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Nov. 28 2011

Lecture 19: Ordinary Differential Equations: Introduction

Reading:
Kreyszig Sections: 1.1, 1.2, 1.3 (pages2–8, 9–11, 12–17)

Differential Equations: Introduction

Ordinary differential equations are relations between a function of a single variable, its derivatives, and
the variable:

F

(
dny(x)
dxn

,
dn−1f(x)
dxn−1

, . . . ,
d2y(x)
dx2

,
dy(x)
dx

, y(x), x
)

= 0 (19-1)

A first-order Ordinary Differential Equation (ODE) has only first derivatives of a function.

F (
dy(x)
dx

, y(x), x) = 0 (19-2)

A second-order ODE has second and possibly first derivatives.

F

(
d2y(x)
dx2

,
dy(x)
dx

, y(x), x
)

= 0 (19-3)

For example, the one-dimensional time-independent Shrödinger equation,

− h̄2

2m
d2ψ(x)
dx2

+ U(x)ψ(x) = Eψ(x)

or

− h̄2

2m
d2ψ(x)
dx2

+ U(x)ψ(x)− Eψ(x) = 0

is a second-order ordinary differential equation that specifies a relation between the wave function,
ψ(x), its derivatives, and a spatially dependent function U(x).

Differential equations result from physical models of anything that varies—whether in space, in
time, in value, in cost, in color, etc. For example, differential equations exist for modeling quantities
such as: volume, pressure, temperature, density, composition, charge density, magnetization, fracture
strength, dislocation density, chemical potential, ionic concentration, refractive index, entropy, stress,
etc. That is, almost all models for physical quantities are formulated with a differential equation.

The following example illustrates how some first-order equations arise:
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Iterative Application of Function

Lecture 19 Mathematica R© Example 1
Iteration: First-Order Sequences from a Fixed Boundary Condition

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

Sequences are developed in which the next iteration only depends on the current value; in this most simple case
simulate exponential growth and decay.

Suppose  a  function,   F[i],  changes
proportional  to  its  current  size,  i.e.,
F[i+1] = F[i] + aF[i]

1
ExplFun@i_, a_D :=
ExplFun@i, aD =
ExplFun@i - 1, aD +
a*ExplFun@i - 1, aD

In  the  above,  the  symbol  is  assigned
(ExplFun[i,alpha]  =  ...)  as  part  of  the
function definition,  so that  intermediate
values are ``remembered.''
The function needs some value at some
time (an initial  condition)  from which it
obtains all its other values:

2ExplFun@0, 0.25D = p ê4

3ExplFun@18, 0.25D

1: ExpleFun taking two arguments is defined: the first argument rep-
resents the iteration and the second represents a single parameter
expressing how the current iteration grows. The value at the i+ 1th

iteration is the sum of the value of the ith plus α times value of the
ithiteration. If this is a bank account and interest is compounded
yearly, then the ithiteration is the value of an account after i years
at a compounded annual interest rate of α. This function has im-
proved performance (but consumes more memory) by storing its
intermediate values.

2: Of course, the function would iterate for ever if an initial value is
not specified; and so it is specified here.

3: For, example this would produce the 18th iteration of growth with
a compounding rate of 25% with π/4 at the initial state.

http://pruffle.mit.edu/3.016-2011/Notebooks/L19/Lecture-19.nb
http://pruffle.mit.edu/3.016-2011/pdf/L19/Lecture-19-1-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L19/Lecture-19-1-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-19/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2011
http://pruffle.mit.edu/3.016-2011/html/Lecture-19/HTMLLinks/index_1.html
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Lecture 19 Mathematica R© Example 2
Iteration: First-Order Sequences with a Generalized Boundary Condition

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

The previous example is generalized so that the iteration function is generalized for an arbitrary initial values.

1

ExplFun@0 , a_,
InitVal_D := InitVal

ExplFun@Inc_Integer,
a_, InitVal_D :=
ExplFun@Inc, a,
InitValD =
ExplFun@Inc - 1,

a, InitValD +
a*ExplFun@Inc - 1,

a, InitValD

2

Traj@Steps_Integer?
Positive, a_,
InitVal_D :=
Traj@Steps, a,
InitValD = AppendTo@
Traj@Steps - 1,
a, InitValD,
ExplFun@Steps,
a, InitValDD

Traj@0, _, _D = 8<;

3Traj@12, .01, .001D

A

We define a function, Evolve, 
producing  an interactive tool 
with input : Initial values and 
a.producing  an interactive 
tool with input : Initial values 
and a.

