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Lecture 23: Resonance Phenomena

Reading:
Kreyszig Sections: 2.8, 2.9, 3.1, 3.2, 3.3 (pages84–90, 91–96, 105–111, 111–115, 116–121)

Resonance Phenomena

The physics of an isolated damped linear harmonic oscillator follows from the behavior of the homogeneous equation:15

There is a set of alternative solutions to damped-forced near-resonance behavior at http://pruffle.mit.edu/3.016/mathematica-
paradigms.html that are designed to be instructive.

M
d2y(t)
dt2

+ ηlo
dy(t)
dt

+ Ksy(t) = 0 (23-1)

This equation is the sum of three forces:

inertial force depending on the acceleration of the object.

drag force depending on the velocity of the object.

spring force depends on the displacement of the object.

The system is autonomous in the sense that everything depends on the system itself; there are no outside agents changing
the system.

15 A concise and descriptive description of fairly general harmonic oscillator behavior appears at http://hypertextbook.com/chaos/41.shtml

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016/mathematica-paradigms.html
http://pruffle.mit.edu/3.016/mathematica-paradigms.html
http://hypertextbook.com/chaos/41.shtml
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The zero on the right-hand-side of Eq. 23-1 implies that there are no external forces applied to the system. The system oscillates
with a characteristic frequency ω =

√
Ks/M with amplitude that are damped by a characteristic time τ = (2M)/(ηlo) (i.e.,

the amplitude is damped ∝ exp(−t/τ).)

http://pruffle.mit.edu/3.016-2006/
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Lecture 23 Mathematica R© Example 1

Simulating Harmonic Oscillation with Biased and Unbiased Noise
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

The second-order differencing simulation of a harmonic oscillator is modified to include white and biased stochastic nudging.

1

GrowListGeneralNoise@ValuesList_List,
D_, a_, b_, randomamp_D :=

Module@8Minus1 = ValuesListP1, -1T,
Minus2 = ValuesListP1, -2T,
noise = RandomReal@

8-randomamp, randomamp<D<,
8Append@ValuesListP1T, 2 Minus1 -

Minus2 + D Hb HMinus2 - Minus1L -

a D Minus2L + noiseD,
Append@ValuesListP2T, noiseD<D

2
GrowListSpecificNoise@
InitialList_ListD :=

GrowListGeneralNoise@InitialList,
.001, 2, 0, 10^H-5LD

3Nest@GrowListSpecificNoise,
881, 1<, 80, 0<<, 10D

4TheData = Nest@GrowListSpecificNoise,
881, 1<, 80, 0<<, 20000D;

5ListPlot@TheData@@1DDD

6ListPlot@TheData@@2DDD

A
Now suppose there is a periodic bias  that 
tends to kick the displacement one direction 
more than the other:

7

GrowListBiasedNoise@ValuesList_List,
D_, a_, b_, randomamp_, l_D :=

ModuleA9Minus1 = ValuesListP1, -1T,
Minus2 = ValuesListP1, -2T,
biasednoise = 0.5` randomamp

ICosAH2 p Length@ValuesListP1TDL ë
lE + RandomReal@8-1, 1<DM=,

8Append@ValuesListP1T, 2 Minus1 -

Minus2 + D Hb HMinus2 - Minus1L -

a D Minus2L + biasednoiseD,
Append@ValuesListP2T, biasednoiseD<E

8
GrowListSpecificBiasedNoise@
InitialList_ListD :=

GrowListBiasedNoise@InitialList,
.001, 2, 0, 10^H-6L, 4500D

1: GrowListGeneralNoise is extended from a previous example for simulating ÿ+βẏ+αy = 0 (GrowList
in example 21-1) and adds a random uniform displacement y + δ, δ ∈ (−randomamp, randomamp)

at each iteration. The ValuesList List argument should be a list containing two lists: the first list
is comprised of the sequence of displacements y; the second list records the corresponding stochastic
displacement δ. The function uses a list’s two previous values and Append and to grow the list
iteratively.

