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Lecture 3: Introduction to Mathematica II

Sept. 10 2012

Functions and Rules

Besides Mathematica R© ’s large set of built-in mathematical and graphics functions, the most power-
ful aspects of Mathematica R© are its ability to recognize and replace patterns and to build functions
based on patterns. Learning to program in Mathematica R© is very useful and to learn to program,
the basic programmatic elements must be acquired.

The following are common to almost any programming language:

Variable Storage A mechanism to define variables, and subsequently read and write them from
memory.

Loops Program structures that iterate. A well-formulated loop will always be guaranteed to exit.

Mathematica R© has loop constructions, but it is generally better to take advantage of its List
Operations, such as Table. We will discuss these later.

Variable Scope When a variable is defined, what other parts of the program (or other programs) will
be able to read its value or change it? The scope of a variable is, roughly speaking, the extent to
which it is available.

Switches These are commands with outcomes that depend on a quality of variable, but it is unknown,
when the program is written, what the variable’s value will be. Common names are If, Which,
Switch, IfThenElse and so on.

Functions Reusable sets of commands that are stored away for future use.

All of the above are, of course, available in Mathematica R© .
The following are common to Symbolic and Pattern languages, like Mathematica R© .

Patterns This is a way of identifying common structures and make them available for subsequent
computation.

Recursion This is a method to define function that obtains its value by calling itself. An example is
the Fibonacci number Fn ≡ Fn−1+Fn−2 (The value of F is equal to the sum of the two values that
preceded it.) Fn cannot be calculated until earlier values have been calculated. So, a function
for Fibonacci must call itself recursively. It stops when it reaches the end condition F1 = F2 = 1.
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Lecture 03 Mathematica R© Example 1
Procedural Programming

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2012.

Simple programs can be developed by sequences of variable assignment.

AEvaluating a sequence of instrutions (;;;)

1
a = 1;
a = a + a; a = a^a
a = a + a; a = a^a

2Clear@aD

BLoops

In Mathematica, it is generally not      a    good           idea to use 
looping constructions such as Do, For, and While. The 
preferred method to construct and operate on lists---
however, it is ok to use looping constructions as 
beginners.

3?Do

4a = 1; Do@a = 2 a; a = a^a, 8i, 1, 2<D

5a

In this case, Do does not produce screen output. The following
will and is a simple illustration of how formatted output can be
programmed:

6
a = 0.1; Do@a = 2 a; a = a^a;
Print@"iteration is ", i,
" and a is ", aD, 8i, 1, 4<D

7Clear@aD

8
For@a = 0.1; i = 1, i § 4, i++, a = 2 a;
a = a^a; Print@"iteration is ",
i, " and a is ", aDD

9a = 0.25;
Table@8i, a = 2 a; a = a^a<, 8i, 1, 4<D

10a = 0.75;
Table@8i, a = 2 a; a = a^a<, 8i, 1, 4<D

11
datatable =
Table@8dx, For@a = dx; i = 1, i § 4,

i++, a = 2 a; a = a^aD; Log@aD<,
8dx, 0.01, 0.5, 0.01<D

In the instruction above, note that the variable "datatable" is a
list. In Mathematica, variables can be numbers, expressions,
lists, plots, ...  We will see that this feature is very useful.

1: Here is a simple program that is just a sequence of statements that
reassigns a from an initial value (a=1). The program does this: take
a add it to itself and assign the result back to a; raise this new a to
the power a and assign back to itself. Repeat. In Mathematica R©
, a semicolon— ;—just indicates that output should be suppressed.
There are five executions—two of them produce output on the
screen.
However, it would be cumbersome and unaesthetic if we wanted to
generalize the last two lines to many executions of the same type.
This is where program loops come in. Do is a simple way to loop
over an expression a fixed number of times. This is equivalent to
item 1, but could be easily generalized to more iterations.

4: The Do loop does not produce intermediate output, the current
value of a can be obtained by asking Mathematica R© for the
current value.

6: Here an equivalent example, but extra Print statements are added
so that intermediate output can be observed.

