Lecture 17: Function Representation by Fourier Series

Reading: Kreyszig Sections: 11.1, 11.2, 11.3 (pages478–485, 487–489, 490–495)

Periodic Functions

Periodic functions should be familiar to everyone. The keeping of time, the ebb and flow of tides, the patterns and textures of our buildings, decorations, and vestments invoke repetition and periodicity that seem to be inseparable from the elements of human cognition.⁹ Although other species utilize music for purposes that we can only imagine—we seem to derive emotion and enjoyment from making and experience of music.

⁹I hope you enjoy the lyrical quality of the prose. While I wonder again if anyone is reading these notes, my wistfulness is taking a poetic turn:

They repeat themselves What is here, will be there It wills, willing, to be again spring; neap, ebb and flow, wane; wax sow; reap, warp and woof, motif; melody. The changed changes. We remain Perpetually, Immutably, Endlessly.

Full Screen

Close

pdf (evaluated, b&w)

html (evaluated)

notebook (non-evaluated) pdf Plaving with Audible Periodic Phenomena

Several example of creating sounds using mathematical functions are illustrated for education and amusement.

pdf (evaluated, color)

Sounds will not be available on PDF or HTML versions Let's begin by "looking" at a familiar periodic phenomena: We index the notes and write an indexed set of frequency (in Hertz) for each of the notes for one octave above middle-c. We write a function to create a Sound for each note. c = 1; d = 2; e = 3; f = 4; g = 5; a = 6; b = 7; freq[c] = 261.6; freq[c] = 283.7;

freq[c] = 261.6; freq[d] = 293.7; freq[e] = 329.6; freq[f] = 349.2; freq[g] = 392.0; freq[a] = 440.0; freq[b] = 493.9; purenote[note_Integer] := purenote[note] = Play[Sin[2 \pi freq[note] t], {t, 0, 1}]

We extend the function to get simultaneous notes from a List. We use Thread which takes $f[{a,b,c}]$ to $\{f[a],f[b],f[c]\}$

notes[note_List] :=
Sound[Thread[purenote[note]]]

Here are examples of their use.

cnote = purenote[c]

notes[{a, c, e}]

equency, here we can

3

We can play with variable amplitudes for a fixed frequency, here we can hear the increased, but non-singular amplitude through zero.

Plot[Sin[540 x] / x, {x, -.1, .1}, PlotRange \rightarrow All, Filling \rightarrow Axis] Play[Sin[540 x] / x, {x, -1, 1}]

We can vary amplitudes and frequencies. Warning, playing with this function can become addictive...

```
Play[
```

2 Sin[20 x Sin[x Exp[-x/.2] + Sin[x]/x]] + Exp[(1+Cos[x])] Sin[x Exp[x/10]] Sin[1500 x], {x, 0.01, 20}]

- 1: The seven musical notes around middle C indexed here with integers and then their frequencies (in hertz) are defined with a freq. The function *Note* takes one of the seven indexed notes and creates a wave-form for that note. The function Play takes the waveform and produces audio output. We introduce a function, *purenote*, that takes an integer argument and plays the corresponding exact note.
- 2: To play a sequence of notes, a list of notes must be passed to Sound. We write a function, *notes*, that uses Thread to create a list of object created by applications of purenote. In other words, Thread[function[{la,lb,lc}]] returns {function[la], function[lb], function[lc]}.
- 3: This is an example of the use of note and purenote.

4: This is noise generated from a function; we can modulate the amplitude and frequency. Enjoy the fact that $\sin(x)/x$ is not singular at x = 0.

5: This is a function that I cooked up. Enjoy.

3.016 Home

•• • •

Full Screen

Close

pdf (evaluated, color)

pdf (evaluated, b&w)

html (evaluated)

notebook (non-evaluated) Music and Instruments

Having no musical talent whatsoever, I try to write a program to make music.

-	iaving no masical talent whatboever, i	01)
	Let's see if we can play this:	
	21	
	<pre>twoframes = {e, e, f, g, g, f, e, d, c, c, d, e};</pre>	1
	We will play it, but it probably not what was intended	
	notes[twoframes]	2
	We create a rest of a fixed length, and then use Riffle to insert a res	st
	after each note. We use a new function, called SoundNote, with Nor	ne as
	the first argument, we get no sound.	
	<pre>purenote[rest] = SoundNote[None, .15];</pre>	3
		-
	<pre>notes[Riffle[twoframes, rest]]</pre>	4
	SoundNote can take general strings for arguments as well, here we	ontor
	the musical notes from above (as characters), but one octave lower.	
	TwoFramesLower = {"E3", "E3", "F3", "G3", "G3",	5
	"F3", "E3", "D3", "C3", "C3", "D3", "E3"};	
	The default is to use a piano to make the sound; here we ask for a	
	duration of 6/10 of a second.	
	<pre>piano[note String] := SoundNote[note, .6]</pre>	6
	prano[note_btring] .= boundabee[note, .0]	Ŭ
	Sound[Thread[piano[TwoFramesLower]]]	7
	We can use other MIDI instruments as well; here is a bagpipe	
	<pre>bagpipe[note_String] :=</pre>	
	SoundNote[note, .6, "Bagpipe"]	8
	Sound[Thread[bagpipe[TwoFramesLower]]]	
		1
	And, now for the birds.	
	avian[note String] :=	
	SoundNote[note, .2, "Bird"]	
	avian[rest] = SoundNote[None, .4];	9
		5
	Sound [

1: Someone who knows how to read music told me what these notes were; so, I entered them into a list.

