pdf/L06/Lecture-06-2-BW.pdf
http://pruffle.mit.edu/3.016-2012/html/Lecture-06/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2012
http://pruffle.mit.edu/3.016-2012/html/Lecture-06/HTMLLinks/index_2.html
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Linear Independence: When solutions exist

A~x = ~b(
a11 a12

a21 a22

) (
x
y

)
=

(
b1

b2

) (6-28)

a11x+a12y =b1
a11x+a12y =b1a11x+a12y =b1

a21x+a22y =b2
a21x+a22y =b2a21x+a22y =b2

b1
a12

b2
a22

No Solution One Unique Solution Infinitely Many Solutions

Figure 6-1: Geometric interpretation of solutions in two dimensions

Figure 6-2: Geometric interpretation of solutions in three dimensions. From left to right: One
solution, No solutions. Infinitely many solutions (two dimensional set) Infinitely many solution
(one dimensional set).
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Lecture 06 Mathematica R© Example 3
Eliminating redundant equations or variables

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2012.

Consider liquid water near the freezing point—dipole interactions will tend to make water molecules form clusters
such as H2O and H4O2.
This example looks at such a case where the columns are not linearly independent.

Same example for water and water complexes: use the matrix watmat to
store molecular formulas for each type of molecule in the system

1watmat = 882, 4<, 81, 2<<;
watmat êêMatrixForm

The vector molvec is used to store the number of each kind of molecule

2molvec = 8h20, h402<
The vector atomvec is used to store the number of each atomic species
that is present

3atomvec = 8h, o<

4atomvec êêMatrixForm
The vector eq is now defined and its two elements are equations that give
the number of hydrogen atoms and the number of oxygen atoms:

5eq@1D = Hwatmat.molvecL@@1DD ä atomvec@@1DD

6eq@2D = Hwatmat.molvecL@@2DD ä atomvec@@2DD

7Solve@8eq@1D, eq@2D<, molvecD

8?Eliminate

Eliminate@eqns, varsD eliminates variables between
a set of simultaneous equations. à

9Eliminate@8eq@1D, eq@2D<, molvecD

2 o ã h

10MatrixRank@watmatD

11NullSpace@watmatD
Length@NullSpace@watmatDD

88-2, 1<<

1: The mapping from molecules to the number of atoms becomes:(
2 4
1 2

) (
NH2O
NH4O2

)
=

(
NH
NO

)
(6-29)

The matrix watmat encodes the coefficients in these linear equa-
tions.

2–5: The vectors, atomvec and molvec, represent the numbers of each
type of atom and each type of molecule.

5–6: These equations are the same as the rows of A~x being set to the
corresponding entry of ~b for A~x = ~b. These are the linear equations
given above.

7: This is an attempt (using Solve on the linear equations) to find
the number of H2O- and H4O2-molecules, given the number of H-
and O-atoms. Of course, it has to fail.

8–9: Eliminate produces a logical equality for each redundancy in a
set of equations. In this case, the result expresses the fact that
2× (second row) is the same as the (first row).

10: The rank of a matrix, obtained with MatrixRank, gives the number
of linearly independent rows.

11: The null space of a matrix, A, is a linearly independent set of vec-
tors ~x, such that A~x is the zero-vector; this list can be obtained
with NullSpace. The result is equivalent to that obtained with
Eliminate in item 9. The nullity is the number of vectors in a

matrix’s null space. The rank and the nullity must add up to the
number of columns of A

http://pruffle.mit.edu/3.016-2012/Notebooks/L06/Lecture-06.nb
http://pruffle.mit.edu/3.016-2012/pdf/L06/Lecture-06-3-COL.pdf
http://pruffle.mit.edu/3.016-2012/pdf/L06/Lecture-06-3-BW.pdf
http://pruffle.mit.edu/3.016-2012/html/Lecture-06/HTMLLinks/index_3.html
http://pruffle.mit.edu/3.016-2012
http://pruffle.mit.edu/3.016-2012/html/Lecture-06/HTMLLinks/index_3.html
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