5Evolve@300D

1: Because the initial value and the ‘growth factor’ α determine all
subsequent iterations, it is sensible to ‘overload’ ExplFun (i.e., de-
fine the function to behave differently depending on the number
and type of its arguments) to take an extra argument for the initial
value. Here, if ExplFun is called with three arguments and the
first argument is zero, then the initial value is set; otherwise it is a
recursive definition with intermediate value storage.

2: Traj is an example of a function that builds a list by first-order it-
eration. It produces a result that is suitable for input to ListPlot.
The second part of the definition defines the 0th item of the list to
always be an empty list, no matter what other values are passed
to it. Traj does its work by calculating new pairs with the help
of ExplFun and then recursively appends the current value to the
growing list.

3: Here is an example which will produce a list of twelve entries, start-
ing from the first iteration of 0.001 with growth factor of 1%.

8: To visualize the behavior as a function of its initial value, an inter-
active function, Evolve , is defined (definition suppressed in notes,
but available via the links). It takes an argument for the maximum
number of iterations, and the initial value and growth factor are
controlled with Manipulate.

http://pruffle.mit.edu/3.016-2011/Notebooks/L19/Lecture-19.nb
http://pruffle.mit.edu/3.016-2011/pdf/L19/Lecture-19-2-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L19/Lecture-19-2-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-19/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2011
http://pruffle.mit.edu/3.016-2011/html/Lecture-19/HTMLLinks/index_2.html
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Lecture 19 Mathematica R© Example 3
Space-Covering Sequences: Families of Trajectories

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

The previous example is generalized so that the iteration function is generalized for an arbitrary initial values.
several plots. Once the growth rate is fixed, we visualize how each curve “belongs” to a particular initial value;
the set of all initial values generates a family of curves that fill the plane—each point belongs to one and only
one trajectory.

Plotting a bunch of curves for the same
positive a  value,  but each correspond-
ing to a different initial value.

1

PlotTrajs@a_D :=
Block@
8$RecursionLimit =
10^4<,

ListPlot@Evaluate@
Table@Traj@300,

a, ivD, 8iv,
-1, 1, 0.25<DD,

PlotRange Ø All,
Joined Ø True,
PlotStyle Ø ThickDD

2PlotTrajs@0.02D

20 40 60 80 100

-6
-4
-2

2
4
6

3PlotTrajs@-0.02D

20 40 60 80 100

-1.0

-0.5

0.5

1.0

1: PlotTrajs is a function that provides a visualization of trajectories
for an input growth. It works by generating a set of initial values
to pass to Traj and then plots them with ListPlot.

2: If α > 0, the function goes to ±∞ depending on the sign of the
initial value. For a fixed α every point in the plane belongs to one
and only one trajectory associated with an initial value and that α.

3: If α < 0, the function asymptotically goes to zero, independent of
the initial value. In this case as well, the plane is completely covered
by non-intersecting trajectories.

Forward Differencing Methods: Explicit Methods

The previous example is generalized to a discrete change ∆t of a continuous (i.e., time-like) parameter
t. The following example demonstrates the simplest method of numerically solving a simple first-order
ODE. first-order explicit finite differencing or Euler integration.

