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Lecture 19: Ordinary Differential Equations: Introduction

Reading:
Kreyszig Sections: 1.1, 1.2, 1.3 (pages2–8, 9–11, 12–17)

Differential Equations: Introduction

Ordinary differential equations are relations between a function of a single variable, its derivatives, and the variable:

F

(
dny(x)
dxn

,
dn−1f(x)
dxn−1

, . . . ,
d2y(x)
dx2

,
dy(x)
dx

, y(x), x
)

= 0 (19-1)

A first-order Ordinary Differential Equation (ODE) has only first derivatives of a function.

F (
dy(x)
dx

, y(x), x) = 0 (19-2)

A second-order ODE has second and possibly first derivatives.

F

(
d2y(x)
dx2

,
dy(x)
dx

, y(x), x
)

= 0 (19-3)

For example, the one-dimensional time-independent Shrödinger equation,

− ~2

2m
d2ψ(x)
dx2

+ U(x)ψ(x) = Eψ(x)

or

− ~2

2m
d2ψ(x)
dx2

+ U(x)ψ(x)− Eψ(x) = 0
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is a second-order ordinary differential equation that specifies a relation between the wave function, ψ(x), its derivatives, and
a spatially dependent function U(x).

Differential equations result from physical models of anything that varies—whether in space, in time, in value, in cost, in
color, etc. For example, differential equations exist for modeling quantities such as: volume, pressure, temperature, density,
composition, charge density, magnetization, fracture strength, dislocation density, chemical potential, ionic concentration,
refractive index, entropy, stress, etc. That is, almost all models for physical quantities are formulated with a differential
equation.

The following example illustrates how some first-order equations arise:

Iterative Application of Function

http://pruffle.mit.edu/3.016-2006/
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Lecture 19 Mathematica R© Example 1

Iteration: First-Order Sequences from a Fixed Boundary Condition
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

Sequences are developed in which the next iteration only depends on the current value; in this most simple case simulate exponential
growth and decay.

Suppose a function,  F[i], changes propor-
tional to its current size, i.e.,  F[i+1] = F[i] + 
aF[i]

1
ExplFun@i_, a_D :=

ExplFun@i, aD =

ExplFun@i - 1, aD +

a * ExplFun@i - 1, aD
In the above, the symbol is assigned (Expl-
Fun[i,alpha] = ...) as part of the function 
definition, so that intermediate values are 
``remembered.''
The function needs some value at some time 
(an initial condition) from which it obtains all its 
other values:

2ExplFun@0, 0.25D = p ê 4
3ExplFun@18, 0.25D

1: ExpleFun taking two arguments is defined: the first argument represents the iteration and the second
represents a single parameter expressing how the current iteration grows. The value at the i + 1th

iteration is the sum of the value of the ith plus α times value of the ithiteration. If this is a bank
account and interest is compounded yearly, then the ithiteration is the value of an account after
i years at a compounded annual interest rate of α. This function has improved performance (but
consumes more memory) by storing its intermediate values.

2: Of course, the function would iterate for ever if an initial value is not specified; and so it is specified
here.

3: For, example this would produce the 18th iteration of growth with a compounding rate of 25% with

π/4 at the initial state.

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2011/Notebooks/L19/Lecture-19.nb
http://pruffle.mit.edu/3.016-2011/pdf/L19/Lecture-19-1-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L19/Lecture-19-1-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-19/HTMLLinks/index_1.html
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Lecture 19 Mathematica R© Example 2

Iteration: First-Order Sequences with a Generalized Boundary Condition
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

The previous example is generalized so that the iteration function is generalized for an arbitrary initial values.

1

ExplFun@0 , a_,

InitVal_D := InitVal
ExplFun@Inc_Integer,

a_, InitVal_D :=

ExplFun@Inc, a, InitValD =

ExplFun@Inc - 1, a,
InitValD + a * ExplFun@
Inc - 1, a, InitValD

2

Traj@
Steps_Integer ?Positive,
a_, InitVal_D :=

Traj@Steps, a, InitValD =

AppendTo@Traj@Steps - 1,
a, InitValD, ExplFun@
Steps, a, InitValDD

Traj@0, _, _D = 8<;
3Traj@12, .01, .001D

A
We define a function, Evolve, 
producing  an interactive tool with 
input : Initial values and a.producing  
an interactive tool with input : Initial 
values and a.

