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Nov. 2 2011

Lecture 16: Integral Theorems

Reading:
Kreyszig Sections: 10.8, 10.9 (pages463–467, 468–473)

Higher-dimensional Integrals

The fundamental theorem of calculus was generalized in a previous lecture from an integral over a single
variable to an integration over a region in the plane. Specifically, for generalizing to Green’s theorem
in the plane, a vector derivative of a function integrated over a line and evaluated at its endpoints was
generalized to a vector derivative of a function integrated over the plane.
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Figure 16-15: Illustrating how Green’s theorem in the plane works. If a known vector function
is integrated over a region in the plane then that integral should only depend on the bounding
curve of that region.
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Figure 16-16: Illustration of a generalization to the Green’s theorem in the plane: Suppose
there is a bowl of a known shape submerged in a fluid with a trapped bubble. The bubble is
bounded by two different surfaces, the bowl down to z = 0 and the planar liquid surface at that
height. Integrating the function

∫
VB

dV over the bubble gives its volume. The volume must

also be equal to an integral
∫ ∫

∂VB
zdxdy over the (oriented) surface of the liquid. However,

the volume of bubble can be determined from only the curve defined by the intersection of the
bowl and the planar liquid surface; so the volume must also be equal to

∮
C(some function)ds.

The Divergence Theorem

Suppose there is “stuff” flowing from place to place in three dimensions.
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Figure 16-17: Illustration of a vector “flow field” ~J near a point in three dimensional space.
If each vector represents the rate of “stuff” flowing per unit area of a plane that is normal to
the direction of flow, then the dot product of the flow field integrated over a planar oriented
area ~A is the rate of “stuff” flowing through that plane. For example, consider the two areas
indicated with purple (or dashed) lines. The rate of “stuff” flowing through those regions is
~J · ~AB = ~J · k̂AB and ~J · ~AL = ~J · k̂AL.

If there are no sources or sinks that create or destroy stuff inside a small box surrounding a point,
then the change in the amount of stuff in the volume of the box must be related to some integral over
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the box’s surface:

d

dt
(amount of stuff in box) =

d

dt

∫
box

(
amount of stuff

volume
)dV

=
∫
box

d

dt
(
amount of stuff

volume
)dV

=
∫
box

(some scalar function related to ~J)dV

=
∫

box
surface

~J · d ~A

(16-1)

J3( x=0; y=0; z=∆z
2 )

J3( x=0; y=0; z=−∆z
2 )

J2( x=0; y=−
∆y
2 ; z=0)

J2( x=0; y=
∆y
2 ; z=0)

J1( x=−∆x
2 ; y=0; z=0)

J1( x=∆x
2 ; y=0; z=0)

Figure 16-18: Integration of a vector function near a point and its relation to the change in
that vector function. The rate of change of stuff is the integral of flux over the outside—and
in the limit as the box size goes to zero, the rate of change of the amount of stuff is related
to the sum of derivatives of the flux components at that point.

To relate the rate at which “stuff M” is flowing into a small box of volume δV = dxdydz located
at (x, y, z) due to a flux ~J , note that the amount that M changes in a time ∆t is:

∆M(δV ) = (M flowing out of δV )− (M flowing in δV )

= ~J(x− dx
2 )̂idydz− ~J(x + dx

2 ) · îdydz

+ ~J(y − dy
2 )ĵdzdx− ~J(y + dy

2 ) · ĵdzdx

+ ~J(z − dz
2 )k̂dxdy− ~J(z + dz

2 ) · k̂dxdy

∆t

= −(
∂Jx

∂x
+

∂Jy

∂y
+

∂Jz

∂z
)δV ∆t +O(dx4)

(16-2)

If C(x, y, z) = M(δV )/δV is the concentration (i.e., stuff per volume) at (x, y, z), then in the limit of
small volumes and short times:

∂C

∂t
= −(

∂Jx

∂x
+

∂Jy

∂y
+

∂Jz

∂z
) = −∇ · ~J = −div ~J (16-3)

For an arbitrary closed volume V bounded by an oriented surface ∂V :

dM

dt
=

d

dt

∫
V

CdV =
∫

V

∂C

∂t
dV = −

∫
V
∇ · ~JdV = −

∫
∂V

~J · d ~A (16-4)
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The last equality ∫
V
∇ · ~JdV =

∫
∂V

~J · d ~A (16-5)

is called the Gauss or the divergence theorem.
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Lecture 16 Mathematica R© Example 1
London Dispersion Potential due to a Finite Body

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

If the London interaction (i.e., energy between two induced dipoles) can be treated as a 1/r6 potential, then
the potential due to a volume is an integration over each point in the volume and and arbitrary point in space.
This calculation will be made much more efficient by turning the volume integral into a surface integral by using
the divergence theorem.

