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Lecture 20: Linear Homogeneous and Heterogeneous ODEs

Reading:
Kreyszig Sections: 1.4, 1.5 (pages19–25, 26–32)

Ordinary Differential Equations from Physical Models

In engineering and physics, modeling physical phenomena is the means by which technological and
natural phenomena are understood and predicted. A model is an abstraction of a physical system,
often with simplifying assumptions, into a mathematical framework. Every model should be verifiable
by an experiment that, to the greatest extent possible, satisfies the approximations that were used to
obtain the model.

In the context of modeling, differential equations appear frequently. Learning how to model new
and interesting systems is a learned skill—it is best to learn by following a few examples. Grain growth
provides some interesting modeling examples that result in first-order ODES.

Grain Growth

In materials science and engineering, a grain usually refers a single element in an ensemble that com-
prises a polycrystal. In a single phase polycrystal, a grain is a contiguous region of material with the
same crystallographic orientation. It is separated from other grains by grain boundaries where the
crystallographic orientation changes abruptly.

A grain boundary contributes extra free energy to the entire system that is proportional to the
grain boundary area. Thus, if the boundary can move to reduce the free energy it will.

Consider simple, uniformly curved, isolated two- and three-dimensional grains.

Figure 20-22: Illustration of a two-dimensional isolated circular grain and a three-dimensional
isolated spherical grain. Because there is an extra energy in the system ∆G2D = 2πRγgb and
∆G3D = 4πR2γgb, there is a driving force to reduce the radius of the grain. A simple model
for grain growth is that the velocity (normal to itself) of the grain boundary is vgb = Mgbγgbκ
where Mgb is the grain boundary mobility and κ is the mean curvature of the boundary. The
normal velocity vgb is towards the center of curvature.

A relevant question is “how fast will a grain change its size assuming that grain boundary migration
velocity is proportional to curvature?”
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For the two-dimensional case, the rate of change of area can be formulated by considering the
following illustration.

vn

∆A =vn∆tds

ds

Figure 20-23: A segment of a grain boundary moving with normal velocity vn will move a
distance vn∆t in a short time ∆t. The motion will result in a change of area −∆A for the
shrinking grain. Each segment, ds, of boundary contributes to the loss of area by ∆A =
−vn∆tds.

Because for a circle, the curvature is the same at each location on the grain boundary, the curvature
is uniform and vn = Mgbκgbγgb = Mgbγgb/R. Thus

dA

dt
= −Mgbγgb

1
R

2πR = −2πMgbγgb (20-1)

Thus, the area of a circular grain changes at a constant rate, the rate of change of radius is:

dA

dt
=

dπR2

dt
= 2πR

dR

dt
= −2πMgbγgb (20-2)

which is a first-order, separable ODE with solution:

R2(t)−R2(t = 0) = −2Mgbγgbt (20-3)

For a spherical grain, the change in volume ∆V due to the motion of a surface patch dS in a time
∆t is ∆V = vn∆t dS. The curvature of a sphere is

κsphere =
(

1
R

+
1
R

)
(20-4)

Therefore the velocity of the interface is vn = 2Mgbγgb/R. The rate of change of volume due to the
contributions of each surface patch is

dV

dt
= −Mgbγgb

2
R

4πR2 = −8πMgbγgbR == −4(6π2)1/3MgbγgbV
1/3 (20-5)

which can be separated and integrated:

V 2/3(t)− V 2/3(t = 0) = −constant1t (20-6)

or
R2(t)−R2(t = 0) = −constant2t (20-7)

which is the same functional form as derived for two-dimensions.
The problem (and result) is more interesting if the grain doesn’t have uniform curvature.
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Figure 20-24: For a two-dimensional grain with non-uniform curvature, the local normal
velocity (assumed to be proportional to local curvature) varies along the grain boundary.
Because the motion is in the direction of the center of curvature, the velocity can be such
that its motion increases the area of the interior grain for some regions of grain boundary and
decreases the area in other regions.

However, it can still be shown that, even for an irregularly shaped two-dimensional grain, A(t) −
A(t = 0) = −(const)t.