2: This is musical score with one-second duration notes played every 1 second. Oh, Joy.

- 3: This is probably not what Ludwig Van had in mind; so let's figure out how to insert a 'rest.' We use MATHEMATICA® 's built-in SoundNote for .15 seconds to define a purenote for rest rest.
- 4: Riffle[{11,12,13},x] intersperses x into the list and returns {11,x,12,x,13,x}. Calling notes on the resulting structure returns the pure notes with rests in between.
- 5: SoundNote will also play MIDI sounds and take string arguments for notes. We recreate a sting version of the musical score for notes one octave below middle-c.
- 6: By default, SoundNote returns a MIDI piano sound. We create a function, *piano*, to play a single note for a 0.6 second duration.
- 7: By using Thread again, we play the 12-note musical score on the piano.
- 8: There are other MIDI instruments; here we create the function baqpipe and play the score with a Full Screen simulated bagpipe.
- 9: And finally, we introduce a 'cheep' little function, avian, to let the birds sing their own joy.

3.016 Home

Close

pdf (evaluated, color)

pdf (evaluated, b&w)

html (evaluated)

Random Notes and Instruments

notebook (non-evaluated)

Just because we can, let's see how sequences of random notes sound. We'll add random instruments and rests too.

Let's hear what random notes sound like: SoundNote[n] will play n semitones above middle C. Here we make a list of random notes and play them.

```
RandomNotes = Table[SoundNote[
    RandomInteger[{-15, 20}], .2], {36}];
Sound[RandomNotes, 10]
```

Here, we mix in some rests at random

```
RanRest[] := Module[{rdur = .2},
If[RandomReal[] > 0.5, rdur = .4];
SoundNote[None, rdur]]
```

RandomNotesandRests =

Table[If[RandomReal[] ≥ .33, SoundNote[RandomInteger[{-15, 20}], .2], RanRest[]], {96}];

Sound[RandomNotesandRests, 20]

Now, we ask for random instruments as well, with "chords" of up to 5 instruments at each beat.

RandomInstruments =

```
Table[If[RandomReal[] > 0.5, Table[
    SoundNote[
    Table[RandomInteger[{-15, 20}],
        (RandomInteger[{1, 5}])],
    Round[RandomReal[{1, 2}], .2],
    RandomInteger[{1, 15}]],
    {RandomInteger[{1, 4}]}, RanRest[]],
    {88}];
```

Sound[RandomInstruments, 20]

Finally, some random percussion events.

```
percs = {SoundNote["Clap", 1],
   SoundNote["Sticks", 1], SoundNote["Shaker",
   1], SoundNote["LowWoodblock", 1],
   SoundNote["Castanets", 1],
   SoundNote[None, 1]);
   perctable = Table[RandomChoice[percs], {50}];
   Sound[perctable, 20]
```

1: *RandomNotes* creates a 36 member random set of single pitches from 15 semi-tones below to 20 semi-tones above middle-c. We play them for ten seconds.

- 2: To introduce some variety into the random melody, we write a program, *RanRest*, which will be used to introduce rests with lengths .2 and .4 with equal probability. A list, *RandomNotesandRests*, is created with random notes which call *RanRest* for approximately 1/3 of the members, and from the same random set as *RandomNotes* for the remainder.
- Now, we introduce random MIDI instruments into our score: RandomInstruments is a Table of length 48, and each member is a list of a random number, between 1 and 5, of random instruments with random notes. These list-elements create a "chord." Rests are introduced randomly, at about 1/2 of the beats.
- 4: Here we play with random percussion MIDI instruments. Dancing to this is not necessarily advised.

3.016 Home

Full Screen

Close

A function that is periodic in a single variable can be expressed as:

$$f(x + \lambda) = f(x)$$

$$f(t + \tau) = f(t)$$

The first form is a suggestion of a spatially periodic function with wavelength λ and the second form suggests a function that is periodic in time with period τ . Of course, both forms are identical and express that the function has the same value at an infinite number of points ($x = n\lambda$ in space or $t = n\tau$ in time where *n* is an integer.)

Specification of a periodic function, f(x), within one period $x \in (x_o, x_o + \lambda)$ defines the function everywhere. The most familiar periodic functions are the trigonometric functions:

$$\sin(x) = \sin(x + 2\pi)$$
 and $\cos(x) = \cos(x + 2\pi)$ (17-2)

However, any function can be turned into a periodic function.

 Image: Additional system

 Full Screen

3.016 Home

016

(17-1)

