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Dec. 7 2011

Lecture 23: Resonance Phenomena

Reading:
Kreyszig Sections: 2.8, 2.9, 3.1, 3.2, 3.3 (pages84–90, 91–96, 105–111, 111–115, 116–121)

Resonance Phenomena

The physics of an isolated damped linear harmonic oscillator follows from the behavior of the homoge-
neous equation:15

There is a set of alternative solutions to damped-forced near-resonance behavior at http://pruffle.mit.edu/3.016/mathematica-
paradigms.html that are designed to be instructive.

M
d2y(t)
dt2

+ ηlo
dy(t)
dt

+ Ksy(t) = 0 (23-1)

This equation is the sum of three forces:

inertial force depending on the acceleration of the object.

drag force depending on the velocity of the object.

spring force depends on the displacement of the object.

The system is autonomous in the sense that everything depends on the system itself; there are no
outside agents changing the system.

The zero on the right-hand-side of Eq. 23-1 implies that there are no external forces applied to the
system. The system oscillates with a characteristic frequency ω =

√
Ks/M with amplitude that are

damped by a characteristic time τ = (2M)/(ηlo) (i.e., the amplitude is damped ∝ exp(−t/τ).)
15 A concise and descriptive description of fairly general harmonic oscillator behavior appears at

http://hypertextbook.com/chaos/41.shtml

http://pruffle.mit.edu/3.016/mathematica-paradigms.html
http://pruffle.mit.edu/3.016/mathematica-paradigms.html
http://hypertextbook.com/chaos/41.shtml
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Lecture 23 Mathematica R© Example 1
Simulating Harmonic Oscillation with Biased and Unbiased Noise

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

The second-order differencing simulation of a harmonic oscillator is modified to include white and biased stochas-
tic nudging.

1

GrowListGeneralNoise@ValuesList_List,
D_, a_, b_, randomamp_D := Module@
8Minus1= ValuesListP1, -1T, Minus2= ValuesListP1, -2T,
noise= RandomReal@8-randomamp, randomamp<D<,

8Append@ValuesListP1T, 2 Minus1- Minus2+
D Hb HMinus2- Minus1L - a D Minus2L + noiseD,

Append@ValuesListP2T, noiseD<D

2GrowListSpecificNoise@InitialList_ListD :=
GrowListGeneralNoise@InitialList, .001, 2, 0, 10^H-5LD

3Nest@GrowListSpecificNoise, 881, 1<, 80, 0<<, 10D

4TheData =
Nest@GrowListSpecificNoise, 881, 1<, 80, 0<<, 20000D;

5ListPlot@TheData@@1DDD

6ListPlot@TheData@@2DDD

ANow suppose there is a periodic bias  that tends to kick 
the displacement one direction more than the other:

7

GrowListBiasedNoise@ValuesList_List, D_, a_, b_, randomamp_,

lambda_D := ModuleB:Minus1= ValuesListP1, -1T,
Minus2= ValuesListP1, -2T, biasednoise= 0.5`randomamp

CosB
2 p Length@ValuesListP1TD

lambda
F + RandomReal@8-1, 1<D >,

8Append@ValuesListP1T, 2 Minus1- Minus2+
D Hb HMinus2- Minus1L - a D Minus2L + biasednoiseD,

Append@ValuesListP2T, biasednoiseD<F

8GrowListSpecificBiasedNoise@InitialList_ListD :=
GrowListBiasedNoise@InitialList, .001, 2, 0, 10^H-6L, 4500D

9TheBiasedData =
Nest@GrowListSpecificBiasedNoise, 881, 1<, 80, 0<<, 20000D;

10ListPlot@TheBiasedData@@1DDD
ListPlot@TheBiasedData@@2DDD

1: GrowListGeneralNoise is extended from a previous example
for simulating ÿ + βẏ + αy = 0 (GrowList in example 21-
1) and adds a random uniform displacement y + δ, δ ∈
(−randomamp, randomamp) at each iteration. The ValuesList List
argument should be a list containing two lists: the first list is com-
prised of the sequence of displacements y; the second list records the
corresponding stochastic displacement δ. The function uses a list’s
two previous values and Append and to grow the list iteratively.