8: A For loop is another loop structure that enforces good program-
ming style: Its arguments provide: an initialization, an exit condi-
tion, an iteration operator, and a function statement, and is equiv-
alent to item 6, but it includes (a different) initial value for a in the
For statement and iterates 4 times instead of 2.

The are many types of loop constructs; While is yet another.
9: Table is a very useful Mathematica R© iterating function. While

it iterates, it leaves intermediate results in a List structure. Thus,
the built-up list can be analyzed later.
It is good practice to use Table instead of Do, For, and While.

10: Except for the intial iteration value of a, and the number of loops,
these are practically equivalent to 1, 4, 6, and 9. We can think of
this as a little program that takes an initial value of a and returns
a final value as the last member of the resulting list.

11: We can generalize to many initial values, by putting a Table and a
For together. The result is a list of lists (each of length 2): The first
entry in each list is the initial value (dx) and the second entry is
the result of the For-loop after four iterations for that dx. Because
the values tend to get very large, we wrap a Log (natural log)
around the result of the For-loop. A special increment structure
is utilized—it sets initial and final values as well as the increment
size.
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Lecture 03 Mathematica R© Example 2
Plotting Lists of Data and Examples of Deeper Mathematica R© Functionality
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This demonstrates how visualizing data can be combined with other functions to perform analysis. Here, we
show that the little iterative program produces a minimum and then we analyze the minimum with two different
methods.

1ListPlot@datatableD

2Options@ListPlotD
Note that the options are written as Rules.

3ListPlot@datatable, PlotRange Ø 8250, 500<,
PlotStyle Ø PointSize@0.025DD

4?*Minimum*

5
FindMinimum@For@a = xvalue;
i = 1, i § 4, i++, a = 2 a; a = a^aD;
Log@aD, 8xvalue, 0.15, 0.25<D
By going into the Help Browser, you can see that the output of FindMini-
mum is a list, the first element of which is the functions minimum value,
and the second is a Rule specifing where the minimum occurs.
Lets try and do the above the hard way.  I will use Nest  to recursively
apply  the function 4  times (I  am just  using a shorthand here,  we can
ignore the use of Nest for this course...). You can see that it works. Don't
worry about it, but if you want to know about it, use the Help Browser to
get information about Nest and Pure Functions.

6Clear@xD

7fx = Nest@H2 ÒL^H2 ÒL &, x, 4D
Take it derivative and set equal to zero...

8dfx = D@fx, xD êê Simplify

Finding the zero of this will not be easy.... but FindRoot claims it can do
it...

9FindRoot@dfx, 8x, .1, .3<D

1: The data produced from the last example can be plotted. It is
apparent that there is a minimum between initial values of 0.1 and
0.3. But, it will be difficult to see unless the visualization of the
plot can be controlled.

3: By specifying the ListPlot’s option for the range of the y-like
variable, the character of the minimum can be visually assessed.

4: It is likely that Mathematica R© has functions to find minima;
here we look for likely suspects.

5: FindMinimum is a fairly sophisticated function to obtain the min-
imum of an expression in a specified range, even if the function
only returns a numerical result. Here FindMinimum is used, to find
a very high precision approximation to the minimum observed in
item 3. The function is our For-loop with a variable xvalue as
the initial value. We ask FindMinimum to hunt for the xvalue that
minimizes the ( Log of the) For-loop.

7: This is a fairly advanced example—beginning students should not
worry about understanding it yet. Nest is a sophisticated method
of repeated applications of a function (i.e., f(f(f(x))) is nesting the
function f three times on an argument x). It is equivalent to the
previous methods of producing the iterative structure, but now the
result is an expression with a variable x that plays the role of the
initial value. This concept uses Pure Functions which are produced
by the ampersand &.

8: The minimum of the function can be analyzed the standard way,
here by taking derivatives with D. It would not be amusing (that
is, for most of us) to find this derivative by hand.

9: FindRoot is sophisticated numerical method to obtain the zero of
an expression in a specified range.

Very complex expressions and concepts can be built-up by loops, but within Mathematica R© the
complexity can be buried so that only the interesting parts are apparent and shown to the user.