by λ until the result lies in the domain	$\begin{array}{c} \text{ction}\\ \text{ne } 202\\ \text{with}\\ \text{a } 0 \leq \end{array}$	1 Notebook the "modulus" operation. Mod $[x, \lambda]$ is the remainder of the result of <i>recursively</i> dividing x Mod $[x, \lambda] < \lambda$). Another way to think of modulus is to find the "point" where are periodic	3.01
<pre>function should be evaluated if its prim Mod is a very useful function that can be used to force objects to be periodic. Mod(x.) return that part of x that lies within 0 and A. Or, i other words if we map the real line x to a circle with circumference A Mod(x.) returns were x is mapped onto the circle. modmatdemo[n_Integer, A_Integer] := Table[{i, Mod[i, A]}, {i, 1, n}] //</pre>	n n	omain is $x \in (0, \lambda)$.	
<pre>MatrixForm; modcircledemo[n_Integer, \u03c4_Integer] := Module[{xpos, angle, cpos}, Graphics[Table[xpos = 3 Quotient[i - 1, \u03c4]; angle = 2 Pi Mod[i, \u03c4] / \u03c4; cpos = {Cos[angle], Sin[angle]}; {Circle[{xpos, 0}], Text[i, Flatten[{{xpos, 0} + 1.2 * cpos}]], Text[Mod[i, \u03c4], Flatten[{{xpos, 0} +</pre>	1	L: We create two visualization methods to show how Mod works: <i>modmatdemo</i> creates a matrix with two columns (i, Mod[i, λ]); <i>modcircledemo</i> wraps the the counting numbers and their moduli around a Graphics-Circle with a λ sectors, after each circle becomes filled a new circle is created for subsequent filling. <i>modcircledemo</i> should show how Mod is related to mapping to a periodic	3.016 Home
0.8 * cpos}]]}, {i, 1, n}]]]; GraphicsColumn[{modmatdemo[13, 5], modcircledemo[26, 5]}, ImageSize → Full] Boomerang uses Mod to force a function, f, with a single argument, be periodic with wavelength λ	2	 domain. 2: We show both visualization demonstrations in a GraphicsColumn. 3: Boomerang uses Mod on the argument of any function f of a single argument to map the argument into the domain (0, λ). Therefore, calling Boomerang on any function will create a infinitely periodic repetition of the function in the domain (0, λ). 	Full Screen
Boomerang [f_{-} , x_{-} , λ_{-}] := f [Mod [x , λ]] AFunction [x_{-}] := ((3 - x) ^3) / 27 The following step uses Boomerang to produce a periodic repetition AFunction over the range $0 < x < 6$:	4	 AFunction is created as an example to pass to Boomerang Plot called on the periodic extension of wavelength λ = 6 of AFunction. This illustrates how Boomerang uses Mod to create a periodic function with a specified period. 	
Plot[Boomerang[AFunction, x, 6], $\{x, -12, 12\}$, PlotRange \rightarrow All]	5		Close

Quit

6

Odd and Even Functions

The trigonometric functions have the additional properties of being an odd function about the point x = 0: f_{odd} : $f_{odd}(x) =$ $-f_{\text{odd}}(-x)$ in the case of the sine, and an even function in the case of the cosine: f_{even} : $f_{\text{even}}(x) = f_{\text{even}}(-x)$. This can generalized to say that a function is even or odd about a point $\lambda/2$: $f_{\text{odd}\frac{\lambda}{2}}: f_{\text{odd}\frac{\lambda}{2}}(\lambda/2+x) = -f_{\text{odd}\frac{\lambda}{2}}(\lambda/2-x)$ and $f_{\text{even}\frac{\lambda}{2}}: f_{\text{even}\frac{\lambda}{2}}(\lambda/2 + x) = f_{\text{even}\frac{\lambda}{2}}(\lambda/2 - x).$ Any function can be decomposed into an odd and even sum: 3.016 Home (17-3) $q(x) = g_{even} + g_{odd}$ The sine and cosine functions can be considered the odd and even parts of the generalized trigonometric function: $e^{ix} = \cos(x) + i\sin(x)$ (17-4)with period 2π . **Representing a particular function with a sum of other functions** Full Screen A Taylor expansion approximates the behavior of a suitably defined function, f(x) in the neighborhood of a point, x_0 , with a bunch of functions, $p_i(x)$, defined by the set of powers: Close $p_i \equiv \vec{p} = (x^0, x^1, \dots, x^j, \dots)$ (17-5)The polynomial that approximates the function is given by: $f(x) = \vec{A} \cdot \vec{p}$ (17-6)Quit where the vector of coefficients is defined by: $A_{i} \equiv \vec{A} = \left(\frac{1}{0!}f(x_{o}), \frac{1}{1!} \frac{df}{dx}\right)_{T}, \dots, \frac{1}{j!} \frac{d^{j}f}{dx^{j}}\right)_{T}, \dots$ ©W. Craig Carter The idea of a vector of infinite length has not been formally introduced, but the idea that as the number of terms in the sum in Eq. 17-6 gets larger and larger, the approximation should converge to the function. In the limit of an infinite number of terms in the sum (or the vectors of infinite length) the series expansion will converge to f(x) if it satisfies some technical continuity constraints.

However, for periodic functions, the domain over which the approximation is required is only one period of the periodic function—the rest of the function is taken care of by the definition of periodicity in the function.

Because the function is periodic, it makes sense to use functions that have the same period to approximate it. The simplest periodic functions are the trigonometric functions. If the period is λ , any other periodic function with periods $\lambda/2$, $\lambda/3$, λ/N , will also have period λ . Using these "sub-periodic" trigonometric functions is the idea behind Fourier Series.

Fourier Series

The functions $\cos(2\pi x/\lambda)$ and $\sin(2\pi x/\lambda)$ each have period λ . That is, they each take on the same value at x and $x + \lambda$.

There are an infinite number of other simple trigonometric functions that are periodic in λ ; they are $\cos[2\pi x/(\lambda/2))$] and $\sin[2\pi x/(\lambda/2))$] and which cycle two times within each λ , $\cos[2\pi x/(\lambda/3))$] and $\sin[2\pi x/(\lambda/3))$] and which cycle three times within each λ , and, in general, $\cos[2\pi x/(\lambda/n))$] and $\sin[2\pi x/(\lambda/n))$] and which cycle n times within each λ .