We begin by approximating the derivative dy/dt at time t with a finite difference approximation:

∆y/∆t = [y(t+ ∆t)− y(t)]/[(t+ ∆t)− t] (19-4)

We can write down a formula for y(t+ ∆t) in terms of current values at t, and thus ‘project y into the
future. Suppose we use fixed small time steps ∆t and the short-hand yn = y(n∆t), yn+1 = y(n∆t+∆t).

http://pruffle.mit.edu/3.016-2011/Notebooks/L19/Lecture-19.nb
http://pruffle.mit.edu/3.016-2011/pdf/L19/Lecture-19-3-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L19/Lecture-19-3-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-19/HTMLLinks/index_3.html
http://pruffle.mit.edu/3.016-2011
http://pruffle.mit.edu/3.016-2011/html/Lecture-19/HTMLLinks/index_3.html
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Now, we must determine which value to use for f(y(t)) in dy/dt = f(y): the current value f(yn), the
future value f(yn+1), an average value ([f(yn) + f(yn+1)]/2, or something else. The simplest thing to
do is use the current value and then every term (but yn+1 is in terms of n:

yn+1 = yn + ∆tf(yn) (19-5)

This is called explicit forward-differencing or Euler’s method,

Lecture 19 Mathematica R© Example 4
First-Order Finite Differences: Method 1 Explicit Finite Differences

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

We implement this simple method described in Eq. 19-5 be creating a function which ‘projects’ the current
value of y into the future.

Approximate f(y) with f(yi-1);

1
PushMethod1@f_,

8ti_, yi_<, Dt_D :=
8ti + Dt,
yi + Dt f@yiD<

2FuncEx@y_D := -Sin@yD

3PushMethod1@
FuncEx, 80, 1<, .01D

4
PushMethod1@FuncEx,
PushMethod1@FuncEx,
80, 1<, .01D, .01D

5
Nest@
PushMethod1@FuncEx, Ò,
.01D &, 80, 1<, 2D

6
NestList@
PushMethod1@FuncEx, Ò,
.01D &, 80, 1<, 2D

7
NestWhileList@
PushMethod1@FuncEx,

Ò, .01D &, 80, 1<,
HFirst@ÒD < 0.03L &D

1: The function PushMethod1 takes three arguments: argument 1
is a place-holder for another function that determines how each
increment changes (i.e., the function f = dy/ft); argument 2 is the
current value; argument 3 is the discrete forward difference (i.e.,
∆t).

2: FuncEx is defined to to pass to sequence-generating functions—it
plays the role of f(yn) in Eq. 19-5.

3: For example, this pushes a value {0,1} by ∆t = 0.01 into the future
with FuncEx[1].

4: Calling the function, PushMethod1 , recursively on itself (once)
pushes the value iteravely into the future (twice).

5: We can generalize this recursion method by using Nest
(Nest[f,x,3] rightarrow f[f[f[x]]]). However, we must turn
PushMethod1 into a function of a single argument, so there is
no ambiguity about which value is being iteratively pushed for-
ward. This is done by creating a Pure Function version of Push-
Method1 . The pure function is indicated by the trailing amper-
sand, &, and the # becomes a place holder for the single argu-
ment. Thus, Nest[(PushMethod[FuncEx,#,0.01])&, {0,1}, 2]
nests PushMethod1 with fixed first and third arguments (FuncEx
and 0.01) on the initial value {0,1} twice.

6: NestList is another version of Nest, but it stores each increment
in a growing list and returns a list structure.

7: NestListWhile is another version of NestList, but with a switch
to tell it when to stop ‘Nesting.’ We use this method to indicate
“at what time” the nesting should stop, and not “after how many
nests.” For NestListWhile’ test-argument, we use another pure
function: it takes the current value of {t,y} and tests to see if t is
less than 0.03.

http://pruffle.mit.edu/3.016-2011/Notebooks/L19/Lecture-19.nb
http://pruffle.mit.edu/3.016-2011/pdf/L19/Lecture-19-4-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L19/Lecture-19-4-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-19/HTMLLinks/index_4.html
http://pruffle.mit.edu/3.016-2011
http://pruffle.mit.edu/3.016-2011/html/Lecture-19/HTMLLinks/index_4.html
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Lecture 19 Mathematica R© Example 5
Visualizing Trajectories from Explicit Forward Differences

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

Examples of the explicit forward differencing function PushMethod1 called recursively with NestListWhile

are illustrated. An example of Numerical Instability appears.

A

A Function PlotM1, taking 
arguments for a and initial 
condition is used with 
NestListWhile and ListPlot to 
produce graphics with a red 
line and green points.