4: Exemplary data from 2 × 105 iterations (using Nest) is produced
for the specific case of ∆ = 0.001, α = 2, β = 0.

5: The displacements (i.e., first list) are plotted with ListPlot.
6: The random ‘nudges’ (i.e., second list) are also plotted.
7: Biased nudges are simulated with GrowListBiasedNoise . This ex-

tends the unbiased example above, by including a wavelength for
a cosine-biased random amplitude. A sample, δ, from the uniform
random distribution as above is selected and then multiplied by
cos 2πt/λ. The time-like variable is simulated with Length and
the current data.

10: The biased data for approximately the resonance condition for the
same model parameters above is plotted with the biased noise.

A general model for a damped and forced harmonic oscillator is

M
d2y(t)
dt2

+ ηlo
dy(t)
dt

+ Ksy(t) = Fapp(t) (23-2)

where Fapp represents a time-dependent applied force to the mass M .

General Solutions to Non-homogeneous ODEs

Equation 23-2 is a non-homogeneous ODE—the functions and its derivatives appear on one side and
an arbitrary function appears on the other. The general solution to Eq. 23-2 will be the sum of two

http://pruffle.mit.edu/3.016-2011/Notebooks/L23/Lecture-23.nb
http://pruffle.mit.edu/3.016-2011/pdf/L23/Lecture-23-1-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L23/Lecture-23-1-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-23/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2011
http://pruffle.mit.edu/3.016-2011/html/Lecture-23/HTMLLinks/index_1.html
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parts:

ygen(t) = ypart(t) + yhomog(t)
ygen(t) = yFapp(t) + yhomog(t)

(23-3)

yhomg(t) =


C+e−|λ+|t + C−e−|λ−|t (ηlo)2 > 4MKs Over-damped
C1e

−|λ|t + C2te
−|λ|t (ηlo)2 = 4MKs Critical Damping

C+e−|Reλ|teı|Imλ|t + C−e−|Reλ|te−ı|Imλ|t (ηlo)2 < 4MKs Under-damped
(23-4)

where ypart ≡ yFapp is the solution for the particular Fapp on the right-hand-side and yhomog is the
solution for the right-hand-side being zero. Adding the homogeneous solution yhomog to the particular
solution ypart is equivalent to adding a “zero” to the applied force Fapp

Interesting cases arise when the applied force is periodic Fapp(t) = Fapp(t+T ) = Fapp(t+2π/ωapp),
especially when the applied frequency, ωapp is close to the the characteristic frequency of the oscillator
ωchar =

√
Ks/M .

Modal Analysis

For the case of a periodic forcing function, the time-dependent force can be represented by a Fourier
Series. Because the second-order ODE (Eq. 23-2) is linear, the particular solutions for each term in a
Fourier series can be summed. Therefore, particular solutions can be analyzed for one trigonometric
term at a time:

M
d2y(t)
dt2

+ ηlo
dy(t)
dt

+ Ksy(t) = Fapp cos(ωappt) (23-5)

There are three general cases for the particular solution:
Condition Solution for F (t) = Fapp cos(ωappt)

Undamped,
Frequency-
Mismatch

η = 0

ω2
char =

Ks

M
6= ω2

app

ypart(t) =
Fapp cos(ωappt)

M(ωchar + ωapp)(ωchar − ωapp)

Undamped,
Frequency-
Matched

η = 0

ω2
char =

Ks

M
= ω2

app

ypart(t) =
Fappt sin(ωappt)

2Mωapp

Damped
η > 0

ypart(t) =
Fapp cos(ωappt + φlag)√

M2(ω2
char − ω2

app)2 + ω2
appη

2l2o

φlag = tan−1

(
ωappηlo

M(ω2
char − ω2

app)

)

The phenomenon of resonance can be observed as the driving frequency approaches the character-
istic frequency.
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Lecture 23 Mathematica R© Example 2
Resonance and Near-Resonance Behavior

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

Solutions to mÿ + ηẏ + ky = Fapp cos(ωappt) analyzed near the resonance condition ωapp ≈ ωchar ≡
√

k/m.

Apply a forcing function: Fappcos(wappt)
To solve problems in terms of the mass and natural 
frequency, eliminate the spring constant in equations by 
defining it in terms of the mass and natural frequency.