The constant function, $a_0(x) = \text{const}$, also satisfies the periodicity requirement.

The superposition of multiples of any number of periodic function must also be a periodic function, therefore any function f(x) that satisfies:

$$\begin{aligned} (x) &= \mathcal{E}_0 + \sum_{n=1}^{\infty} \mathcal{E}_n \cos\left(\frac{2\pi n}{\lambda}x\right) + \sum_{n=1}^{\infty} \mathcal{O}_n \sin\left(\frac{2\pi n}{\lambda}x\right) \\ &= \mathcal{E}_{k_0} + \sum_{n=1}^{\infty} \mathcal{E}_{k_n} \cos(k_n x) + \sum_{n=1}^{\infty} \mathcal{O}_{k_n} \sin(k_n x) \end{aligned}$$

where the k_i are the wave-numbers or reciprocal wavelengths defined by $k_j \equiv 2\pi j/\lambda$. The k's represent inverse wavelengths—

©W. Craig Carter

Quit

(17-8)

3.016

3.016 Home

Full Screen

Close

large values of k represent short-period or high-frequency terms.

If any periodic function f(x) could be represented by the series in in Eq. 17-8 by a suitable choice of coefficients, then an alternative representation of the periodic function could be obtained in terms of the simple trigonometric functions and their amplitudes.

The "inverse question" remains: "How are the amplitudes \mathcal{E}_{k_n} (the even trigonometric terms) and \mathcal{O}_{k_n} (the odd trigonometric terms) determined for a given f(x)?"

The method follows from what appears to be a "trick." The following three integrals have simple forms for integers M and N:

$$\int_{x_0}^{x_0+\lambda} \sin\left(\frac{2\pi M}{\lambda}x\right) \sin\left(\frac{2\pi N}{\lambda}x\right) dx = \begin{cases} \frac{\lambda}{2} \text{ if } M = N\\ 0 \text{ if } M \neq N \end{cases}$$

$$\int_{x_0}^{x_0+\lambda} \cos\left(\frac{2\pi M}{\lambda}x\right) \cos\left(\frac{2\pi N}{\lambda}x\right) dx = \begin{cases} \frac{\lambda}{2} \text{ if } M = N\\ 0 \text{ if } M \neq N \end{cases}$$

$$\int_{x_0}^{x_0+\lambda} \cos\left(\frac{2\pi M}{\lambda}x\right) \sin\left(\frac{2\pi N}{\lambda}x\right) dx = 0 \text{ for any integers } M, N$$

$$(17-9)$$

The following shows a demonstration of this orthogonality relation for the trigonometric functions.

Quit

3.016 Home

Full Screen

Close

Lecture 17 MATHEMATICA® Example 5				
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)				
Orthogonality of Trigonometric Functions				
This section has been removed from the 2011 Notebook	N1 C			
This is a Demonstration that the relations in Eq. 17-9 are true.				
<pre>fassume = {Minteger ∈ Integers, Ninteger ∈ Integers, xo ∈ Reals, λ > 0} coscos = Integrate[1 Cos[2πMinteger x/λ] Cos[2πNinteger x/λ], {x, xo, xo + λ}, Assumptions → fassume]</pre>				
Demonstrating $\int_{x0}^{x0+\lambda} cos(2 n\pi x \lambda) cos(2 n\pi x \lambda) dx = 0$ for $m \neq n$				
Table[{{{mrand, nrand} = RandomInteger[{1, 50}, 2]}, Simplify[coscos /. {Minteger → mrand, Ninteger → nrand]}, {20}] 2	3.016 Home			
when n=m give indeterminate values, for these we should use a Limit.				
Limit[coscos, Minteger \rightarrow Ninteger, Assumptions \rightarrow fassume]				
 cossin = Integrate[Coss[2πMinteger x/λ] Sin[2πNinteger x/λ], (x, xo, xo + λ), Assumptions → fassume] 4 4 Cossin = Integrate[Cossin = Inte	▲ ▶ ▶			
 Table[{{(mrand, nrand) = RandomInteger[1, 50, 2], Simplify[cossin /. {Minteger → mrand}]}, {20}] 3: Using Assuming and Limit, one can show that the relation ship vanishes for N = M. Although, it is a bit odd to be use continuous limits with integers. 4-6: This shows the same process for ∫ cos(2πMx/λ) sin(2πNx/λ)dx, which always returns zeroes. 				
	Full Screen			
<pre>sinsin = Integrate[Sin[2πMintegerx/λ] Sin[2πNintegerx/λ], {x, xo, xo + λ}, Assumptions → fassume] 7</pre>				
Table[{{{mrand, nrand} = RandomInteger[{1, 50}, 2]}, Simplify[sinsin /. {Minteger → mrand, Ninteger → nrand]}, {20}]	Close			
Limit[sinsin, Minteger → Ninteger, Assumptions → fassume] 9				
	Quit			

Using this orthogonality trick, any amplitude can be determined by multiplying both sides of Eq. 17-8 by its conjugate trigonometric function and integrating over the domain. (Here we pick an arbitrary periodic domain $x \in (x_c + \lambda/2, x_c + \lambda/2)$, but any other starting point would work fine.)