5Evolve@300D

1: Because the initial value and the ‘growth factor’ α determine all subsequent iterations, it is sensible
to ‘overload’ ExplFun (i.e., define the function to behave differently depending on the number and
type of its arguments) to take an extra argument for the initial value. Here, if ExplFun is called
with three arguments and the first argument is zero, then the initial value is set; otherwise it is a
recursive definition with intermediate value storage.

2: Traj is an example of a function that builds a list by first-order iteration. It produces a result that
is suitable for input to ListPlot. The second part of the definition defines the 0th item of the list
to always be an empty list, no matter what other values are passed to it. Traj does its work by
calculating new pairs with the help of ExplFun and then recursively appends the current value to
the growing list.

3: Here is an example which will produce a list of twelve entries, starting from the first iteration of
0.001 with growth factor of 1%.

8: To visualize the behavior as a function of its initial value, an interactive function, Evolve , is defined

(definition suppressed in notes, but available via the links). It takes an argument for the maximum

number of iterations, and the initial value and growth factor are controlled with Manipulate.

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2011/Notebooks/L19/Lecture-19.nb
http://pruffle.mit.edu/3.016-2011/pdf/L19/Lecture-19-2-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L19/Lecture-19-2-BW.pdf
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Lecture 19 Mathematica R© Example 3

Space-Covering Sequences: Families of Trajectories
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

The previous example is generalized so that the iteration function is generalized for an arbitrary initial values. several plots. Once the
growth rate is fixed, we visualize how each curve “belongs” to a particular initial value; the set of all initial values generates a family of
curves that fill the plane—each point belongs to one and only one trajectory.

Plotting a bunch of curves for the same 
positive a value, but each corresponding to a 
different initial value.

1

PlotTrajs@a_D := Block@
8$RecursionLimit = 10^4<,
ListPlot@Evaluate@
Table@Traj@300, a, ivD,
8iv, -1, 1, 0.25<DD,

PlotRange Ø All,
Joined Ø True,
PlotStyle Ø ThickDD

2PlotTrajs@0.02D

20 40 60 80 100
-6
-4
-2
2
4
6

3PlotTrajs@-0.02D

20 40 60 80 100

-1.0
-0.5

0.5
1.0

1: PlotTrajs is a function that provides a visualization of trajectories for an input growth. It works by
generating a set of initial values to pass to Traj and then plots them with ListPlot.

2: If α > 0, the function goes to ±∞ depending on the sign of the initial value. For a fixed α every
point in the plane belongs to one and only one trajectory associated with an initial value and that
α.

3: If α < 0, the function asymptotically goes to zero, independent of the initial value. In this case as

well, the plane is completely covered by non-intersecting trajectories.

http://pruffle.mit.edu/3.016-2006/
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Forward Differencing Methods: Explicit Methods

The previous example is generalized to a discrete change ∆t of a continuous (i.e., time-like) parameter t. The following example
demonstrates the simplest method of numerically solving a simple first-order ODE. first-order explicit finite differencing or
Euler integration.

We begin by approximating the derivative dy/dt at time t with a finite difference approximation:

∆y/∆t = [y(t+ ∆t)− y(t)]/[(t+ ∆t)− t] (19-4)

We can write down a formula for y(t + ∆t) in terms of current values at t, and thus ‘project y into the future. Suppose we
use fixed small time steps ∆t and the short-hand yn = y(n∆t), yn+1 = y(n∆t + ∆t). Now, we must determine which value
to use for f(y(t)) in dy/dt = f(y): the current value f(yn), the future value f(yn+1), an average value ([f(yn) + f(yn+1)]/2,
or something else. The simplest thing to do is use the current value and then every term (but yn+1 is in terms of n:

yn+1 = yn + ∆tf(yn) (19-5)

This is called explicit forward-differencing or Euler’s method,

http://pruffle.mit.edu/3.016-2006/
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Lecture 19 Mathematica R© Example 4

First-Order Finite Differences: Method 1 Explicit Finite Differences
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

We implement this simple method described in Eq. 19-5 be creating a function which ‘projects’ the current value of y into the future.