1Kspring = M wchar2

AMathematica can solve the nonhomogeneous ODE with 
a  forcing function at with an applied frequency:

2
yGeneralSol =

Simplify@y@tD ê. DSolve@M y''@tD + h y'@tD + Kspringy@tD ã

FappCos@wapp tD, y@tD, tD@@1DDD

B

Consider the behavior of the general solution at time 
t=0.  This will show that the homogeneous parts of the 
solution are needed to satisfy boundary conditions, 
even if the oscillator is initially at rest at zero 
displacement (i.e., y(0) = y† H0L = 0M.

3Simplify@yGeneralSolê. t -> 0D

CConsider the particular case of anequillbrium at-rest 
oscillator

4
yParticularSol=
Simplify@y@tD ê. DSolve@8M y''@tD + h y'@tD + Kspringy@tD ã

FappCos@wapp tD, y@0D == 0, y'@0D == 0<, y@tD, tD@@1DDD

DThe resonant solution is the case: wapp Æ wchar

5ResonantSolution= Simplify@yParticularSolê. wapp Ø wcharD

6
ResonantSolutionSmallViscosity=
Map@Simplify@PowerExpand@ ExpToTrig@ÒDDD &,
Normal@Series@ResonantSolution, 8h, 0, 2<DDD

7
ResonantSolutionSmallViscosityDetuned=
Map@Simplify@PowerExpand@ ExpToTrig@ÒDDD &,
Normal@Series@yParticularSol, 8wapp, wchar, 1<, 8h, 0, 2<DDD

EThe  leading behavior could have been obtained 
directly, viz

8
ResonatSolZeroViscosity= Simplify@y@tD ê.

DSolve@8M y''@tD + Kspringy@tD ã FappCos@wchartD,
y@0D == 0, y'@0D == 0<, y@tD, tD@@1DDD

2: The general solution will include two arbitrary constants C[1] and
C[2] in terms that derive from the homogeneous solution plus a

part that derives from the heterogeneous (i.e., forced) part.
3: Examining the form of the general solution at t = 0, it will be

clear that the constants from the homogeneous part will be needed
to satisfy arbitrary boundary conditions—most importantly, the
constants will include terms that depend on the characteristic and
applied frequencies.

4: Here DSolve will be used yParticularSolution to analyze the par-
ticular case of a forced (F (t) = Fapp cos(ωappt)) and damped har-
monic oscillator initially at resting equilibrium (y(t = 0) = 1 and
y′(t = 0) = 0).

5: The most interesting cases are the resonance and near resonance
cases: ResonantSolution is obtained by setting the forcing fre-
quency equal to the characteristic frequency.

6: To analyze the at-resonance case, the solution will be expanded to
second order for small viscosity with Series. Some extra manip-
ulation is required to display the results in a form that is straight-
forward to interpret. Here, Map will be used with a pure function
to simplify each term produced by Series. First, the SeriesData
object created by Series is transformed into a regular expression
with Normal. The pure function will first transform any exp(x)
into cosh(x) + sinh(x), then any fractional powers will be cleaned
up (e.g.,

√
x2 → x) assuming real parameters; finally the individual

terms will be simplified.
6: This illustrates how near resonance ωapp ≈ ωchar can be analyzed

in the small viscosity limit. Here, Series first expands around
η = 0 to second order and then around small δω = ωapp − ωchar.

7: Setting the viscosity to zero a priori is possible and returns the
leading order behavior, but the asymptotic behavior for small pa-
rameters cannot be ascertained.

http://pruffle.mit.edu/3.016-2011/Notebooks/L23/Lecture-23.nb
http://pruffle.mit.edu/3.016-2011/pdf/L23/Lecture-23-2-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L23/Lecture-23-2-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-23/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2011
http://pruffle.mit.edu/3.016-2011/html/Lecture-23/HTMLLinks/index_2.html
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Lecture 23 Mathematica R© Example 3
Visualizing Forced and Damped Harmonic Oscillation

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

A
Create a Mathematica  function that returns the solution 
for specified mass, viscous term, characteristic and 
applied frequencies

1
y@M_ , h_ , wchar_, wapp_D :=
Chop@y@tD ê. DSolve@8M y''@tD + h y'@tD + M wchar^2 y@tD ã