$$\cos(k_M x)f(x) = \cos(k_M x) \left(\mathcal{E}_{k_0} + \sum_{n=1}^{\infty} \mathcal{E}_{k_n} \cos(k_n x) + \sum_{n=1}^{\infty} \mathcal{O}_{k_n} \sin(k_n x) \right)$$

$$\int_{x_c - \lambda/2}^{x_c + \lambda/2} \cos(k_M x) f(x) dx = \int_{x_c - \lambda/2}^{x_c + \lambda/2} \cos(k_M x) \left(\mathcal{E}_{k_0} + \sum_{n=1}^{\infty} \mathcal{E}_{k_n} \cos(k_n x) + \sum_{n=1}^{\infty} \mathcal{O}_{k_n} \sin(k_n x) \right) dx \quad (17-10)$$

$$\int_{x_c - \lambda/2}^{x_c + \lambda/2} \cos(k_M x) f(x) dx = \frac{\lambda}{2} \mathcal{E}_{k_M} \qquad (17-10)$$

This provides a formula to calculate the even coefficients (amplitudes) and multiplying by a sin function provides a way to calculate the odd coefficients (amplitudes) for f(x) periodic in the fundamental domain $x \in (0, \lambda)$.

$$\mathcal{E}_{k_0} = \frac{1}{\lambda} \int_{x_c - \lambda/2}^{x_c + \lambda/2} f(x) dx$$

$$\mathcal{E}_{k_N} = \frac{2}{\lambda} \int_{x_c - \lambda/2}^{x_c + \lambda/2} f(x) \cos(k_N x) dx \qquad k_N \equiv \frac{2\pi N}{\lambda}$$

$$\mathcal{O}_{k_N} = \frac{2}{\lambda} \int_{x_c - \lambda/2}^{x_c + \lambda/2} f(x) \sin(k_N x) dx \qquad k_N \equiv \frac{2\pi N}{\lambda}$$
(17-11)
$$Full Screen$$

The constant term has an extra factor of two because $\int_0^\lambda \mathcal{E}_{k_0} dx = \lambda \mathcal{E}_{k_0}$ instead of the $\lambda/2$ found in Eq. 17-9.

Other forms of the Fourier coefficients

Sometimes the primary domain is defined with a different starting point and different symbols, for instance Kreyszig uses a centered domain by using -L as the starting point and 2L as the period, and in these cases the forms for the Fourier coefficients look a bit different. One needs to look at the domain in order to determine which form of the formulas to use.

©W. Craig Carter

Quit

Close

<u>Extra Information and Notes</u> Potentially interesting but currently unnecessary

The "trick" of multiplying both sides of Eq. 17-8 by a function and integrating comes from the fact that the trigonometric functions form an orthogonal basis for functions with inner product defined by

$$f(x) \cdot g(x) = \int_0^\lambda f(x)g(x)dx$$

Considering the trigonometric functions as components of a vector:

. . . =

$$\vec{e_0}(x) = (1, 0, 0, \dots,)$$

$$\vec{e_1}(x) = (0, \cos(k_1 x), 0, \dots,)$$

$$\vec{e_2}(x) = (0, 0, \sin(k_1 x), \dots,)$$

 $\vec{e_n}(x) = (\dots, \sin(k_n x), \dots,)$

then these "basis vectors" satisfy $\vec{e_i} \cdot \vec{e_j} = (\lambda/2)\delta_{ij}$, where $\delta_{ij} = 0$ unless i = j. The trick is just that, for an arbitrary function represented by the basis vectors, $\vec{P}(x) \cdot \vec{e_j}(x) = (\lambda/2)P_j$.

3.016 Home

44 4 > >>

Full Screen

Close

notebook (non-evaluated) Calculating Fourier Series Amplitudes

Functions are developed which compute the even (cosine) amplitudes and odd (sine) amplitudes for an input function of one variable. These functions are extended to produce the first N terms of a Fourier series.

First we will "do it the hard way" and write short programs that evaluate Fourier coefficients: then we will demonstrate how to make use of built-in functions in Mathematica's FourierTransform package.

Define functions based on the formulas derived for the fourier amplitudes The constant term:

```
EvenTerms [0, function_, \lambda_{-}] :=
```

$$\frac{1}{\lambda} \int_0^\lambda function[dum] ddum$$

A function that defines each even amplitude individually (this is not very efficient, it would be better to evaluate the integral once and use that result)

EvenTerms [SP_Integer, function_, $\lambda_{]} :=$ EvenTerms[SP, function, wavelength] = $\frac{2}{2} \int_{0}^{\infty} function[dum] \cos\left[\frac{2 SP \pi dum}{2}\right]$ ddum

Define the zeroth odd term as zero for symmetry with the even terms:

3

 $OddTerms[0, function_, \lambda_] := 0$

OddTerms[SP_Integer, function_, λ_{-}] := **OddTerms**[SP, function, λ] =

 $\frac{1}{2} \int_{0}^{\infty} function[dum] \sin\left[\frac{2 SP \pi dum}{2}\right] ddum$

A function to create a vector of amplitudes for the odd terms and one for the even terms

OddAmplitudeVector

NTerms Integer, function , λ] := Table[OddTerms[i, function, λ], {i, 0, NTerms}]

EvenAmplitudeVector[

```
NTerms Integer, function , \lambda ] :=
Table [EvenTerms [i, function, \lambda],
 {i, 0, NTerms}]
```

1-2: EvenTerms computes symbolic representations of the even (cosine) coefficients using the formulas in Eq. 17-11. The N = 0 term is computed with a supplemental definition because of its extra factor of 2. The domain is chosen so that it begins at x = 0 and ends at $x = \lambda$.