Integrating Factors, Exact Forms

Exact Differential Forms

In classical thermodynamics for simple fluids, expressions such as

dU =TdS − PdV

=
(

∂U

∂S

)
V

dS +
(

∂U

∂V

)
S

dV

=δq + δw

(20-8)

represent the differential form of the combined first and second laws of thermodynamics. If dU = 0,
meaning that the differential Eq. 20-8 is evaluated on a surface for which internal energy is constant,
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U(S, V ) = const, then the above equation becomes a differential form

0 =
(

∂U

∂S

)
V

dS +
(

∂U

∂V

)
S

dV (20-9)

This equation expresses a relation between changes in S and changes in V that are necessary to remain
on the surface U(S, V ) = const.

Suppose the situation is turned around and you are given the first-order ODE

dy

dx
= −M(x, y)

N(x, y)
(20-10)

which can be written as the differential form

0 = M(x, y)dx + N(x, y)dy (20-11)

Is there a function U(x, y) = const or, equivalently, is it possible to find a curve represented by
U(x, y) = const?

If such a curve exists then it depends only on one parameter, such as arc-length, and on that curve
dU(x, y) = 0.

The answer is, “Yes, such a function U(x, y) = const exists if an only if M(x, y) and N(x, y) satisfy
the Maxwell relations”

∂M(x, y)
∂y

=
∂N(x, y)

∂x
(20-12)

Then if Eq. 20-12 holds, the differential form Eq. 20-11 is called an exact differential and a U exists
such that dU = 0 = M(x, y)dx + N(x, y)dy.

Integrating Factors and Thermodynamics

For fixed number of moles of ideal gas, the internal energy is a function of the temperature only,
U(T )−U(To) = CV (T −To). Consider the heat that is transferred to a gas that changes it temperature
and volume a very small amount:

dU =CV dT = δq + δw = δq − PdV

δq = CV dT + PdV
(20-13)

Can a Heat Function q(T, V ) = constant be found?
To answer this, apply Maxwell’s relations.
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Homogeneous and Heterogeneous Linear ODES

A linear differential equation is one that does not contain any powers (greater than one) of the function
or its derivatives. The most general form is:

Q(x)
dy

dx
+ P (x)y = R(x) (20-14)

Equation 20-15 can always be reduced to a simpler form by defining p = P/Q and r = R/Q:

dy

dx
+ p(x)y = r(x) (20-15)

If r(x) = 0, Eq. 20-15 is said to be a homogeneous linear first-order ODE; otherwise Eq. 20-15 is a
heterogeneous linear first-order ODE.

The reason that the homogeneous equation is linear is because solutions can superimposed—that is,
if y1(x) and y2(x) are solutions to Eq. 20-15, then y1(x) + y2(x) is also a solution to Eq. 20-15. This is
the case if the first derivative and the function are themselves linear. The heterogeneous equation is also
called linear in this case, but it is important to remember that sums and/or multiples of heterogeneous
solutions are also solutions to the heterogeneous equation.

It will be demonstrated below (directly and with a Mathematica R© example) that the homoge-
neous equation has a solution of the form

y(x) = const e−
R

p(x)dx (20-16)

To show this form directly, the homogeneous equation can be written as

dy

dx
= −p(x)y
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Dividing each side through by through by y and integrate:∫
dy

y
= log y = −

∫
p(x)dx + const

which has solution
y(x) = const exp(−

∫
p(x)dx)

For the case of the heterogeneous first-order ODE, A trick (or, an integrating factor which amounts
to the same thing) can be employed. Multiply both sides of the heterogeneous equation by e

R
p(x):11

exp
[∫ x

a
p(z)dz

]
dy(x)
dx

+ exp
[∫ x

a
p(z)dz

]
p(x)y(x) = exp

[∫ x

a
p(z)dz

]
r(x) (20-17)

Notice that the left-hand-side can be written as a derivative of a simple expression

exp
[∫ x

a
p(z)dz

]
dy(x)
dx

+ exp
[∫ x

a
p(z)dz

]
p(x)y(x) =

d

dx

{
exp

[∫ x

a
p(z)dz

]
y(x)