4: Exemplary data from 2× 105 iterations (using Nest) is produced for the specific case of ∆ = 0.001,
α = 2, β = 0.

5: The displacements (i.e., first list) are plotted with ListPlot.

6: The random ‘nudges’ (i.e., second list) are also plotted.

7: Biased nudges are simulated with GrowListBiasedNoise . This extends the unbiased example above,
by including a wavelength for a cosine-biased random amplitude. A sample, δ, from the uniform
random distribution as above is selected and then multiplied by cos 2πt/λ. The time-like variable is
simulated with Length and the current data.

10: The biased data for approximately the resonance condition for the same model parameters above is

plotted with the biased noise.

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2011/Notebooks/L23/Lecture-23.nb
http://pruffle.mit.edu/3.016-2011/pdf/L23/Lecture-23-1-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L23/Lecture-23-1-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-23/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2011/html/Lecture-23/HTMLLinks/index_1.html
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A general model for a damped and forced harmonic oscillator is

M
d2y(t)
dt2

+ ηlo
dy(t)
dt

+ Ksy(t) = Fapp(t) (23-2)

where Fapp represents a time-dependent applied force to the mass M .

General Solutions to Non-homogeneous ODEs

Equation 23-2 is a non-homogeneous ODE—the functions and its derivatives appear on one side and an arbitrary function
appears on the other. The general solution to Eq. 23-2 will be the sum of two parts:

ygen(t) = ypart(t) + yhomog(t)
ygen(t) = yFapp(t) + yhomog(t)

(23-3)

yhomg(t) =


C+e−|λ+|t + C−e−|λ−|t (ηlo)2 > 4MKs Over-damped
C1e

−|λ|t + C2te
−|λ|t (ηlo)2 = 4MKs Critical Damping

C+e−|Reλ|teı|Imλ|t + C−e−|Reλ|te−ı|Imλ|t (ηlo)2 < 4MKs Under-damped
(23-4)

where ypart ≡ yFapp is the solution for the particular Fapp on the right-hand-side and yhomog is the solution for the right-hand-
side being zero. Adding the homogeneous solution yhomog to the particular solution ypart is equivalent to adding a “zero” to
the applied force Fapp

Interesting cases arise when the applied force is periodic Fapp(t) = Fapp(t + T ) = Fapp(t + 2π/ωapp), especially when the
applied frequency, ωapp is close to the the characteristic frequency of the oscillator ωchar =

√
Ks/M .

Modal Analysis

For the case of a periodic forcing function, the time-dependent force can be represented by a Fourier Series. Because the
second-order ODE (Eq. 23-2) is linear, the particular solutions for each term in a Fourier series can be summed. Therefore,

http://pruffle.mit.edu/3.016-2006/
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particular solutions can be analyzed for one trigonometric term at a time:

M
d2y(t)
dt2

+ ηlo
dy(t)
dt

+ Ksy(t) = Fapp cos(ωappt) (23-5)

There are three general cases for the particular solution:

Condition Solution for F (t) = Fapp cos(ωappt)
Undamped,
Frequency-
Mismatch

η = 0

ω2
char =

Ks

M
6= ω2

app

ypart(t) =
Fapp cos(ωappt)

M(ωchar + ωapp)(ωchar − ωapp)

Undamped,
Frequency-
Matched

η = 0

ω2
char =

Ks

M
= ω2

app

ypart(t) =
Fappt sin(ωappt)

2Mωapp

Damped
η > 0

ypart(t) =
Fapp cos(ωappt + φlag)√

M2(ω2
char − ω2

app)2 + ω2
appη

2l2o

φlag = tan−1

(
ωappηlo

M(ω2
char − ω2

app)

)

The phenomenon of resonance can be observed as the driving frequency approaches the characteristic frequency.

http://pruffle.mit.edu/3.016-2006/
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Lecture 23 Mathematica R© Example 2

Resonance and Near-Resonance Behavior
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