Approximate f(y) with f(yi-1);

1
PushMethod1@f_,

8ti_, yi_<, Dt_D :=

8ti + Dt, yi + Dt f@yiD<
2FuncEx@y_D := -Sin@yD

3PushMethod1@
FuncEx, 80, 1<, .01D

4
PushMethod1@FuncEx,
PushMethod1@FuncEx,
80, 1<, .01D, .01D

5Nest@PushMethod1@FuncEx,
Ò, .01D &, 80, 1<, 2D

6
NestList@
PushMethod1@FuncEx,

Ò, .01D &, 80, 1<, 2D

7
NestWhileList@
PushMethod1@FuncEx,

Ò, .01D &, 80, 1<,
HFirst@ÒD < 0.03L &D

1: The function PushMethod1 takes three arguments: argument 1 is a place-holder for another function
that determines how each increment changes (i.e., the function f = dy/ft); argument 2 is the current
value; argument 3 is the discrete forward difference (i.e., ∆t).

2: FuncEx is defined to to pass to sequence-generating functions—it plays the role of f(yn) in Eq. 19-5.

3: For example, this pushes a value {0,1} by ∆t = 0.01 into the future with FuncEx[1].

4: Calling the function, PushMethod1 , recursively on itself (once) pushes the value iteravely into the
future (twice).

5: We can generalize this recursion method by using Nest (Nest[f,x,3] rightarrow f[f[f[x]]]).
However, we must turn PushMethod1 into a function of a single argument, so there is no ambiguity
about which value is being iteratively pushed forward. This is done by creating a Pure Function
version of PushMethod1 . The pure function is indicated by the trailing ampersand, &, and the
# becomes a place holder for the single argument. Thus, Nest[(PushMethod[FuncEx,#,0.01])&,

{0,1}, 2] nests PushMethod1 with fixed first and third arguments (FuncEx and 0.01) on the initial
value {0,1} twice.

6: NestList is another version of Nest, but it stores each increment in a growing list and returns a list
structure.

7: NestListWhile is another version of NestList, but with a switch to tell it when to stop ‘Nesting.’

We use this method to indicate “at what time” the nesting should stop, and not “after how many

nests.” For NestListWhile’ test-argument, we use another pure function: it takes the current value

of {t,y} and tests to see if t is less than 0.03.

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2011/Notebooks/L19/Lecture-19.nb
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Lecture 19 Mathematica R© Example 5

Visualizing Trajectories from Explicit Forward Differences
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

Examples of the explicit forward differencing function PushMethod1 called recursively with NestListWhile are illustrated. An example
of Numerical Instability appears.

A
A Function PlotM1, taking 
arguments for a and initial condition 
is used with NestListWhile and 
ListPlot to produce graphics with a 
red line and green points.

2PlotM1@0.1, 1D

3PlotM1@1.5, 1D

A: PlotM1 is defined which takes a first argument for a time-step, and a second argument is y0. It
uses ListPlot to create a trajectory, and show line segments between the computed points. (The
definition is suppressed in class-notes, it is available via the links given above)

2: Here is an example of a stable numerical integration of a first-order ODE. We have not evaluated
how accurate the numerical algorithm is, but only that it is well-behaved.