}
(20-18)

therefore
d

dx

{
exp

[∫ x

a
p(z)dz

]
y(x)

}
= exp [p(x)] r(x) (20-19)

which can be integrated and then solved for y(x):

y(x) = exp
[
−

∫ x

a
p(z)dz

]{
y(x = a) +

∫ x

a
r(z) exp

[∫ z

a
p(η)dη

]
dz

}
(20-20)

11 The statistical definition of entropy is S(T, V ) = k log Ω(U(T, V )) or Ω(U(T, V )) = exp(S/k). Entropy plays the role
of integrating factor.
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Lecture 20 Mathematica R© Example 1
Solutions to the General Homogeneous Linear First-Order ODE

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

The form of Mathematica R© ’s solution for Eq. 20 is demonstrated.

1
DSolve@
y'@xD + p@xD y@xD ã 0,
y@xD, xD

::y@xD Ø

‰Ÿ1
x
-p@K@1DD „K@1D C@1D>>

The dummy integration variables  (K[1]
in  the  above)  and  any  integration
constants   (C[1]  above)  are  picked by
Mathematica .  Mathematica returns the
most  general  form  of  homogeneous
linear first-order solutiion,

2
DSolve@
y'@xD + H2 x + 1L y@xD ã
0, y@xD, xD

99y@xD Ø ‰-x-x2 C@1D==

There is an integration constant above,
that  will  take  on a specific  value if  an
additional  condition  (such  as  an  initial
condition,  or  a  boundary  condition)  is
specified

3
DSolve@8y'@xD +

H2 x + 1L y@xD ã 0,
y@0D == 4<, y@xD, xD

99y@xD Ø 4 ‰-x-x2==

1: DSolve solves the linear homogeneous equation first-order ODE
dy/dx + p(x)y = 0. Two variables are introduced in the solu-
tion: one is the ‘dummy-variable’ of the integration in Eq. 20 which
Mathematica R© introduces in the form K[N] and an integration
constant which is given the form C[N].

2: Here, a specific p(x) is given, so the dummy variable doesn’t appear
if p(ζ) can be integrated symbolically, as in this case for p(ζ) =
2x + 1.

3: Furthermore, if enough boundary conditions are given to solve for
the integration constants, then the C[N] are not needed either.

http://pruffle.mit.edu/3.016-2011/Notebooks/L20/Lecture-20.nb
http://pruffle.mit.edu/3.016-2011/pdf/L20/Lecture-20-1-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L20/Lecture-20-1-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-20/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2011
http://pruffle.mit.edu/3.016-2011/html/Lecture-20/HTMLLinks/index_1.html
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Lecture 20 Mathematica R© Example 2
Solutions to the General Heterogeneous Linear First-Order ODE

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

This demonstrates the use of DSolve to find symbolic solutions of heterogeneous linear homogeneous first-order
ODEs: Eq. 20-20. We will see how the homogeneous solution is always part of the sum for a heterogeneous
solution.

1

2
DSolve@
y'@xD + p@xD y@xD ã
r@xD, y@xD, xD

::y@xD Ø

‰Ÿ1
x
-p@K@1DD „K@1D C@1D +

‰Ÿ1
x
-p@K@1DD „K@1D

‡
1

x

‰-Ÿ1
K@2D

-p@K@1DD „K@1D

r@K@2DD „K@2D>>

The   solution  is  general~two  dummy
integration  variables  and  one  constant
of integration. 

3

homsol = DSolve@
y'@xD - y@xD ã 0,
y@xD, xD

hetsol = DSolveA
y'@xD - y@xD ã ‰2 x,
y@xD, xE

88y@xD Ø ‰x C@1D<<

99y@xD Ø ‰2 x + ‰x C@1D==

1: DSolve solves the general linear heterogeneous equation, dy/dx +
p(x)y = r(x), to give the form Eq. 20-20. Note how the homoge-
neous solution (i.e., the part that depends on C[1]) is part of the
solution.

2: This is an example for a specific case: p(x) = −1 and r(x) = e2x.
The homogeneous solution is displayed alongside to reinforce that
it is always part of the solution.