Cos@wapp tD, y@0D == 1, y'@0D == 0<, y@tD, tD êê FlattenD

BUndamped Resonance:

2PlotAEvaluateAyA1, 0, 1 ë 2, 1 ë 2EE,
8t, 0, 200<, PlotPointsØ 200E

CUndamped Near Resonance:

3PlotAEvaluateAyA1, 0, 1 ë 2 + 0.05, 1 ë 2EE,
8t, 0, 200<, PlotPointsØ 200E

DDamped Resonance:

4PlotAEvaluateAyA1, 1 ë 10, 1 ë 2, 1 ë 2EE, 8t, 0, 200<E

EOverdamped Resonance:

5PlotAEvaluateAyA1, 10, 1 ë 2, 1 ë 2EE, 8t, 0, 200<E

FDamped Near Resonance:

6PlotAEvaluateAyA1, .05, 1 ë 2 + 0.05, 1 ë 2EE,
8t, 0, 200<, PlotPointsØ 200E

GHeavily damped Near Resonance:

7PlotAEvaluateAyA1, 2.5, 1 ë 2 + 0.05, 1 ë 2EE,
8t, 0, 200<, PlotPointsØ 200E

1: This function solves the heterogeneous damped harmonic oscilla-
tor ODE (where F (t) = cos(ωappt)) for any input mass, damping
coefficient, and spring constant M , η, k = Mω2

char.
2: Undamped resonance ωchar = ωapp = 1/2 should show linearly

growing amplitude.
3: Near resonance will show a beat-phenomena because of ”de-tuning.”

4: Damped resonance will show that the amplitudes approaching to a
finite asymptotic limit.

6: The beats will still be apparent for the damped near resonance con-
dition, but the finite damping coefficient will prevent the amplitude
from completely disappearing.

Resonance can have catastrophic or amusing (or both) consequences:

http://pruffle.mit.edu/3.016-2011/Notebooks/L23/Lecture-23.nb
http://pruffle.mit.edu/3.016-2011/pdf/L23/Lecture-23-3-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L23/Lecture-23-3-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-23/HTMLLinks/index_3.html
http://pruffle.mit.edu/3.016-2011
http://pruffle.mit.edu/3.016-2011/html/Lecture-23/HTMLLinks/index_3.html
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Figure 23-28: Picture and illustration of the bells at Kendall square. Many people shake the
handles vigorously but with apparently no pleasant effect. The concept of resonance can be
used to to operate the bells efficiently Perturb the handle slightly and observe the frequencies
of the the pendulums—select one and wiggle the handle at the pendulum’s characteristic
frequency. The amplitude of that pendulum will increase and eventually strike the neighboring
tubular bells.
From Cambridge Arts Council Website:

http://www.ci.cambridge.ma.us/˜CAC/public art tour/map 11 kendall.html

Artist: Paul Matisse Title: The Kendall Band - Kepler, Pythagoras, Galileo Date: 1987

Materials: Aluminum, teak, steel

Handles located on the platforms allow passengers to play these mobile-like instruments, which are suspended in arches

between the tracks, ”Kepler” is an aluminum ring that will hum for five minutes after it is struck by the large teak

hammer above it. ”Pythagoras” consists of a 48-foot row of chimes made from heavy aluminum tubes interspersed with

14 teak hammers. ”Galileo” is a large sheet of metal that rattles thunderously when one shakes the handle.

Figure 23-29: Animation Available in individual lecture, deleted here because of filesize
constraints The Tacoma bridge disaster is perhaps one of the most well-knownfailures that
resulted directly from resonance phenomena. It is believed that the the wind blowing across
the bridge caused the bridge to vibrate like a reed in a clarinet.(Images from Promotional Video
Clip from The Camera Shop 1007 Pacific Ave., Tacoma, Washington Full video Available
http://www.camerashoptacoma.com/)

http://www.ci.cambridge.ma.us/~CAC/public_art_tour/map_11_kendall.html
http://pruffle.mit.edu/3.016-2006/Lecture-23-screen.pdf
http://pruffle.mit.edu/3.016-2006/Lecture-23-screen.pdf
http://www.camerashoptacoma.com/
http://www.camerashoptacoma.com/
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