3: Using a larger time-step, we can see that the algorithm is becoming less well-behaved. This introduces

the concept maximum stable time-step.

http://pruffle.mit.edu/3.016-2006/
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Forward Differencing Methods: Implicit Methods

As in the implicit method, we begin by approximating the derivative dy/dt at time t with a finite difference approximation:

∆y/∆t = [y(t+ ∆t)− y(t)]/[(t+ ∆t)− t] (19-6)

However, in this case we will use the expected future value, yn+1 as the argument to f(y).

yn+1 = yn + ∆tf(yn+1)

= yn + ∆t

[
f(yn) +

df

dy

∣∣∣∣
yn

(yn+1 − yn)

]
(19-7)

Because yn+1 appears on both sides, we have to solve for it (this is the implicit step),

yn+1 =
yn + ∆t(f(yn)− df

dy

∣∣∣
yn

yn)

1−∆t df
dy

∣∣∣
yn

(19-8)

This is called implicit forward-differencing.

http://pruffle.mit.edu/3.016-2006/
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Lecture 19 Mathematica R© Example 6

First-Order Finite Differences: Method 1 Explicit Finite Differences
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

We implement this implicit method described in Eq. 19-8

Approximate f(y) with f(yi  
); then solving the 
finite difference equation above,
yi = yi-1 + Dt  [f(yi ) ]. 
 So, yi = yi-1 + Dt  (f(yi ) + f'(yi-1)dy)
 yi = yi-1 + Dt  (f(yi ) + f'(yi-1)(yi  - yi-1) )
yi  = Hyi-1 - Dt  [f(yi-1)  - f'(yi-1)yi-1])/
                (1 -  Dt f'(yi-1) )

1

PushMethod2@f_,
df_, 8ti_, yi_<,
Dt_D := 8ti + Dt,
Hyi + HDt Hf@yiD -

df@yiD yiLLL ê
H1 - Dt df@yiDL<

2dFuncEx@y_D :=

Evaluate@D@FuncEx@yD, yDD

3
NestList@
PushMethod2@FuncEx,
dFuncEx, Ò, 0.1D &,

80, 1<, 3D

A
We define a function, PlotM2, which 
takes arguments Dt and 
InitialCondition and then uses 
ListPlot with Blue lines and Gray 
points.

1: PushMethod2 implements the implicit differencing strategy. However, we must also provide this
method with a function representing the derivative of f .

2: We define the derivative function, but use Evaluate on the right-hand side of the delayed assignment
(:=) so that the derivative operator D is not called each time the function is used.

3: We can use the Nest-family of functions as before.

A: A function to plot the implicit function results is defined for comparison to the explicit method.

http://pruffle.mit.edu/3.016-2006/
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Lecture 19 Mathematica R© Example 7

Comparison of Implicit and Explicit Methods
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

We plot the results from the two different time-stepping methods and show that the implicit method is more stable. We still have not
evaluated the accuracy of either method.

1
Show@PlotM1@0.1, 1D,
PlotM2@0.1, 1D, PlotRange Ø

880, 10<, 80, 1<<D

2
Show@PlotM1@1.5, 1.0D,
PlotM2@1.5, 1.0D,
PlotRange Ø

880, 10<, 8-0.5, 1<<D

Method 2 will fail if the step size is increased 
to 2

1: With a time step of ∆t = 0.1, the two methods give results that are barely discernible. This gives
us confidence in the hypothesis that the solutions are also accurate at this time step.

2: At larger time steps, the implicit method is more well-behaved. However, if the step size is made a

little larger, both methods will become unstable.

http://pruffle.mit.edu/3.016-2006/
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Geometrical Interpretation of Solutions

The relationship between a function and its derivatives for a first-order ODE,

F (
dy(x)
dx

, y(x), x) = 0 (19-9)

can be interpreted as a level set formulation for a two-dimensional surface embedded in a three-dimensional space with
coordinates (y′, y, x). The surface specifies a relationship that must be satisfied between the three coordinates.

If y′(x) can be solved for exactly,
dy(x)
dx

= f(x, y) (19-10)

then y′(x) can be thought of as a height above the x-y plane.