Solutions to mÿ + ηẏ + ky = Fapp cos(ωappt) analyzed near the resonance condition ωapp ≈ ωchar ≡
√

k/m.
1Kspring = M wchar2

A
Mathematica can solve the nonhomogeneous 
ODE with a  forcing function at with an applied 
frequency:

2
yGeneralSol = Simplify@y@tD ê. DSolve@

M y''@tD + h y'@tD + Kspring y@tD ã

Fapp Cos@wapp tD, y@tD, tD@@1DDD

B

Consider the behavior of the general solution 
at time t=0.  This will show that the 
homogeneous parts of the solution are needed 
to satisfy boundary conditions, even if the 
oscillator is initially at rest at zero 
displacement (i.e., y(0) = y† H0L = 0M.

3Simplify@yGeneralSol ê. t -> 0D

CConsider the particular case of anequillbrium 
at-rest oscillator

4
yParticularSol =

Simplify@y@tD ê. DSolve@8M y''@tD +

h y'@tD + Kspring y@tD ã

Fapp Cos@wapp tD, y@0D == 0,
y'@0D == 0<, y@tD, tD@@1DDD

DThe resonant solution is the case: wapp Æ 
wchar

5ResonantSolution = Simplify@
yParticularSol ê. wapp Ø wcharD

6
ResonantSolutionSmallViscosity =

Map@Simplify@PowerExpand @
ExpToTrig@ÒDDD &, Normal@

Series@ResonantSolution, 8h, 0, 2<DDD

7
ResonantSolutionSmallViscosityDetuned =

Map@Simplify@
PowerExpand @ ExpToTrig@ÒDDD &,

Normal@Series@yParticularSol,
8wapp, wchar, 1<, 8h, 0, 2<DDD

2: The general solution will include two arbitrary constants C[1] and C[2] in terms that derive from
the homogeneous solution plus a part that derives from the heterogeneous (i.e., forced) part.

3: Examining the form of the general solution at t = 0, it will be clear that the constants from the
homogeneous part will be needed to satisfy arbitrary boundary conditions—most importantly, the
constants will include terms that depend on the characteristic and applied frequencies.

4: Here DSolve will be used yParticularSolution to analyze the particular case of a forced (F (t) =
Fapp cos(ωappt)) and damped harmonic oscillator initially at resting equilibrium (y(t = 0) = 1 and
y′(t = 0) = 0).

5: The most interesting cases are the resonance and near resonance cases: ResonantSolution is obtained
by setting the forcing frequency equal to the characteristic frequency.

6: To analyze the at-resonance case, the solution will be expanded to second order for small viscosity
with Series. Some extra manipulation is required to display the results in a form that is straight-
forward to interpret. Here, Map will be used with a pure function to simplify each term produced by
Series. First, the SeriesData object created by Series is transformed into a regular expression

with Normal. The pure function will first transform any exp(x) into cosh(x) + sinh(x), then any
fractional powers will be cleaned up (e.g.,

√
x2 → x) assuming real parameters; finally the individual

terms will be simplified.

6: This illustrates how near resonance ωapp ≈ ωchar can be analyzed in the small viscosity limit. Here,
Series first expands around η = 0 to second order and then around small δω = ωapp − ωchar.

7: Setting the viscosity to zero a priori is possible and returns the leading order behavior, but the

asymptotic behavior for small parameters cannot be ascertained.

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2011/Notebooks/L23/Lecture-23.nb
http://pruffle.mit.edu/3.016-2011/pdf/L23/Lecture-23-2-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L23/Lecture-23-2-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-23/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2011/html/Lecture-23/HTMLLinks/index_2.html
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Lecture 23 Mathematica R© Example 3

Visualizing Forced and Damped Harmonic Oscillation
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

A
Create a Mathematica  function that returns the solution for 
specified mass, viscous term, characteristic and applied 
frequencies

1
y@M_ , h_ , wchar_, wapp_D :=

Chop@y@tD ê. DSolve@8M y''@tD + h y'@tD +

M wchar^2 y@tD ã Cos@wapp tD,
y@0D == 1, y'@0D == 0<, y@tD, tD êê FlattenD

BUndamped Resonance:

2Plot@Evaluate@y@1, 0, 1ê2, 1ê2DD,
8t, 0, 200<, PlotPoints Ø 200D

CUndamped Near Resonance:

3Plot@Evaluate@y@1, 0, 1ê2 + 0.05, 1ê2DD,
8t, 0, 200<, PlotPoints Ø 200D

DDamped Resonance:

4Plot@Evaluate@y@1, 1ê10, 1ê2, 1ê2DD, 8t, 0, 200<D

EOverdamped Resonance:

5Plot@Evaluate@y@1, 10, 1ê2, 1ê2DD, 8t, 0, 200<D

FDamped Near Resonance:

6Plot@Evaluate@y@1, .05, 1ê2 + 0.05, 1ê2DD,
8t, 0, 200<, PlotPoints Ø 200D

GHeavily damped Near Resonance:

7Plot@Evaluate@y@1, 2.5, 1ê2 + 0.05, 1ê2DD,
8t, 0, 200<, PlotPoints Ø 200D

1: This function solves the heterogeneous damped harmonic oscillator ODE (where F (t) = cos(ωappt))
for any input mass, damping coefficient, and spring constant M , η, k = Mω2

char.

2: Undamped resonance ωchar = ωapp = 1/2 should show linearly growing amplitude.

3: Near resonance will show a beat-phenomena because of ”de-tuning.”

4: Damped resonance will show that the amplitudes approaching to a finite asymptotic limit.

6: The beats will still be apparent for the damped near resonance condition, but the finite damping

coefficient will prevent the amplitude from completely disappearing.

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2011/Notebooks/L23/Lecture-23.nb
http://pruffle.mit.edu/3.016-2011/pdf/L23/Lecture-23-3-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L23/Lecture-23-3-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-23/HTMLLinks/index_3.html
http://pruffle.mit.edu/3.016-2011/html/Lecture-23/HTMLLinks/index_3.html
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Resonance can have catastrophic or amusing (or both) consequences:

http://pruffle.mit.edu/3.016-2006/
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Figure 23-28: Picture and illustration of the bells at Kendall square. Many people shake the
handles vigorously but with apparently no pleasant effect. The concept of resonance can be
used to to operate the bells efficiently Perturb the handle slightly and observe the frequencies
of the the pendulums—select one and wiggle the handle at the pendulum’s characteristic
frequency. The amplitude of that pendulum will increase and eventually strike the neighboring
tubular bells.
From Cambridge Arts Council Website:

http://www.ci.cambridge.ma.us/˜CAC/public art tour/map 11 kendall.html

Artist: Paul Matisse Title: The Kendall Band - Kepler, Pythagoras, Galileo Date: 1987

Materials: Aluminum, teak, steel

Handles located on the platforms allow passengers to play these mobile-like instruments, which are suspended in arches

between the tracks, ”Kepler” is an aluminum ring that will hum for five minutes after it is struck by the large teak hammer

above it. ”Pythagoras” consists of a 48-foot row of chimes made from heavy aluminum tubes interspersed with 14 teak

hammers. ”Galileo” is a large sheet of metal that rattles thunderously when one shakes the handle.

http://pruffle.mit.edu/3.016-2006/
http://www.ci.cambridge.ma.us/~CAC/public_art_tour/map_11_kendall.html
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Figure 23-29: Animation Available in individual lecture, deleted here because of filesize con-
straints The Tacoma bridge disaster is perhaps one of the most well-knownfailures that re-
sulted directly from resonance phenomena. It is believed that the the wind blowing across
the bridge caused the bridge to vibrate like a reed in a clarinet.(Images from Promotional
Video Clip from The Camera Shop 1007 Pacific Ave., Tacoma, Washington Full video Available
http://www.camerashoptacoma.com/)

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2006/Lecture-23-screen.pdf
http://pruffle.mit.edu/3.016-2006/Lecture-23-screen.pdf
http://www.camerashoptacoma.com/
http://www.camerashoptacoma.com/
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