2PlotM1@0.1, 1D

3PlotM1@1.5, 1D

A: PlotM1 is defined which takes a first argument for a time-step, and
a second argument is y0. It uses ListPlot to create a trajectory,
and show line segments between the computed points. (The defini-
tion is suppressed in class-notes, it is available via the links given
above)

2: Here is an example of a stable numerical integration of a first-order
ODE. We have not evaluated how accurate the numerical algorithm
is, but only that it is well-behaved.

3: Using a larger time-step, we can see that the algorithm is becoming
less well-behaved. This introduces the concept maximum stable
time-step.

Forward Differencing Methods: Implicit Methods

As in the implicit method, we begin by approximating the derivative dy/dt at time t with a finite
difference approximation:

∆y/∆t = [y(t+ ∆t)− y(t)]/[(t+ ∆t)− t] (19-6)

However, in this case we will use the expected future value, yn+1 as the argument to f(y).

yn+1 = yn + ∆tf(yn+1)

= yn + ∆t

[
f(yn) +

df

dy

∣∣∣∣
yn

(yn+1 − yn)

]
(19-7)

http://pruffle.mit.edu/3.016-2011/Notebooks/L19/Lecture-19.nb
http://pruffle.mit.edu/3.016-2011/pdf/L19/Lecture-19-5-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L19/Lecture-19-5-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-19/HTMLLinks/index_5.html
http://pruffle.mit.edu/3.016-2011
http://pruffle.mit.edu/3.016-2011/html/Lecture-19/HTMLLinks/index_5.html
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Because yn+1 appears on both sides, we have to solve for it (this is the implicit step),

yn+1 =
yn + ∆t(f(yn)− df

dy

∣∣∣
yn

yn)

1−∆t df
dy

∣∣∣
yn

(19-8)

This is called implicit forward-differencing.

Lecture 19 Mathematica R© Example 6
First-Order Finite Differences: Method 1 Explicit Finite Differences

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

We implement this implicit method described in Eq. 19-8

Approximate f(y) with f(yi  ); then solving
the finite difference equation above,
yi = yi-1 + Dt  [f(yi ) ]. 
 So, yi = yi-1 + Dt  (f(yi ) + f'(yi-1)dy)
 yi = yi-1 + Dt  (f(yi ) + f'(yi-1)(yi  - yi-1) )
yi  = Hyi-1 - Dt  [f(yi-1)  - f'(yi-1)yi-1])/
                (1 -  Dt f'(yi-1) )

1

PushMethod2@f_, df_,
8ti_, yi_<, Dt_D :=

8ti + Dt,
Hyi + HDt Hf@yiD -

df@yiD yiLLLê
H1 - Dt df@yiDL<

2
dFuncEx@y_D :=
Evaluate@
D@FuncEx@yD, yDD

3
NestList@
PushMethod2@FuncEx,
dFuncEx, Ò, 0.1D &,

80, 1<, 3D

A

We define a function, PlotM2, 
which takes arguments Dt and 
InitialCondition and then uses 
ListPlot with Blue lines and 
Gray points.

1: PushMethod2 implements the implicit differencing strategy. How-
ever, we must also provide this method with a function representing
the derivative of f .

2: We define the derivative function, but use Evaluate on the right-
hand side of the delayed assignment (:=) so that the derivative
operator D is not called each time the function is used.

3: We can use the Nest-family of functions as before.
A: A function to plot the implicit function results is defined for com-

parison to the explicit method.

http://pruffle.mit.edu/3.016-2011/Notebooks/L19/Lecture-19.nb
http://pruffle.mit.edu/3.016-2011/pdf/L19/Lecture-19-6-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L19/Lecture-19-6-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-19/HTMLLinks/index_6.html
http://pruffle.mit.edu/3.016-2011
http://pruffle.mit.edu/3.016-2011/html/Lecture-19/HTMLLinks/index_6.html
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Lecture 19 Mathematica R© Example 7
Comparison of Implicit and Explicit Methods

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

We plot the results from the two different time-stepping methods and show that the implicit method is more
stable. We still have not evaluated the accuracy of either method.