3–4: OddTerms performs a similar computation for the sine-coefficients; the N = 0 amplitude is set to zero explicitly. It will become convenient to include the zeroth-order coefficient for the odd (sine) series which vanishes by definition. The functions work by doing an integral for each term—this is not very efficient. It would be more efficient to calculate the integral symbolically once and then evaluate it once for each term.

5-6: OddAmplitude Vector and EvenAmplitude Vectors create amplitude vectors for the cosine and sine terms with specified lengths and domains.

5: This function, $f(x) = x(1-x)^2(2-x)$, will be used for particular examples of Fourier series, note that it is an even function over 0 < x < 2.

Full Screen

3.016 Home

Close

pdf (evaluated, color)

pdf (evaluated, b&w)

notebook (non-evaluated) Approximations to Functions with Example of using Eq. 17-11 to calcula myfunction[x_] := (x * (2 - x) * (1 - x) ^2) OriginalPlot = Plot[myfunction[x], {x, 0, 2}, PlotStyle → {Hue[.66], Thickness[0.015]}] EvenAmplitudeVector[6, myfunction, 2]		Lecture 17 MATHEMATICA Example 7 pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated) incated Fourier Series Fourier Series for a particular function.	3 .016
<pre>OddBasisVector[NTerms_Integer, var_, λ_] := Table[Sin[2π i var / λ], {i, 0, NTerms}] OddBasisVector[6, x, 2] EvenBasisVector[NTerms_Integer, var_, λ_] := Table[Cos[2π i var / λ], {i, 0, NTerms}]</pre>	5 6 7	 We introduce and example function x(2-x)(1-x²) that vanishes at x = 0, 1, 2 that will be used to produce a periodic function with λ = 2item We store the example function's graphical representation in OriginalPlot. Note that there will be a sharp discontinuity in the derivative at the edges of the periodic domain. 3-4: The Fourier coefficients, truncated at six terms, are computed with the functions that we defined 	3.016 Home
<pre>EvenBasisVector[6, x, 2] FourierTruncSeries[n_, function_, var_,</pre>	9	 above, OddAmplitudeVector and EvenAmplitudeVector. Note that because of the even symmetry of the function about the middle, all of the odd coefficients vanish. 5-8: OddBasisVector and EvenBasisVector, create vectors of basis functions of specified lengths and periodic domains. 9-10: The Fourier series up to a certain order can be defined as the sum of two inner (dot) products: 	4 4 > >>
<pre>FourierTruncSeries[6, myfunction, x, 2] FPlot[n_Integer] := FPlot[n] = Plot[Evaluate[FourierTruncSeries[n, myfunction, x, 2]], {x, -2, 4}, PlotStyle → {Thick, ColorData[n, "ColorList"]}]</pre>	10 11	 the inner product of the odd coefficient vector and the sine basis vector, and the inner product of the even coefficient vector and the cosine basis vector. 11-12: This will illustrate the approximation for a truncated (N = 6) Fourier series. FPlot takes an integer truncation-argument and generates a plot for that truncation, but only for myfunction. It 	Full Screen
Show[OriginalPlot, FPlot[3], FPlot[6], PlotRange → {(-0.5, 2.5}, {-0.1, 0.26}]]	12	might be useful to extend this example so that it takes a function as an argument, but it makes more sense to leave this example and use MATHEMATICA® 's built-in Fourier series methods.	Close
-0.10 [[]			