Numerical  integration is  a cpu-time-consuming numerical  procedure.  If
there is a way to reduce the dimensionality of the integration, then we can
reap  rewards  for  our  cleverness.   One  trick  is  to  use  the  divergence
theorem to push the integration over a volume, to an integration over a
surface. For example, we could use the divergence theorem:
ŸŸŸ volume “· P  dV = ŸŸ surfaceP ÿ d  A

For a 1/r6  potential , we must find a vector potential P  such that “· P  =
-1/|r” - x »6  where r” is a position in the integrated volume and  x  is a point
at which the potential is measured.  

1

PVecLondon =

1

3 IHCX - XL2 + HCY - YL2 + HCZ - ZL2M3
 

8CX - X, CY - Y, CZ - Z<

2Needs@"VectorAnalysis "̀D

3FullSimplify@
Div@PVecLondon, Cartesian@CX, CY, CZDDD
We will integrate over a cylinder of radius R and length L along the z-axis,
with its middle at the origin.  First, let's use the radius of the cylinder to
scale  all  the  length  variables:  Let  (X,Y,Z)/R =  (x,y,z);  (CX,CY,CZ)/R =
(cx,cy,cz), and L/R = l (the cylinder's aspect ratio).

4
ScaleRules = 8X Ø x R, Y Ø y R, Z Ø z R,

CX Ø cx R, CY Ø cy R, CZ Ø cz R<;
PvecR5 = FullSimplify@R^5 PVecLondon ê.

ScaleRules, Assumptions -> R > 0D
Therefore, f(x ) =  ŸŸŸ volume -1

KrØ-x
ØO6

 dV = ŸŸ surfacePVecLondon ÿ d  A  = 

(ŸŸ cylinder
surface

PVecR5  •  „ A
Ø

 + ŸŸ cylinder
ends

 PVecR5  •  „ A
Ø

)/R5

 is the total interaction between a point and a cylinder.  We can exploit the
symmetry of the cylinder: r = x ^ 2 + y ^ 2 and z.
 We  will  do  three  integrals  over  the  cylindrical  surfaces  using  this
expression to define the cylinder: (cx,cy,cz) = (Cos[q], Sin[q], cz):
The cylindrical surface  is the domain  q œ (0, 2p), cz œ (- l

2
 , l

2
)

The two caps r œ (0,1),  q œ (0, 2p), cz=± l

2

1: To find a vector potential, ~F which has a divergence that is equal
to ∇· ~F = −1/‖ ~X − ~CX‖6, PVecLondon is a ‘guess.’ The ~CX will
vary over the solid body and ~X is an arbitrary point at which the
potential is to be determined.

2: We will need Div from the VectorAnalysis package.
3: this will show that the guess PVecLondon is a correct vector func-

tion for the −1/r6 potential.
4: Our calculation will be for a cylinder of radius R and aspect ratio

λ ≡ L/R. We will use R to scale all length variables and introduce
dimensionless variables: x = X/R, y = Y/R, z = Z/R, cx =
CX/R, cy = CY/R, and cz = CZ/R. The variables are scaled by
introducing ScaleRules which are rules to be used in a replacement.
Because the potential has a 1/(length5) length scale, we multiply
it by R5 to remove that dimension. We use FullSimplify after
the replacement with Assumptions of a positive radius to find the
simplest possible form of the non-dimensionlized vector potential.

http://pruffle.mit.edu/3.016-2011/Notebooks/L16/Lecture-16.nb
http://pruffle.mit.edu/3.016-2011/pdf/L16/Lecture-16-1-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L16/Lecture-16-1-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-16/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2011
http://pruffle.mit.edu/3.016-2011/html/Lecture-16/HTMLLinks/index_1.html


MIT 3.016 Fall 2011 Lecture 16 c© W.C Carter 197

Lecture 16 Mathematica R© Example 2
Cylinder Surface and Integrands

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

We parameterize the cylinder surface and compute the local oriented surface area and then find the integrand
which is to be used for the cylinder surface.

The following is a parametric representation of a cylinder surface that is
coaxial with the z-axis (the cylinder ends will be included later)

1CylSurf = 8 Cos@qD, Sin@qD, cz<

The infinitessimal surface vectors Ru  and Rv  for the cylinder surface are

obtained by differentiation; they will be used to find the surface patch dA
Ø

.

2CylSurfRq = D@CylSurf, qD
CylSurfRcz = D@CylSurf, czD

The surface normal given by Ru  × Rv  for the cylinder surface, there for
the following (multiplied by dq  dz)  is  the infinitessimal  oriented surface

patch dA
Ø

.