1
Show@PlotM1@0.1, 1D,
PlotM2@0.1, 1D,
PlotRange Ø
880, 10<, 80, 1<<D

2
Show@PlotM1@1.5, 1.0D,
PlotM2@1.5, 1.0D,
PlotRange Ø
880, 10<, 8-0.5, 1<<D

Method  2  will  fail  if  the  step  size  is
increased to 2

1: With a time step of ∆t = 0.1, the two methods give results that are
barely discernible. This gives us confidence in the hypothesis that
the solutions are also accurate at this time step.

2: At larger time steps, the implicit method is more well-behaved.
However, if the step size is made a little larger, both methods will
become unstable.

Geometrical Interpretation of Solutions

The relationship between a function and its derivatives for a first-order ODE,

F (
dy(x)
dx

, y(x), x) = 0 (19-9)

can be interpreted as a level set formulation for a two-dimensional surface embedded in a three-
dimensional space with coordinates (y′, y, x). The surface specifies a relationship that must be satisfied
between the three coordinates.

If y′(x) can be solved for exactly,
dy(x)
dx

= f(x, y) (19-10)

http://pruffle.mit.edu/3.016-2011/Notebooks/L19/Lecture-19.nb
http://pruffle.mit.edu/3.016-2011/pdf/L19/Lecture-19-7-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L19/Lecture-19-7-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-19/HTMLLinks/index_7.html
http://pruffle.mit.edu/3.016-2011
http://pruffle.mit.edu/3.016-2011/html/Lecture-19/HTMLLinks/index_7.html
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then y′(x) can be thought of as a height above the x-y plane.
For a very simple example, consider Newton’s law of cooling which relates the change in temperature,

dT/dt, of a body to the temperature of its environment and a kinetic coefficient k:

dT (t)
dt

= −k(T − To) (19-11)

It is very useful to “non-dimensionalize” variables by scaling via the physical parameters. In this way,
a single ODE represents all physical situations and provides a way to describe universal behavior in
terms of the single ODE. For Newton’s law of cooling, this can be done by defining non-dimensional
temperatures and time with Θ = T/To and τ = kt, then if To and k are constants:

dΘ(τ)
dτ

= (1−Θ)

Lecture 19 Mathematica R© Example 8
Visual Understanding of the Behavior of First-Order ODES

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

The surface representation provides a useful way to think about differential equations—much can be inferred
about a solution’s behavior without computing the solution exactly. This is shown for a simple case of Newton’s
law of cooling Equation 19 and an artificial case.

1

ZeroPlane@xmin_,
xmax_, ymin_,
ymax_D := Graphics3D@
8Gray, Opacity@0.25D,
Cuboid@8xmin, ymin,

-.001<, 8xmax,
ymax, .001<D<D

2

Show@Plot3D@
1 - Q, 8tau, 0, 2<,
8Q, 0, 2<,
AxesLabel Ø
8"t", "Q", "dQêdt"<,
DisplayFunction ->
IdentityD,

ZeroPlane@0, 2, 0, 2DD

1: For first-order ODEs, behavior is dominated by whether the deriva-
tive term is positive or negative. Here, a Graphics3D object is cre-
ated for a gray-colored opaque horizontal plane (in reality we use a
very thin slab) at z = 0. We will use this function to evaluate when
the derivative is positive and the value is increasing or negative and
the value is decreasing.

2: This will create the surface associated with Newton’s law of cooling
with the zero plane. This case is very simple. The sign of the
change of Θ depends only the sign of 1−Θ and therefore dΘ/dt = 0
is the parametric curve (a line in this case) (dΘ/dt = 0,Θ = 1, τ).
That is, if Θ = 1 at any time τ it will stay there at all subsequent
times (also, at all previous times as well). Because Θ(τ) will always
increase when Θ < 1 and will always decrease when Θ > 1, the
solutions will asymptotically approach Θ = 1.

http://pruffle.mit.edu/3.016-2011/Notebooks/L19/Lecture-19.nb
http://pruffle.mit.edu/3.016-2011/pdf/L19/Lecture-19-8-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L19/Lecture-19-8-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-19/HTMLLinks/index_8.html
http://pruffle.mit.edu/3.016-2011
http://pruffle.mit.edu/3.016-2011/html/Lecture-19/HTMLLinks/index_8.html
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Lecture 19 Mathematica R© Example 9
Visualizing the Geometry of Flows for First-Order ODES