Sometimes, as complicated expressions are being built up, intermediate variables are used. Consider
the value of i after running the program:
FindMinimum[For[a = dx; i = 1, i ≤ 4, i++, a = 2a; a = a∧a]; Log[a], {dx, 0.15, 0.25}];
the value of i (in this case 5) has no useful meaning anymore. If you had defined a symbol such as x
= 2i previously, then x would now have the value of 10, which is probably not what was intended. It
is much safer to localize variables—in other words, to limit the scope of their visibility to only those
parts of the program that need the variable and this is demonstrated in the next example. Sometimes
this is called a “Context” for the variable in a programming language; Mathematica R© has contexts
as well, but should probably be left as an advanced topic.
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Lecture 03 Mathematica R© Example 3
Making Variables Local and Using Switches to Control Procedures
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Describes the use of Module to “hide” a variable: consider the variable a from the first item in the above
example—its intermediate values during iteration are not always important. Suppose you wish to use the
symbol a later, that it played an intermediate role hence was not used, and may easily be forgotten. It is good
practice to make such variables ‘local’ to their own functions.
An example of a logical switch is demonstrated for If.

Local Variables

1xvalue
a

2CurrentValueofA = a;

3

xvalue = SnickerDoodle; a = HappyGoLucky;
Module@
8xvalue, a, maxiteration = 4, solution, i<,
solution =

FindMinimum@For@a = xvalue; i = 1,
i § maxiteration, i++, a = 2 a; a = a^aD;
Log@aD, 8xvalue, 0.15, 0.25<D;

Print@xvalue ê. solution@@2DDD
D

4
xvalue
a
solution

Switches: If, Which

5a = Prime@23D + Prime@62D + Prime@104D

6

If@PrimeQ@aD,
Print@a , " is a Prime Number"D,
Print@a,
" is not Prime, its divisors are ",
Divisors@aDD,
Print@"I have no idea what

you are asking me to do!"D
D

The above program is ok, but not very useful because it only works for
the current value of a.  It would be more useful to have something that
worked for any value of a and could use it over again~that is, turn it into
a tool.  This involves patterns and function definitions.

1: The symbols xvalue and a are left over from the last example, even
though they played only an intermediate role for the final result.
It is not unusual to run the same Mathematica R© for a day or
more—it would be easy to forget that values have been assigned to
symbols.

2: This could lead us to mistakenly use its value later as though it
might be undefined. This is a common error.

3: The production of such errors can be reduced with a program-
ming practice known as localized variables (also known as variable-
scoping). The idea is to hide the variable within its own structure—
the variable is said to have a limited scope. Module provides a
function for doing this. Here symbols xvalue and a have set val-
ues before the call to Module, but any value that is changed inside
of Module has no effect on its “global” value in the rest of the
Mathematica R© session.. Using Module is good programming
practice for creating your own functions.

4: Even though Module changed the symbols xvalue and a, and used
an internal variable solution, there should be no effect outside of
Module.

6: It is useful to build functions that are “smart” (or appear to be so,
by applying rules of logic). Here, a simple example of the use of
If will be applied to a symbol which is the sum of the 23rd, 62nd,
and 104th prime numbers.
This is a simple program. First, it checks if a is prime using the
query-function PrimeQ. If the check is true, then it prints a message
saying so, and then returns control to the Mathematica R© kernel.
If the check is false, then it prints out a message and some more

useful information about the fact it isn’t prime using Divisors. If
the statement cannot be determined to be true or false, a message
to that effect is printed.

Patterns are extremely important in mathematics and in Mathematica R© . The goal for beginners
should be to master how to create your own functions: understanding how to use patterns is essential
to creating your own functions in Mathematica R© .