3NormalVecCylSurf =
Cross@CylSurfRq, CylSurfRczD
The  integrand  to  be  evaluated  over  the  cylinder  surface  is  the  vector
potential,  dotted  into  the  normal  vector.   Because  of  the  cylindrical
symmetry of this model, we can convert to cylindrical coordinates.  One
set of coordinates is for the cylinder surface (x Ø R Cos[q], h Ø R Sin[q])
for  fixed  radius  R  (which  is  a  model  parameter)  and  another  set  of
coordinates for where we will be testing the potential (x Ø r Cos[a], y Ø r
Sin[a]).   Because the potential must be independent of a,  we might as
well set it to zero.

4
CylinderIntegranddqdz = FullSimplify@

HPvecR5 ê. 8cx Ø Cos@qD, cy Ø Sin@qD,
x Ø r , y Ø 0<L.NormalVecCylSurfD

We have a choice whether to integrate over cz œ  (- l

2
 , l

2
)  or  q œ (0, 2p)

first.  If we can a closed form for the cylinder surface over cz and then the
cylinder  end  over  r,  then  we  can  integrate  the  sum  of  these  over  q
together.
In the next section, we will  see if we can do one of the two integrals---we
have a choice of integrating over q or (z for the cylinder sides, and  R) for
the cylinder ends. We find a closed form for integrating  z for the sides
and R for the top, and then subsequently numerically integrate q for (0,2
p).

1: This is the cylinder surface in terms of cz and θ

2: These are the differential quantities that define the local tangent
plane to the cylindrical surface.

3: This will be the multiplier elemental area for a parameterized cylin-
drical surface d~r/dθ×d~r/dz, this is the local normal to the surface;
here it is the unit normal because we have scaled all length quanti-
ties by R

4: CylinderIntegrandθζ is the integrand (i.e., the vector potential eval-
uated on the parameterized cylinder surface) for the cylindrical sur-
face. Because of the cylindrical symmetry of the potential, the po-
tential must be depend only on the normalized distance from the
cylinder axis, ρ, and the height above the mid-plane, z: this con-
version to cylindrical coordinates is effected by a rule-replacement
operation.

http://pruffle.mit.edu/3.016-2011/Notebooks/L16/Lecture-16.nb
http://pruffle.mit.edu/3.016-2011/pdf/L16/Lecture-16-2-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L16/Lecture-16-2-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-16/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2011
http://pruffle.mit.edu/3.016-2011/html/Lecture-16/HTMLLinks/index_2.html
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Lecture 16 Mathematica R© Example 3
Integrating over the Cylinder Surface

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

We have a choice whether to integrate over θ ∈ (0, 2π) or over z ∈ −λ/2, λ/2 first. We calculate the integral
over cz first which will leave a form that we can numerically integrate over θ. (Note: As of 23 Oct. 2007, I’ve
determined that it is possible to find the definite integral over θ and then over cz; therefore, this integral does
has a closed form solution. For purposes of this demonstration, we will leave the integral over θ to be computed
by a numerical integration. To demonstrate the idea of reducing the triple numerical integration, over a single
numerical integration, I’ll have to find a more complicated surface to integrate over in the future.)

1

UpperPlane = 8l > 0, r > 0, z > 0 , 0 < q < 2 p<;
CylinderIntegrandUpperZdq=
FullSimplify@Integrate@
CylinderIntegranddqdz, 8cz, -lê2, lê2< ,
Assumptions Ø UpperPlaneD,
Assumptions Ø UpperPlaneD

Here we restrict z to the upper half-space. We will treat z=0 below.

Here is the limit of  the integral for z> 0 (CylinderIntegranddq) in the limit
as z  Ø 0.

2CylinderIntegranddqZeroLimit = FullSimplify@
Limit@CylinderIntegrandUpperZdq, z Ø 0DD

Here is the limit of  the integral z=0, it is not obvious that the limit and its
value at z=0 are the same. 

3

FewerAssumptions =
8 R > 0 , l > 0, r > 0, 0 < q < 2 p<;

CylinderIntegrandAtZerodq= Integrate@
Evaluate@CylinderIntegranddqdz ê. z Ø 0D,
8cz, -lê2, lê2< ,
Assumptions Ø FewerAssumptionsD

The limit as z -> 0 and the integrand at z = 0 are the same, so we can use
a single integrand

4

CylinderIntegranddq@
dist_, height_, AspectRat_D :=
Evaluate@CylinderIntegrandUpperZdqê.