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

By creating vector field which ‘points’ toward subsequent points as inferred from the ODE, we produce a very
useful way to understand solution behavior for a variety of initial conditions, without computing a solution to
the ODE. This is shown again for a simple case of Newton’s law of cooling

Plot the vectorf-ield (dt,dQ) = dt(1, dQ
dt

)
We can do so by plotting vectors of the
form {dt, dQ} = dt{1, dQ

dt
} which will be

proportional to the vector {1, 1-Q}. This
is done as follows:

1

Needs@
"VectorFieldPlots "̀D;
VectorFieldPlots`VectÖ
orFieldPlot@

81, 1 - Q<, 8tau, 0, 4<,
8Q, -2, 4<,
Axes Ø True,
AxesLabel Ø
8"t", "Q"<,
ImageSize Ø FullD

1 2 3 4
t

-2

-1

1

2

3

4
Q

1: The asymptotic behavior can be further visualized by plotting a
first-order difference representation of how the solution is chang-
ing in time, i.e, (dτ, dΘ) = dτ

(
1, dΘ

dτ

)
This can be obtained with

VectorFieldPlot from the VectorFieldPlots package. Here the
magnitude of the arrows is scaled by setting dτ = 1.

http://pruffle.mit.edu/3.016-2011/Notebooks/L19/Lecture-19.nb
http://pruffle.mit.edu/3.016-2011/pdf/L19/Lecture-19-9-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L19/Lecture-19-9-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-19/HTMLLinks/index_9.html
http://pruffle.mit.edu/3.016-2011
http://pruffle.mit.edu/3.016-2011/html/Lecture-19/HTMLLinks/index_9.html
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Lecture 19 Mathematica R© Example 10
Visualizing the Geometry of Flows for First-Order ODES

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

We utilize our visualization methods for intuitive understanding of the behavior of ODES for the case:

dy

dt
= y sin

(
yt

1 + y + t

)

Slightly more complicated example: 
dy
dt

= y sin( yt
1+ t +y

),

(dt,dy) = dt(1,ysin yt
1+ t +y

))

1

Show@Plot3D@y
Sin@ y têHt + y + 1LD,

8t, 0, 10<,
8y, 0, 10<, ,
ZeroPlane@0,
10, 0, 10DDD

2
VectorFieldPlot@81, y

Sin@y têHt + y + 1LD<,
8t, 0, 10<, 8y, 0, 10<D

2 4 6 8 10
t

2

4

6

8

10

y

1: This case can be visualized as well and the behavior can be inferred
whether the derivative lies above or below the zero-plane (i.e., the
sign of the derivative). Where dy/dt < 0, y decreases as time
marches forward; thus it moves toward the intersection of the zero
plane and the dy/dt-surface. We see that the slope of the surface
evaluated along the curve of intersection determines whether there
is an “attractor-manifold” in the ODE.

2: VectorFieldPlot provides another method to follow a solution tra-
jectories: we plot vectors proportional to dt(1, y sin[yt/(1 + y + t)].

Separable Equations

If a first-order ordinary differential equation F (y′, y, x) = 0 can be rearranged so that only one variable,
for instance y, appears on the left-hand-side multiplying its derivative and the other, x, appears only
on the right-hand-side, then the equation is said to be ‘separated.”

g(y)
dy

dx
= f(x)

g(y)dy = f(x)dx
(19-12)
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Each side of such an equation can be integrated with respect to the variable that appears on that side:∫ y

y(xo)
g(η)dη =

∫ x

xo

f(ξ)dξ (19-13)

if the initial value, y(xo) is known. If not, the equation can be solved with an integration constant C0,∫
g(y)dy =

∫
f(x)dx+ C0 (19-14)

where C0 is determined from initial conditions. or∫ y

yinit

g(η)dη =
∫ x

xinit

f(ζ)dζ (19-15)

where the initial conditions appear explicitly.

Lecture 19 Mathematica R© Example 11
Using Mathematica R© ’s Built-in Ordinary Differential Equation Solver

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

Mathematica R© has built-in exact and numerical differential equations solvers. DSolve takes a representation
of a differential equation with initial and boundary conditions and returns a solution if it can find one. If
insufficient initial or boundary conditions are specified, then “integration constants” are added to the solution.