For a very simple example, consider Newton’s law of cooling which relates the change in temperature, dT/dt, of a body to
the temperature of its environment and a kinetic coefficient k:

dT (t)
dt

= −k(T − To) (19-11)

It is very useful to “non-dimensionalize” variables by scaling via the physical parameters. In this way, a single ODE represents
all physical situations and provides a way to describe universal behavior in terms of the single ODE. For Newton’s law of
cooling, this can be done by defining non-dimensional temperatures and time with Θ = T/To and τ = kt, then if To and k
are constants:

dΘ(τ)
dτ

= (1−Θ)

http://pruffle.mit.edu/3.016-2006/
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Lecture 19 Mathematica R© Example 8

Visual Understanding of the Behavior of First-Order ODES
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

The surface representation provides a useful way to think about differential equations—much can be inferred about a solution’s be-
havior without computing the solution exactly. This is shown for a simple case of Newton’s law of cooling Equation 19 and an artificial case.

1

ZeroPlane@xmin_,
xmax_, ymin_, ymax_D :=

Graphics3D@8Gray,
Opacity@0.25D, Cuboid@
8xmin, ymin, -.001<,
8xmax, ymax, .001<D<D

2

Show@
Plot3D@1 - Q, 8tau, 0, 2<,
8Q, 0, 2<, AxesLabel Ø

8"t", "Q", "dQêdt"<,
DisplayFunction ->

IdentityD,
ZeroPlane@0, 2, 0, 2DD

1: For first-order ODEs, behavior is dominated by whether the derivative term is positive or negative.
Here, a Graphics3D object is created for a gray-colored opaque horizontal plane (in reality we use
a very thin slab) at z = 0. We will use this function to evaluate when the derivative is positive and
the value is increasing or negative and the value is decreasing.

2: This will create the surface associated with Newton’s law of cooling with the zero plane. This case

is very simple. The sign of the change of Θ depends only the sign of 1−Θ and therefore dΘ/dt = 0

is the parametric curve (a line in this case) (dΘ/dt = 0, Θ = 1, τ). That is, if Θ = 1 at any time

τ it will stay there at all subsequent times (also, at all previous times as well). Because Θ(τ) will

always increase when Θ < 1 and will always decrease when Θ > 1, the solutions will asymptotically

approach Θ = 1.

http://pruffle.mit.edu/3.016-2006/
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Lecture 19 Mathematica R© Example 9

Visualizing the Geometry of Flows for First-Order ODES
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

By creating vector field which ‘points’ toward subsequent points as inferred from the ODE, we produce a very useful way to understand
solution behavior for a variety of initial conditions, without computing a solution to the ODE. This is shown again for a simple case of
Newton’s law of cooling

Plot the vectorf-ield (dt,dQ) = dt(1, dQ
dt

) 
We 
can do so by plotting vectors of the form {dt, 
dQ} = dt{1, dQ

dt
} which will be proportional to 

the vector {1, 1-Q}. This is done as follows:

1

Needs@"VectorFieldPlots`"D;
VectorFieldPlots`VectorFieÖ
ldPlot@81, 1 - Q<,

8tau, 0, 4<,
8Q, -2, 4<, Axes Ø True,
AxesLabel Ø 8"t", "Q"<,
ImageSize Ø FullD

1 2 3 4
t

-2

-1

1

2

3

4
Q

1: The asymptotic behavior can be further visualized by plotting a first-order difference representation

of how the solution is changing in time, i.e, (dτ, dΘ) = dτ
`
1, dΘ

dτ

´
This can be obtained with

VectorFieldPlot from the VectorFieldPlots package. Here the magnitude of the arrows is scaled

by setting dτ = 1.

http://pruffle.mit.edu/3.016-2006/
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Lecture 19 Mathematica R© Example 10

Visualizing the Geometry of Flows for First-Order ODES
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

We utilize our visualization methods for intuitive understanding of the behavior of ODES for the case:

dy

dt
= y sin

(
yt

1 + y + t

)

Slightly more complicated example: 
dy
dt = y sin( yt

1+ t +y ),

(dt,dy) = dt(1,ysin yt
1+ t +y ))

1
Show@Plot3D@
y Sin@ y t ê Ht + y + 1LD,
8t, 0, 10<, 8y, 0, 10<, ,
ZeroPlane@0, 10, 0, 10DDD

2
VectorFieldPlot@
81, y Sin@y t ê Ht + y + 1LD<,
8t, 0, 10<, 8y, 0, 10<D

2 4 6 8 10
t

2
4
6
8
10

y

1: This case can be visualized as well and the behavior can be inferred whether the derivative lies above
or below the zero-plane (i.e., the sign of the derivative). Where dy/dt < 0, y decreases as time
marches forward; thus it moves toward the intersection of the zero plane and the dy/dt-surface. We
see that the slope of the surface evaluated along the curve of intersection determines whether there
is an “attractor-manifold” in the ODE.