Example: The Bernoulli Equation

The linear first-order ODEs always have a closed form solution in terms of integrals. In general non-
linear ODEs do not have a general expression for their solution. However, there are some non-linear
equations that can be reduced to a linear form; one such case is the Bernoulli equation:

dy

dx
+ p(x) y = r(x) ya (20-21)

Reduction relies on a clever change-of-variable, let u(x) = [y(x)]1−a, then Eq. 20-21 becomes

du

dx
+ (1− a)p(x) u = (1− a) r(x) (20-22)

http://pruffle.mit.edu/3.016-2011/Notebooks/L20/Lecture-20.nb
http://pruffle.mit.edu/3.016-2011/pdf/L20/Lecture-20-2-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L20/Lecture-20-2-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-20/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2011
http://pruffle.mit.edu/3.016-2011/html/Lecture-20/HTMLLinks/index_2.html
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which is a linear heterogeneous first-order ODE and has a closed-form solution.
However, not all non-linear problems can be converted to a linear form. In these cases, numerical

methods are required.

Lecture 20 Mathematica R© Example 3
Changing Variables in Symbolic Differential Equations

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

The Bernoulli equation, Eq. 20-21, is used to demonstrate how to change variables in an ODE.

1
BernoulliEquation =
y'@xD + p@xD y@xD ==
r@xD Hy@xDL^HaL

2yRep = u@xD
1

1-a

DyRep = D@yRep, xD

3
step1 =
BernoulliEquation ê.
8y@xD Ø yRep,
y'@xD Ø DyRep<

4step2 =
PowerExpand@step1D

5step3 = Simplify@step2D

6BE =
Solve@step3, u'@xDD

7uprime = u'@xD ê. BE

8
usol = u@xD ê.
DSolve@u'@xD ã
uprime@@1DD,
u@xD, xD

9ysol = Husol@@1DDL^
H1êH1 - aLL

10
BernoulliEquation
Simplify@p@xD ysol +
D@ysol, xDD

1: The Bernoulli equation is a non-linear first order ODE, but a series
of transformations can turn it into an equivalent linear form.

2: Symbols for what will be used as replacements for y(x) and its
derivative in BernoulliEquation are defined.

3: For step1, the symbols are used for a rule-replacement.
4: Using the form with replacements, the assumption that all variables

are real is employed by using PowerExpand.
5: Simplify produces an equation for which the right-hand-side is

zero; thus assuming that u(x) is not identically zero, it can be
factored out of the equation.

6: Using Solve (n.b, not DSolve) to find u′(x) reveals the linear form
of Bernoulli’s equation in terms of the new variable.

7: The rule that is produced by Solve is used to extract the symbolic
form of u′(x); the symbolic form of u′(x) is assigned to uprime.

8: To extract the solution (usol), we use the rule produced by DSolve
on the equation u′(x) = usol.

9: The back-transformation is used to find the general solution y(x)
to the non-linear form of the Bernoulli equation (ysol).

10: The solution, ysol, is plugged back into the left-hand-side of the
Bernoulli equation and, with Simplify, is shown to be r(x)ysola.

http://pruffle.mit.edu/3.016-2011/Notebooks/L20/Lecture-20.nb
http://pruffle.mit.edu/3.016-2011/pdf/L20/Lecture-20-3-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L20/Lecture-20-3-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-20/HTMLLinks/index_3.html
http://pruffle.mit.edu/3.016-2011
http://pruffle.mit.edu/3.016-2011/html/Lecture-20/HTMLLinks/index_3.html
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Lecture 20 Mathematica R© Example 4
Numerical Solutions to Non-linear First-Order ODEs

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

An example of computing the numerical approximation to the solution to a non-linear ODE is presented.
The solutions are returned in the forms of a list of replacement rules to InterpolatingFunction. An
InterpolatingFunction is a method to use numerical interpolation to extract an approximation for any point—
it works just like a function and can be called on a variable like InterpolatingFunction[0.2]. In addition to
the interpolation table, the definition specifies the domain over which the interpolation is considered valid.

Mathematica  cannot  find  a  direct
solution to the following nonlinear ODE

1
DSolve@
Sin@2 Pi y'@xD^2D ==
y@xD x, y@xD, xD

NDSolve  is  a  numerical  method  for
finding  a  solution.  An  initial  condition
and  the  desired  range  of  solution  are
required.