1
dsol = DSolve@

8y'@tD == FuncEx@
y@tDD<, y@tD, tD

99y@tD Ø

2 ArcTanA‰-t+C@1DE==

2
dsol = DSolve@8y'@tD ==

FuncEx@y@tDD,
y@0D ã 1<, y@tD, tD

::y@tD Ø 2

ArcTanB‰-t TanB1
2
FF>>

 The  next  statement  extracts  y  (x)  for
plotting ..

3

ExactPlot =
Plot@ y@tD ê. dsol,
8t, 0, 10<,
PlotStyle Ø 8Thick,
Darker@CyanD<,

PlotRange Ø AllD

2 4 6 8 10

0.2
0.4
0.6
0.8
1.0

1: DSolve operates like Solve . It takes a list of equations containing
symbolic derivatives, the function to be solved for, and the depen-
dent variable. In this case, the general solution of the example we
used for finite differencing examples: dy(x)

dx = FuncEx [y] DSolve
returns a list of rules. The solutions are be obtained by applying
the rules (i.e., y[x]/.dsol). The solution will depend on an inte-
gration constant(s) in general. Mathematica R© uses the symbols
C[1],C[2],etc as place-holders for the integration constants.

2: If additional If more constraints (i.e., equations) are provided, then
(provided a solution exists) the integration constant is determined
as well. This is the exact solution to what we were numerically
approximating above.

3: The solution is plotted by turning the “solution rule” into a plot-
table y[t] Flatten. The plot is stored as a graphics object
ExactPlot.
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Lecture 19 Mathematica R© Example 12
Comparision of Exact Solutions to Finite Difference Methods

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

We compare the plots of implicit, explicit finite differencing to the exact solution obtained by DSolve.

1
Show@PlotM1@0.1, 1D,
PlotM2@0.1, 1D,
ExactPlot, PlotRange Ø
880, 10<, 80, 1<<D

2

Show@PlotM1@1.5, 1D,
PlotM2@1.5, 1D,
ExactPlot,
PlotRange Ø 880, 10<,

8-0.25, 1<<D

1: To see how finite differencing compares to the exact solution, we
plot all three trajectories together. The less-stable explicit method
is more accurate for intermediate values of t.

2: This shows the comparison at larger time steps.

While the accuracy of the first-order differencing scheme can be determined by comparison to an
exact solution, the question remains of how to establish accuracy and convergence with the step-size δ
for an arbitrary ODE. This is a question of primary importance and studied by Numerical Analysis.
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Lecture 19 Mathematica R© Example 13
Using Mathematica R© ’s Differential Equation Solver on a First-Order ODE: Less Trivial Example

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

We solve y′(x) + xy(x) = 0 for a ‘strange’ condition y′(5) = 1 and plot the solution.

1
dsol = DSolve@
y'@xD + x *y@xD ã 0,
y@xD, xD

Boundary conditions other than y[0]:

2
dsol =
DSolve@ 8y'@xD +

Sin@xD *y@xD ã 0,
y'@5D ã 1<, y@xD, xD

99y@xD Ø

-‰-Cos@5D+Cos@xD Csc@5D==

3

GraphicsRow@
8p = Plot@y@xD ê. dsol,

8x, 0, 10<,
PlotStyle Ø ThickD,

Show@p, PlotRange Ø
880, 6<, 80, 6<<,
AspectRatio Ø 1D<D

2 4 6 8 10
0.5
1.0
1.5
2.0

1 2 3 4 5 6
1
2
3
4
5
6

1: This demonstrates the use of DSolve, because we have not
supplied enough conditions to determine the solution exactly,
Mathematica R© introduces all the undetermined constants of in-
tegration. In this case, there is only one undetermined constant.

2: Here, the solution is required to have a slope of unity at x = 5. If
such a value is possible, then Mathematica R© will compute the
corresponding value of C[1].

3: This demonstrates how to extract the solution and plot it. It is
plotted a second time with the same y and x scales so we can see
that the slope is indeed one at x = 5.
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