In Mathematica R© , the use of the underscore, , means “this is a placeholder for something that
will be used later.” In other words, you may want to perform a predictable action on an object (e.g.,
find the value of its cosine, determine if it is prime, plot it), but want to create the action before the
object exists. We create the action using a pattern ( ), the arbitrary object, and create fixed operations
on the pattern.

http://pruffle.mit.edu/3.016-2012/Notebooks/L03/Lecture-03.nb
http://pruffle.mit.edu/3.016-2012/pdf/L03/Lecture-03-3-COL.pdf
http://pruffle.mit.edu/3.016-2012/pdf/L03/Lecture-03-3-BW.pdf
http://pruffle.mit.edu/3.016-2012/html/Lecture-03/HTMLLinks/index_3.html
http://pruffle.mit.edu/3.016-2012
http://pruffle.mit.edu/3.016-2012/html/Lecture-03/HTMLLinks/index_3.html


MIT 3.016 Fall 2012 Lecture 3 c© W.C Carter 49

Usually, one needs to name the pattern to make it easier to refer to later. The pattern gets named
by adding a head to the underscore, such as SomeVariableName , and then you can refer to whatever
pattern matched it with the name SomeVariableName.

This is a bit abstract and probably difficult to understand without the aid of a few examples. We
start with patterns and replacement in the following example, and then build up to functions in the
next example.

Lecture 03 Mathematica R© Example 4
Operating with Patterns

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2012.

Patterns are identified by the underscore , and the matched pattern can be named for later use (e.g., thematch ).

1AList = 8first, second,
third = 2 first, fourth = 2 second<

2AList ê. 82 a_ Ø a<

3Clear@aD

4AList ê. 82 a_ Ø a<

5AList ê.
8p_ , q_ , r_ , s_< Ø 8p , p q, p q r, p q r s<

682, 0.667, aêb, Pi< ê. 8p_Integer Ø p One<
_ all by itself stands for anything.  x_ also  stands for anything, but gives
anything a name for later use.

7AList ê. _ Ø AppleDumplings

8PaulieNoMealX = Sum@b@iD x^i, 8i, 2, 6<D

9PaulieNoMealX ê. x^n_ Ø n x^Hn - 1L
Make the rule work for any polynomial...

10DerivRule = q_^n_ Ø n q^Hn - 1L;

11PaulineOMealY = Sum@c@iD z^i, 8i, 2, 6<D

12PaulineOMealY ê. DerivRule
PaulieNoMealX ê. DerivRule

Another problem is that it  will  not work for first-order and zeroeth-order
terms...

13PaulENoMiel = Sum@c@iD HoneyBee^i, 8i, 0, 6<D

14PaulENoMiel ê. DerivRule
This  could be fixed,  but  it  would be much easier  to do so by defining
functions of a pattern.

It is also possible to have a pattern apply conditionally.

15Cases@881, 2<, 82, 1<, 8a, b<, 82, 84<, 5<,
8first_, second_< ê; first < secondD

1: Construct an example AList = {first, second, 2first,
2second} to demonstrate use of pattern matching. We will try to
replace members that match 2 something with something There
is an instructive error in the first try.

2: The rule is applied to AList through the use of the operator /.
(short-hand for ReplaceAll). The pattern here is “two multiplied
by something.” The symbol a should a placeholder for something,
but a was already defined and so the behavior is probably not what
was wanted: 2 something was replaced by the current value of a.
Another (probably better, but better left until later) usage is the
delayed ruleset :->.

4: After a has been cleared, the symbol a is free to act as a placeholder.
In other words, a takes on the temporary value of the last match.
The effect of applying the rule is 2×all somethings are replaced by
the pattern represented by a which takes a temporary value of each
something.

5: Here is an example that uses each member of a four-member list,
names the members, and then uses a rule to operate on the entire
list. Study this example until you understand it.

6: The types of things that get pattern-matched can be restricted by
adding a pattern qualifier to the end of the underscore. Here, we
restrict the pattern matching to those objects that are Integer.
The first replacement makes sense; however, the third member of
the list is understood by considering that the internal representation
of a/b is a×Power[b,-1]—the -1 is what was matched.

7: It is not necessary to name a pattern, but it is a good idea if the
match is to be used again later. Here, the first thing that gets
matched (the list itself) is replaced with the new symbol.

8: For a simple (incomplete and not generally useful) example of the
use of patterns, an example producing symbolic derivative of a poly-
nomial will be developed. Here, a polynomial PaulNoMealX in x is
defined using Sum.
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Lecture 03 Mathematica R© Example 5
Immediate (=) and Delayed (:=) Assignments
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Sometimes we wish to set a variable immediately and intend for its value to not change until it is
reset—for this immediate assignment is used. If the variable is to depend on when it is used, or the
context in which it is used, delayed assignment (:=) is in order.