2: VectorFieldPlot provides another method to follow a solution trajectories: we plot vectors propor-

tional to dt(1, y sin[yt/(1 + y + t)].
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Separable Equations

If a first-order ordinary differential equation F (y′, y, x) = 0 can be rearranged so that only one variable, for instance y, appears
on the left-hand-side multiplying its derivative and the other, x, appears only on the right-hand-side, then the equation is
said to be ‘separated.”

g(y)
dy

dx
= f(x)

g(y)dy = f(x)dx
(19-12)

Each side of such an equation can be integrated with respect to the variable that appears on that side:∫ y

y(xo)
g(η)dη =

∫ x

xo

f(ξ)dξ (19-13)

if the initial value, y(xo) is known. If not, the equation can be solved with an integration constant C0,∫
g(y)dy =

∫
f(x)dx+ C0 (19-14)

where C0 is determined from initial conditions. or∫ y

yinit

g(η)dη =
∫ x

xinit

f(ζ)dζ (19-15)

where the initial conditions appear explicitly.
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Lecture 19 Mathematica R© Example 11

Using Mathematica R© ’s Built-in Ordinary Differential Equation Solver
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

Mathematica R© has built-in exact and numerical differential equations solvers. DSolve takes a representation of a differential equation
with initial and boundary conditions and returns a solution if it can find one. If insufficient initial or boundary conditions are specified,
then “integration constants” are added to the solution.

1
dsol = DSolve@

8y'@tD == FuncEx@y@tDD<,
y@tD, tD

99y@tD Ø 2 ArcTanA‰-t+C@1DE==

2
dsol = DSolve@

8y'@tD == FuncEx@y@tDD,
y@0D ã 1<, y@tD, tD

::y@tD Ø 2 ArcTanB‰-t TanB1
2
FF>>

 The next statement extracts y (x) for plotting ..

3

ExactPlot =

Plot@ y@tD ê. dsol,
8t, 0, 10<, PlotStyle Ø

8Thick, Darker@CyanD<,
PlotRange Ø AllD

2 4 6 8 10

0.2
0.4
0.6
0.8
1.0

1: DSolve operates like Solve . It takes a list of equations containing symbolic derivatives, the function
to be solved for, and the dependent variable. In this case, the general solution of the example we used
for finite differencing examples: dy(x)

dx
= FuncEx [y] DSolve returns a list of rules. The solutions

are be obtained by applying the rules (i.e., y[x]/.dsol). The solution will depend on an integration
constant(s) in general. Mathematica R© uses the symbols C[1],C[2],etc as place-holders for the
integration constants.

2: If additional If more constraints (i.e., equations) are provided, then (provided a solution exists) the
integration constant is determined as well. This is the exact solution to what we were numerically
approximating above.

3: The solution is plotted by turning the “solution rule” into a plot-table y[t] Flatten. The plot is

stored as a graphics object ExactPlot.
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Lecture 19 Mathematica R© Example 12

Comparision of Exact Solutions to Finite Difference Methods
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

We compare the plots of implicit, explicit finite differencing to the exact solution obtained by DSolve.

1
Show@PlotM1@0.1, 1D,
PlotM2@0.1, 1D,
ExactPlot, PlotRange Ø

880, 10<, 80, 1<<D

2
Show@PlotM1@1.5, 1D,
PlotM2@1.5, 1D,
ExactPlot, PlotRange Ø

880, 10<, 8-0.25, 1<<D

1: To see how finite differencing compares to the exact solution, we plot all three trajectories together.
The less-stable explicit method is more accurate for intermediate values of t.