Quit

		Ι	ecture 17 MATHEMATICA® Example 8	
notebook (non-evaluated)		pdf	(evaluated, color) pdf (evaluated, b&w) html (evaluated)	
Demonstration of the use of the Fou	irie	erSei	ries functions	
This section has been modified in the 2	201	1 No		<u> 7 7 6</u>
Fourier series expansions are a common	n a	nd 1	seful mathematical tool, and it is not surprising that MATHEMATICA® would have a	3.010
package to do this and replace the ineffi	icie	ent fi	inctions defined in the previous example.	
Needs["FourierSeries`"]	1			
AFunction[x_] := $\frac{(x-3)^3}{27}$	2			
<pre>Plot[AFunction[x], {x, 0, 6}]</pre>	3			
Mathematica's Fourier Series functions are defined for function that a periodic in the domain $x \in (-1/2, 1/2)$. So we need to map the periodic functions to this domain				3.016 Home
ReduceHalfHalf[f_{-} , x_{-} , λ_{-}] :=	4	1.	The functions in FourierSeries to operate on the unit period located at $x \in (-1/2, 1/2)$ by	
$f[(x+1/2) * \lambda]$ ReducedFunction =		1.	default. Therefore, the domains of functions of interest can be mapped onto this domain by a change	
ReducedFunction = ReduceHalfHalf[AFunction, x, 6] // Simplify	5		of variables.	
8 x ³		2–3:	We introduce another function that will be approximated by a Fourier series. This function will be made periodic with $\lambda = 6$ in the untransformed variables.	44 4 > >>
ExactPlot = Plot[ReducedFunction, $\{x, -1/2, 1/2\}$, PlotRange \rightarrow All, PlotStyle \rightarrow {Red, Opacity[0.5], Thickness[0.01]}]	6	4-6	<i>ReduceHalfHalf</i> is an example of a function design to do the required mapping. First the length of original domain is mapped to unity by dividing through by λ and then the origin is shifted by	
FourierCosCoefficient[ReducedFunction, x, n]	7		mapping the x (that the MATHEMATICA \mathbb{R} functions will see) to $(-1/2, 1/2)$ with the transformation	
FourierSinCoefficient[ReducedFunction, x, n]	8		$x \rightarrow x + \frac{1}{2}$. Reduced Function shows an example on the function defined above.	
$\frac{2 \ (-1)^n \ (6 - n^2 \ \pi^2)}{n^3 \ \pi^3}$		8–9:	Particular amplitudes of the properly remapped function can be obtained with the functions FourierCosCoefficient and FourierSinCoefficient. In this example, a symbolic n is entered and a symbolic representation of the n^{th} amplitude is returned. Because the function is odd about	Full Screen
FourierTrigSeries[ReducedFunction, x, 5]	9		the middle, all of the cosine-coefficients are zero.	
$2(-6+\pi^2)$ Sin[2π x]		9:	A truncated Fourier series can be obtained symbolically to any order with FourierTrigSeries.	
$\frac{1}{\pi^3}$ +				Close
$\frac{(3-2\pi^2)\sin[4\pi x]}{2} + \frac{2(-2+3\pi^2)\sin[6\pi x]}{2} + 2(-2+3\pi^2)\sin[6\pi x$				
$2 \pi^3$ $9 \pi^3$				
$\frac{(3-8\pi^2)\sin[8\pi x]}{16\pi^3} + \frac{2(-6+25\pi^2)\sin[10\pi x]}{125\pi^3}$				
				Quit

Recursive Calculation of a Truncated Fourier Series
<u>This section has been removed from the 2011 Notebook</u>
In this example, we build up a set of recursive function that will be utilized forefficient computation of a truncated Fourier series. These
functions will be used in a subsequent visualization example.

pdf (evaluated, color)

ManipulateTruncatedFourierSeries[function_,
 {truncationstart_, truncationend_,
 truncjump_}] := Manipulate[Plot[Evaluate[
 FourierTrigSeries[function, x, itrunc]],
 {x, -1, 1}, PlotRange → {-2, 2}],
 {itrunc, {truncationstart,
 truncationend, truncjump}}];

The function above will work, but it is horribly inefficient! Because it asks. FourierTrigSeries to calculate one more term each time, it is doing some redundant work. We can fix this up by having it calculate one new term and adding to the sum calculated previously. Here it is:

costerm[function_, x_, n_Integer] := Simplify[FourierCosCoefficient[function, x, n]] Cos[2 \pi n x] sinterm[function_, x_, n_Integer] := Simplify[FourierSinCoefficient[function, x, n]] Sin[2 \pi n x]

notebook (non-evaluated)

TruncatedFourierSeries[function, x_, 0] := TruncatedFourierSeries[function, x, 0] = costerm[function, x, 0] + sinterm[function, x, 0]

TruncatedFourierSeries[
 function_, x_, n_Integer] :=
TruncatedFourierSeries[function, x, n] =
 TruncatedFourierSeries[function, x, n-1] +

costerm[function, x, n] +
sinterm[function, x, n]

- 1: ManipulateTruncatedFourierSeries is a simple example of visualization function for the truncated Fourier series. It uses the Manipulate function with three arguments in the iterator for the initial truncation truncationstart, final truncation, and the number to skip in between.
- 2: However, because the entire series is recomputed for each frame, the function above is not very efficient. In this second version, only two arguments are supplied to the iterator. At each function call, the two N^{th} Fourier terms are added to those computed in the $(N-1)^{th}$ and then stored in memory. The recursion stops at the defined N = 0 term.

Full Screen

Close

Lecture 17 MATHEMATICA® Example 9

pdf (evaluated, b&w)

html (evaluated)

3.016 Home

Visualizing Convergence of the Fourier Series: Gibbs Phenomenon

Functions that produce visualizations with Manipulate (each frame representing a different order of truncation of the Fourier series) are developed. This example illustrates *Gibbs phenomenon* where the approximating function oscillates wildly near discontinuities in the original function. In the Manipulate function, we use the option Initialization so that all evaluations during graphical output will be rapid.

html (evaluated)

3.016 Home

44 4 > >>

1: Because ReducedFunction has a discontinuity (its end-value and its initial-value differ), this visualization will show Gibbs phenomena near the edges of the domain. The approximation is fine everywhere except in the neighborhood of the discontinuity. At the discontinuity, the oscillations about the exact value do not dampen out with increased truncation N, but the domain where the oscillations are ill-behaved shrinks with increased N.

Full Screen

Close

Quit

theapprx[i] = TruncatedFourierSeries[

The following will demonstrate how convergence is difficult where the function changes rapidly---this is known as Gibbs' Phenomenon

PlotRange → { { -0.55, 0.55 }, { -1.4, 1.4 } },

truncation]}], ExactPlot], Show[plt, PlotRange → {{0.4, 0.5}, {0.5, 1.2}}]},

PlotStyle → {Thick, ColorData[1,

Manipulate[GraphicsRow[

ImageSize → Full],
{{truncation, 100},
1, 100, 1},

Initialization \rightarrow (Table[

Complex Form of the Fourier Series

The behavior of the Fourier coefficients for both the odd (sine) and for the even (cosine) terms was illustrated above. Functions that are even about the center of the fundamental domain (reflection symmetry) will have only even terms—all the sine terms will vanish. Functions that are odd about the center of the fundamental domain (reflections across the center of the domain and then across the x-axis.) will have only odd terms—all the cosine terms will vanish.