1: Here we set a symbol to the current date. Its value get
When an "=" is used in an assignment, the current 
value of the right-hand-side is  assigned to the left-
hand-side.

1theFixedDate = DateString @D

This assignment may not be very useful if we 
wanted to use the "current time" as a variable some 
time later.

2
TableForm @

Table@theFixedDate , 8i, 1, 12<DD

Instead, what we probably want is to have the right-
hand-side evaluated when          it    is     used.            This is delayed              
assignment                     (:=)

3theFlexibleDate := DateString @D

4theFlexibleDate

Below, Pause is used in a compound statement to show
that the value associated with theFlexibleDate is updating

5
TableForm @Table@Pause@iD;

theFlexibleDate , 8i, 1, 4<DD

set as soon as the cell is evaluated, because it is assigned
with immediate assignment (=)
2: The value does not change, even though the value of
DateString would change.

4: To get a variable that will update whenever it is
queried, a delayed assignment (:=) is used. In this case,
the assignment is not made until the variable is evaluated.
And, if the value is queried again, the variable gets up-
dated.
6: Here is an example that uses Pause to demonstrate the
effect of a delayed assignment.
7: Here is an example that uses Pause to demonstrate the
effect of a delayed assignment.
8: Here is an example that uses Pause to demonstrate the
effect of a delayed assignment.
9: Here is an example that uses Pause to demonstrate the
effect of a delayed assignment.
10: Here is an example that uses Pause to demonstrate
the effect of a delayed assignment.
11: Here is an example that uses Pause to demonstrate
the effect of a delayed assignment.
20: Here is an example that uses Pause to demonstrate
the effect of a delayed assignment.
21: Here is an example that uses Pause to demonstrate
the effect of a delayed assignment.
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Lecture 03 Mathematica R© Example 6
Creating Functions using Patterns and Delayed Assignment
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Understanding this example is important for beginners to Mathematica R© !
The real power of patterns and replacement is obtained when defining functions. Examples of how to define
functions are presented.

Defining Functions with Patterns
Defining  functions  with  patterns  probably  combines  the  most  useful
aspects of Mathematica.  Define a function that takes patten matching x
as its first argument and an argument matching n as its second argument
and returns x to the nth power:

1
f@x_ , a_D = x^a;
H*This is not a good way to define
a function, we will see why later*L

2f@2, 3D
f@y, zD

This works fine, but suppose we had defined  x ahead of time 

3x = 4

4
f@x_ , a_D = x^a;
H*This is not a good way to define
a function, we will see why later*L

5
f@2, 3D H*will now be 4^3,
which is probably not what
the programmer had in mind*L

6f@y, zD

Better Functions with Delayed 
Assignment (:=)

7x = 4
a = ScoobyDoo

8f@x_ , a_D := x^a

9f@2, 5D

10f@y, zD

11f@x, aD

12f@a, xD

13Clear@fD

1: Here is an example of a pattern: a symbol f is defined such that
if it is called as a function with a pattern of two named arguments
x and a , then the result is what ever xa evaluated to be when
the function was defined. Don’t emulate this example—it is
not usually the best way to define a function. In words you
are telling Mathematica R© , “any time you see f[thing,doodad]
replace it with the current value of thingd̂oodad.”

2: Our example appears to work, but only because our pattern vari-
ables, x and a had no previous assignment.

3–6 This shows why this can be a bad idea. f with two pattern-
arguments, is assigned when it is defined, and therefore if either
x or a was previously defined, then the definition will permanently
reflect that definition. The =-assignment is performed immedi-
ately and anything on the right-hand-side will be evaluated with
their immediate values.