2: This shows the comparison at larger time steps.
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While the accuracy of the first-order differencing scheme can be determined by comparison to an exact solution, the question
remains of how to establish accuracy and convergence with the step-size δ for an arbitrary ODE. This is a question of primary
importance and studied by Numerical Analysis.

http://pruffle.mit.edu/3.016-2006/
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Lecture 19 Mathematica R© Example 13

Using Mathematica R© ’s Differential Equation Solver on a First-Order ODE: Less Trivial Example
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

We solve y′(x) + xy(x) = 0 for a ‘strange’ condition y′(5) = 1 and plot the solution.

1
dsol = DSolve@
y'@xD + x * y@xD ã 0,
y@xD, xD
Boundary conditions other than y[0]:

2
dsol = DSolve@

8y'@xD + Sin@xD * y@xD ã

0, y'@5D ã 1<, y@xD, xD

99y@xD Ø -‰-Cos@5D+Cos@xD Csc@5D==

3

GraphicsRow@
8p = Plot@y@xD ê. dsol,

8x, 0, 10<,
PlotStyle Ø ThickD,

Show@p, PlotRange Ø

880, 6<, 80, 6<<,
AspectRatio Ø 1D<D

0 2 4 6 8 10
0.0
0.5
1.0
1.5
2.0

0 1 2 3 4 5 6
0
1
2
3
4
5
6

1: This demonstrates the use of DSolve, because we have not supplied enough conditions to determine
the solution exactly, Mathematica R© introduces all the undetermined constants of integration. In
this case, there is only one undetermined constant.

2: Here, the solution is required to have a slope of unity at x = 5. If such a value is possible, then
Mathematica R© will compute the corresponding value of C[1].

3: This demonstrates how to extract the solution and plot it. It is plotted a second time with the same

y and x scales so we can see that the slope is indeed one at x = 5.
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D, 249
differential equations, 240
DSolve, 256, 257, 259

efficiency
storing intermediate iteration values, 242

Euler integration, 245
Evaluate, 249
Evolve, 243
Example function

Evolve, 243
ExplFun, 243
ExpleFun, 242
FuncEx, 246, 256
PlotM1, 247
PlotTrajs, 244
PushMethod1, 246, 247
PushMethod2, 249
Traj, 243, 244

ExpleFun, 242
ExplFun, 243
exponential growth and decay, 242

finite differences, 246
implicit methods, 249

first-order explicit finite differencing, 245

first-order ordinary differential equations
geometry, 251

Flatten, 256
FuncEx, 246, 256
functions

storing intermediate values, 242

Graphics3D, 252

integration constants
form in Mathematica, 256

kinetic coefficient, 251

ListPlot, 243, 244, 247

Manipulate, 243
Markov chains, 242
Mathematica function

C[1],C[2],etc, 256
DSolve, 256, 257, 259
D, 249
Evaluate, 249
Flatten, 256
Graphics3D, 252
ListPlot, 243, 244, 247
Manipulate, 243
NestListWhile, 246, 247
NestList, 246
Nest, 246, 249
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Solve, 256
VectorFieldPlot, 253, 254

Mathematica package
VectorFieldPlots, 253

maximum stable time-step, 247

Nest, 246, 249
NestList, 246
NestListWhile, 246, 247
Newton’s law of cooling, 251
non-dimensional parameters, 251
numerical analysis, 258
Numerical Instability, 247

ordinary differential equations
examples, 240
first order

approximation by finite differences, 246
integration constants, 255
separable equations, 255

PlotM1, 247
PlotTrajs, 244
Pure Function, 246
PushMethod1, 246, 247
PushMethod2, 249

scaling
non-dimensional parameters, 251

Schrödinger static one-dimensional equation
example of second order differential equation, 240

Solve, 256
space-filling manifolds, 244

surfaces
representation of first-order ODE embedded in 3D, 251

Traj, 243, 244

universal behavior, 251

VectorFieldPlot, 253, 254
VectorFieldPlots, 253
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