Functions with no odd or even symmetry will have both types of terms (odd and even) in its expansion. This is a restatement of the fact that any function can be decomposed into odd and even parts (see Eq. 17-3).

This suggests a short-hand in Eq. 17-4 can be used that combines both odd and even series into one single form. However, because the odd terms will all be multiplied by the imaginary number i, the coefficients will generally be complex. Also because $\cos(nx) = (\exp(inx) + \exp(-inx))/2$, writing the sum in terms of exponential functions only will require that the sum must be over both positive and negative integers.

For a periodic domain $x \in (-\lambda/2, \lambda/2)$, $f(x) = f(x + \lambda)$, the complex form of the fourier series is given by:

 $f(x) = \sum_{n=-\infty}^{\infty} C_{k_n} e^{ik_n x} \quad \text{where } k_n \equiv \frac{2\pi n}{\lambda}$ $C_{k_n} = \frac{1}{\lambda} \int_{-\lambda/2}^{\lambda/2} f(x) e^{-ik_n x} dx$

Because of the orthogonality of the basis functions $\exp(ik_n x)$, the domain can be moved to any wavelength, the following is also true: although the coefficients may have a different form.

3.016 Home

44 A > >>

Full Screen

(17-12)

Close

Index

AFunction, 211 amplitude vectors, 218 Assuming, 215 avian, 208

bagpipe, 208 basis functions, 219 Beethoven, 208 Boomerang, 211

Circle, 211

even and odd functions, 212 EvenAmplitude Vector, 219 EvenAmplitude Vectors, 218 EvenBasisVector, 219 EvenTerms, 218 Example function AFunction, 211 Boomerang, 211 EvenAmplitudeVectors, 218 EvenAmplitudeVector, 219 EvenBasisVector, 219 EvenTerms, 218 **FPlot**, 219 ManipulateTruncatedFourierSeries, 221 Note, 207 OddAmplitudeVector, 218, 219 OddBasisVector, 219 OddTerms, 218

RanRest, 209 RandomInstruments, 209 RandomNotesandRests, 209 RandomNotes, 209 ReduceHalfHalf, 220 ReducedFunction, 220, 222 avian, 208 bagpipe, 208 modcircledemo, 211 modmatdemo, 211 notes, 207, 208 note, 207 piano, 208 purenote, 207, 208

Fourier series, 213
complex form, 223
example functions for computing, 218
example of convergence of truncated, 219
mapping the periodic domain to (-1/2,1/2)., 220
plausibility of infinite sum, 213
the orthogonality trick, 214
FourierCosCoefficient, 220
FourierSinCoefficient, 220
FourierTrigSeries, 220
FourierTrigSeries, 220
FourierTrigSeries, 220
FourierTrigSeries, 220
FourierTrigSeries, 220
Function decomposition into odd and even parts, 212

3.016

3.016 Home

44 4 + ++

Full Screen

Close

functions

sound of, 207

Gibbs phenomenon, 222 Graphics, 211 GraphicsColumn, 211

Initialization, 222 Integrate, 215

Limit, 215

Manipulate, 221, 222 ManipulateTruncatedFourierSeries, 221 Mathematica function Assuming, 215 Circle, 211 FourierCosCoefficient, 220 FourierSinCoefficient, 220 FourierTrigSeries, 220 GraphicsColumn, 211 Graphics, 211 Initialization, 222 Integrate, 215 Limit, 215 Manipulate, 221, 222 Mod, 211 Play, 207 Plot, 211 Riffle, 208 SoundNote, 208 Sound, 207 Table, 209

Thread, 207, 208 freq, 207 purenote, 207 Mathematica package FourierSeries, 220 MIDI sounds, 208 Mod, 211 modcircledemo, 211 modmatdemo, 211 Note, 207 note, 207 notes frequencies of, 207 sound, 207 waveforms for, 207 notes, 207, 208 odd and even functions, 212 OddAmplitudeVector, 218, 219 OddBasisVector, 219 OddTerms, 218 Ode to Joy, 208 orthogonal function basis, 217 orthogonality of sines and cosines, 214 demonstration, 215 orthogonality relation for the trigonometric functions, 214 periodic extension of function with finite domain, 211 periodic functions, 206 periodic poetry, 206 piano, 208 Play, 207

3.016

3.016 Home

44 4 **> >**

Full Screen

Close

Plot, 211 purenote, 207, 208 purenote, 207	11 3.016
random music, 209 RandomInstruments, 209	0.010
RandomNotes, 209	
RandomNotesandRests, 209	
RanRest, 209	
ReducedFunction, 220, 222	3.016 Home
ReduceHalfHalf, 220 representing functions with sums of other functions, 212	3.010 Home
Riffle, 208	
Sound, 207	44 4 5 55
SoundNote, 208	
Table, 209	
Thread, 207, 208	
wave-numbers	Full Screen
in Fourier series, 213	
	Close
	Quit
	©W. Craig Carter
	W. Chaig Carter