7–12: What we really want to tell Mathematica R© in words is, “I am
going to call this function in the future. I want to define the function
now, but I don’t want Mathematica R© to evaluate it until it
is called; use the pattern-matching variables when you evaluate it
later.” This involves use delayed assignment which appears as :=.
For beginning users to Mathematica R© , this is the best way to
define functions.
In a delayed assignment, the right-hand-side is not evaluated until
the function is called and then the patterns become transitory until
the function returns its result. This is usually what we mean when
we write y(x) = ax2 mathematically—if y is given a value x, then
it operates and returns a value related to that x and not any other
x that might have been used earlier.
This is the prototype for function definitions.

Until you become more familiar with Mathematica R© , it is probably a good idea to get in the
habit of defining all function with delayed assignment (:=) instead of immediate assignment (=).
With delayed assignment, Mathematica R© does not evaluate the right-hand-side until you ask it to
perform the function. With immediate assignment, the right-hand-side is evaluated when the function
is defined making it much less flexible because your name for the pattern may get “evaluated away.”

Defining functions are essentially a way to eliminate repetitive typing and to “compactify” a concept.
This “compactification” is essentially what we do when we define some function or operation (e.g.,
cos(θ) or

∫
f(x)dx) in mathematics—the function or operation is a placeholder for something perhaps

too complicated to describe completely, but sufficiently understood that we can use a little picture to
identify it.
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Of course, it is desirable for the function to do the something reasonable even if asked to do
something that might be unreasonable. No one would buy a calculator that would try to return a very
big number when division by zero occurs—or would give a real result when the arc-cosine of 1.1 is
demanded. Thus, a bit of care is advisable when defining functions: you want them to behave reliably
in the future when you have forgotten what you have done. Functions should probably be defined so
that they can be reused, either by you or someone else. The conditions for which the function can work
should probably be encoded into the function. In Mathematica R© this can be done with restricted
patterns.
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Lecture 03 Mathematica R© Example 7
Functional Programming with Recursion: Functions that are Defined by Calling Themselves
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This is an example of how one might go about defining a function to return the factorial of a number. Instructive
mistakes are introduced and, in the following example, we will make the function behave better with incremental
improvements.
We will also show how to speed up programs by trading memory for speed.

The  canonical  programming  example  is  the  factorial  function  n!  =
(n)×(n-1) ×(n-2)×—×(1) where 0! ª  1; here is a reasonably clever way to
use the fact that (n+1)! = (n+1)×n!

1factorial@n_D := n factorial@n - 1D

2factorial@8D
Ooops, This isn't what was expected, but upon reflection it is correct--we
forgot to define a part of the rule. (Note also that the message window
produced  an  error  about  recursion  limits)  Add  the  second  part  of  the
definition. Here, we don't use delayed evaluation (:=) because we want to
assign a value immediately.

3factorial@0D = 1;

4factorial@120D

5factorial@257D
Here is where the recursion limit comes in : our function keeps on calling
itself  (i.e.,  recursively).  Unless  a  limit  is  set  the  program  would  keep
running  forever.  Mathematica  builds  in  a  limit  to  how  many  times  a
function will call itself:

6$RecursionLimit

7$RecursionLimit = 2^11

Speed versus Memory in Functions

8Timing@factorial@2000DD@@1DD
Using immediate assignment in a function: spending memory to buy time:
Each time the function is  called,  it  makes an extra assignment so that
previous values can be recalled if needed.

9factorial@n_D :=
factorial@nD = n*factorial@n - 1D
This version takes a bit longer the first time, because we are storing data
in memory ...

10Timing@factorial@2000DD@@1DD
But, the next time it is called, the result is much faster.

11Timing@factorial@2001DD@@1DD

12Clear@factorialD

1: This is a functional definition that will produce the factorial func-
tion by recursion because (n + 1)! = (n + 1)n!—the result for n + 1
is obtained by using the previous result for n.

2: However, trying this function now will produce an advisory in the
Mathematica R© ’s Message Window, and will not give a satisfac-
tory result because. . .

3: It is necessary to define a place for the recursion to stop. This is
done by assigning the factorial of zero to be unity.

5: So that recursive functions don’t run for ever, leaving no way, a
sensible limit is placed on the number of times a function can
call itself. Mathematica R© sets a number of variables such
as $RecursionLimit, that control global behavior.