2

solution =
NDSolve@8Sin@

2 Pi y'@xD^2D ==
y@xD x, y@0D == 1<,

y, 8x, 0, 3.5<D

88y Ø
InterpolatingFunctiÖ
on@880., 3.5<<,

<>D<, 8y Ø
InterpolatingFunctiÖ
on@

880., 3.5<<, <>D<<

3y@0.5D ê. solution

80.907437,
1.09733 + 0. Â<

4y@PiD ê. solution

80.0524983,
2.50186 - 0.61067 Â<

1: This shows that DSolve cannot find a symbolic solution to
sin[2π(y′)2] = y(x)x.

2: Using NDSolve on a non-linear ODE, the solution is returned as
a InterpolatingFunction replacement list. Note that there is a
warning about “inverse functions” being used to find the solution;
this is because of the sin-function which is causing Mathematica to
assume a particular domain. There may be more solutions than the
two that were that were returned as an InterpolatingFunction.

[: 3–4] This demonstrates how the numerical approximation to the
non-linear ODE is obtained at particular values of x.

http://pruffle.mit.edu/3.016-2011/Notebooks/L20/Lecture-20.nb
http://pruffle.mit.edu/3.016-2011/pdf/L20/Lecture-20-4-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L20/Lecture-20-4-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-20/HTMLLinks/index_4.html
http://pruffle.mit.edu/3.016-2011
http://pruffle.mit.edu/3.016-2011/html/Lecture-20/HTMLLinks/index_4.html
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Lecture 20 Mathematica R© Example 5
Plotting Numerical Solutions to Non-linear First-Order ODEs

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

This is an example of how to extract plot-table expressions from the rules for InterpolationFunctions that
are returned from NDSolve.

1
PStyle = 88Red, Thick<,

8Darker@GreenD,
Thick<<;

2

PlotVanilla =
Plot@Evaluate@
y@xD ê. solutionD,

8x, 0, 3.5<,
PlotStyle Ø PStyle,
PlotRange Ø 80, 2<,
PlotLabel Ø "Plot"D;

3

PlotReal = Plot@
Evaluate@Re@y@xD ê.

solutionDD,
8x, 0, 3.5<,
PlotStyle Ø PStyle,
PlotLabel Ø
"Real Part"D;

4

PlotIm = Plot@
Evaluate@Im@y@xD ê.

solutionDD,
8x, 0, 3.5<,
PlotStyle Ø PStyle,
PlotLabel Ø
"Imaginary Part"D;

5
GraphicsRow@
8PlotVanilla,
PlotReal, PlotIm<,
ImageSize Ø SmallD

1: Because solution obtained above is a list containing two rules,
two curves will be plotted. Here we define a short-hand for the
expression that will be passed to PlotStyle in the plots below.
The first curve will be red, and the second will be Darker green.

2: Here, Plot is called on the y[x] with replacements defined the rule-
set for InterpolatingFunctions, solution, that was obtained
from NDSolve previously. Using Evaluate here immediately cre-
ates a list of length two, and plot recognizes this as two curves to
which the PlotStyles can be applied. If Evaluate were not used,
then both curves would be be red.
Plot only produces curves where the numerical value can be repre-
sented by a real number; if a solution has a point where it transforms
from real to complex, Plot will show a curve that appears to end.

3–4: To determine the solution behavior, the real and imaginary parts
are extracted with Re and Im.

5: This GraphicsRow indicates the solution behavior: the first solu-
tion is real over the domain where the interpolation is valid; the
second solution transforms from real to complex near x = 0.8.

http://pruffle.mit.edu/3.016-2011/Notebooks/L20/Lecture-20.nb
http://pruffle.mit.edu/3.016-2011/pdf/L20/Lecture-20-5-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L20/Lecture-20-5-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-20/HTMLLinks/index_5.html
http://pruffle.mit.edu/3.016-2011
http://pruffle.mit.edu/3.016-2011/html/Lecture-20/HTMLLinks/index_5.html
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