7: However, the user is free to subvert the defaults.
8: We will now examine the role of memory and speed, to do this we

will need the time it takes Mathematica R© to do a computation;
this can be obtained with Timing. Timing returns a list of two
elements: the first is the time for the computation; the second is
the result of the computation. We will only be interested in the
first element.

9: Consider using the function to find the factorial of 2000, the
currently-defined function must call itself about 2000 times to re-
turn a value. Suppose a short time later, the value of 2001! is
requested. The function must again call itself about 2000 times,
even though all the factorials less than 2001’s were calculated pre-
viously. If you were the CPU, you might say “why are you asking
me to do this all again? Can’t you remember anything?” Unless
computer memory is abundant, it seems like a waste of effort to
repeat the same calculations over and over.
Here is an example where computation speed is purchased at the
cost of memory. The definition of the function uses a delayed as-
signment (:=) as well as an immediate assignment (=). The delayed
assignment defines the function with a pattern—the immediate as-
signment assigns and stores the value of a symbol. Thus, when
the function is called, it makes an assignment as well as the com-
putation.

10–11: Here, we see that it takes a little longer to calculate 2000! (be-
cause the CPU is doing memory storage operations), but it takes
significantly less time to calculate 2001!.

http://pruffle.mit.edu/3.016-2012/Notebooks/L03/Lecture-03.nb
http://pruffle.mit.edu/3.016-2012/pdf/L03/Lecture-03-7-COL.pdf
http://pruffle.mit.edu/3.016-2012/pdf/L03/Lecture-03-7-BW.pdf
http://pruffle.mit.edu/3.016-2012/html/Lecture-03/HTMLLinks/index_7.html
http://pruffle.mit.edu/3.016-2012
http://pruffle.mit.edu/3.016-2012/html/Lecture-03/HTMLLinks/index_7.html
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Lecture 03 Mathematica R© Example 8
Restricted and Conditional Pattern Matching

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2012.

Here are demonstrations of how to restrict whether a pattern gets matched by the type of the argument and
how to place further restrictions on pattern matching.

Restrictions on Patterns
The factorial function is pretty good, but not foolproof as the next few lines
will show.

1Clear@factorialD

2factorial@0D = 1;
factorial@n_D := n*factorial@n - 1D

The next line will cause an error to appear on the message screen.

3factorial@PiD
The remedy is to restrict the pattern:

4Clear@factorialD

5factorial@0D = 1;
factorial@n_IntegerD := n*factorial@n - 1D

This time it doesn' t produce an error, and returns a value indicating that it
is leaving the function in symbolic form for values it doesn' t know about.

6factorial@PiD

Functions and Patterns with Tests
However,  the  definition  of  factorial  still  needs  some  improvement--the
next line will cause an error.

7factorial@-5D

8Clear@factorialD

9
factorial@0D = 1;
factorial@n_Integer?PositiveD :=
n*factorial@n - 1D

10factorial@12D

11factorial@PiD

3: However, what if the previously-defined factorial function were
called on a value such as π? It would recursively call (π − 1)!
which would call (π− 2)! and so on. Thus, this execution would be
limited by the current value of $RecursionLimit.
This potential misuse can be eliminated by placing a pattern re-
striction on the argument of factorial so that it is only defined for
integer arguments.

5: Here is an improved definition for the factorial function using a
pattern type: Integer. The type-qualifier at the end of the “ ”
is the internal representation of whatever the argument was (e.g.,
Integer, Real, Complex, List, Symbol, Rational, etc.). In this
case, the factorial function is only defined for integer arguments.

6: Now the function should indicate that it doesn’t have anything
further to do with a non-integer argument.

7: However, the definition is still not fool-proof because negative inte-
gers will not terminate the recursion properly.

9: A pattern can have conditional matching indicated by the ?Query
where Query returns true for the conditions that the pattern can
be matched (e.g., Positive[2], NonNegative[0], NumberQ[1.2],
StringQ[”harpo”] all return True.) In this example, the function’s
pattern—n Integer?Positive—might be understood in words as
“Match any integer and then test and see if that integer is positive;
if so use n as a temporary placeholder for that positive integer.”

http://pruffle.mit.edu/3.016-2012/Notebooks/L03/Lecture-03.nb
http://pruffle.mit.edu/3.016-2012/pdf/L03/Lecture-03-8-COL.pdf
http://pruffle.mit.edu/3.016-2012/pdf/L03/Lecture-03-8-BW.pdf
http://pruffle.mit.edu/3.016-2012/html/Lecture-03/HTMLLinks/index_8.html
http://pruffle.mit.edu/3.016-2012
http://pruffle.mit.edu/3.016-2012/html/Lecture-03/HTMLLinks/index_8.html
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Lecture 03 Mathematica R© Example 9
Further Examples of Conditional Pattern Matching; Conditional Function Definitions

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2012.

A simple example of patterns is demonstrated with graphics. Another method of using conditions is demon-
strated.

As a another example, let's define the Sign function. It should be -1 when
its argument is negative, 0 when its argument is zero, and +1 when its
argument is positive.  There are lots of ways to write this function, there is
no best way. Whatever works is good.

1?Sign

Here we write our own version, we don' t "name'' the pattern because it is
not needed in the function definition.  It is a bit harder to read this way, but
I use it here to be instructive.

2
HeyWhatsYourSign@0D = 0;
HeyWhatsYourSign@0.0D = 0;
HeyWhatsYourSign@_?PositiveD := 1;
HeyWhatsYourSign@_?NegativeD := -1;

3Plot@HeyWhatsYourSign@argumentD,
8argument, -p, ‰<, PlotStyle Ø ThickD

4

Plot@81êx, HeyWhatsYourSign@xDêx<,
8x, -1, 1<,
BaseStyle Ø 8FontSize Ø 18,
FontFamily Ø "Helvetica"<,

PlotStyle Ø 88Hue@1D, Thickness@0.02D<,
8Hue@0.66D, Thickness@0.01D<<D

Functions with Conditional Definitions
In thermodynamics, x ln(x) appears frequently in expressions that involve
entropy.  The variable x is restricted to 0 §x§1.

5
XLogX@x_D := x Log@xD ê; Hx > 0 && x § 1L
XLogX@0D = XLogX@0.0D =
Limit@xsmall Log@xsmallD, xsmall Ø 0D

6XLogX@1.2D

7Plot@XLogX@xD + XLogX@1 - xD,
8x, -1, 2<, PlotStyle Ø ThickD

1: As an example, we will try to duplicate Mathematica R© ’s defi-
nition of Sign.

2: Because we want our function to return zero when it gets called with
an argument of zero—exact or numerical, immediate assignment is
used in the first two lines. (It would probably be better to use the
? PossibleZeroQ pattern match here, but slower.)
Because, we don’t need to use the value of the matched pattern we
can get by without naming it (i.e., ?Positive). I include this for
instruction purposes—if I were writing this function for later use,
I’d probably go ahead and name the pattern for readability.

3: We Plot our function to see if it behaves properly. We use Plot’s
option PlotStyle->Thick to make the curve easier to see.

4: Here is an example using our function and plotting two curves with
more plotting options.

5: The ideal molar entropy of mixing is the sum of Xi lnXi for each
component i with composition Xi. Because the composition vari-
ables are limited to 0 ≤ Xi ≤ 1, our example ideal molar entropy
function should reflect this constraint.
Here we use a conditional definition (/;), to ensure that our X lnX
function is never called for any X that are out-of-bounds. The
delayed assignment statement LHS := RHS/;test might be read as,
“If the symbol LHS is called, then evaluate (using whatever patterns
might appear in LHS) whether test is true; if true, then evaluate
RHS with the appropriate pattern replacements.” Note that here,
we make X = 0 a special case and not included in our delayed
assignment of the function.
Because lnx→ −∞ as x→ 0, it may not be obvious that x lnx→ 0
as x → 0. We use Limit to determine this behavior and use
immediate assignment in our function definition. (This is a case
where immediate assignment makes sense; with delayed assignment
the Limit function would be called each time that XLogX is called
on a zero-argument.

7: This is a plot of the ideal molar entropy of mixing for a binary alloy.

http://pruffle.mit.edu/3.016-2012/Notebooks/L03/Lecture-03.nb
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