8r Ø dist, z Ø height, l Ø AspectRat<D
?CylinderIntegranddq

5
CylinderContribution@
dist_, height_, AspectRat_D :=
NIntegrate@CylinderIntegranddq@dist,
height, AspectRatD, 8q, 0, 2 p<D

1: Because of the mirror symmetry of the function about the z = 0
plane, we can restrict the integral to z > 0 and use this as an
assumption to aid the definite integral over cz. (Note this is a
time-consuming integral and simplification, in the notebook form
distributed with these notes, there is a dialogue that allows the user
to download a precomputed result.)

2: To determine whether we can use this integrand at the mid-plane
(z = 0), we check to see if the limit as z → 0 is the same as
evaluating the integrand at z = 0 first, and then finding the integral
that applies for z = 0. Here, we check the limit.

3: Here, we set z = 0 and integrate.
4: The limit and the case of z = 0 are the same, so we use the form of

the integrand, CylinderIntegrandUpperZdθ , calculated above. We
turn the expression into a function by using Evaluate after the
rule-replacement. This method of subverting the delayed evalua-
tion, (:=), will work so long as the function’s variables have not
been assigned. These methods will be discussed in a section below
. In practice, it is probably safer to replace variables with tempo-
rary, undefined, symbols and then cut-and-paste. (It is difficult to
demonstrate the cut-and-paste with static notes like these.)

5: The function defined above, CylinderIntegranddθ , is used as the ar-
gument to the numerical integration, NIntegrate, over θ ∈ (0, 2π).
The produces a function, CylinderContribution , that gives the con-
tribution by integrating over the cylinder surface.

http://pruffle.mit.edu/3.016-2011/Notebooks/L16/Lecture-16.nb
http://pruffle.mit.edu/3.016-2011/pdf/L16/Lecture-16-3-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L16/Lecture-16-3-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-16/HTMLLinks/index_3.html
http://pruffle.mit.edu/3.016-2011
http://pruffle.mit.edu/3.016-2011/html/Lecture-16/HTMLLinks/index_3.html
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Lecture 16 Mathematica R© Example 4
Integrating over the Cylinder’s Top Surface

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

We parameterize the cylinder’s top end-cap in terms of r (dimensionless r < 1) and θ, and then find a closed-form
solution for the double integral over the top surface.

1TopSurf = 8r Cos@qD, r Sin@qD, lê2<

2TopSurfRq = D@TopSurf, qD
TopSurfRr = D@TopSurf, rD

3NormalVecTopSurf =
FullSimplify@Cross@TopSurfRr, TopSurfRqDD

4

EndAssumptions =
8l > 0, r > 0 , z > 0, -1 § Cos@qD < 1<;

TopIntegranddqdr = FullSimplify@
HPvecR5 ê. 8cx Ø r Cos@qD, cy Ø r Sin@qD, cz Ø

lê2, x Ø r, y Ø 0<L.NormalVecTopSurf,
Assumptions Ø EndAssumptionsD

5

InsideAbovedr = Integrate@
TopIntegranddqdr, 8q, 0, 2 p<, Assumptions Ø
8 0 < r < 1, l > 0, r < 1 , z > lê2< D;

InsideBelowdr = Integrate@TopIntegranddqdr,
8q, 0, 2 p<, Assumptions Ø
8 0 < r < 1, l > 0, r < 1 , z < lê2< D;

OutsideAbovedr = Integrate@TopIntegranddqdr,
8q, 0, 2 p<, Assumptions Ø
8 0 < r < 1, l > 0, r > 1 , z > lê2< D;

OutsideBelowdr = Integrate@TopIntegranddqdr,
8q, 0, 2 p<, Assumptions Ø
8 0 < r < 1, l > 0, r > 1 , z < lê2< D;

Grid@88InsideAbovedr, InsideBelowdr<,
8OutsideAbovedr, OutsideBelowdr<<D

6TopIntegranddr = ‘InsideAbovedr

7TopPart = Integrate@TopIntegranddr, 8r, 0, 1<,
Assumptions Ø 8 l > 0, r > 0 , z > 0, z ≠ lê2<D

8
TopContribution@dist_, height_,
AspectRat_D := Evaluate@TopPart ê.
8r Ø dist, z Ø height, l Ø AspectRat<D

?TopContribution

1–4: As in the case for the cylinder’s curved surface, the top surface is
parameterized, then the local tangent is computed, and the local
oriented surface differential element is computed. The integrand is
produced with the inner-product with the vector potential evalu-
ated at the cylinder’s top.

5–6: There is a singularity at the cylinder surface that produces a little
extra work on our part to ensure that we don’t evaluate at this
singularity. To get a closed form of the integral over θ, it is use-
ful to divide space into four regions where the potential is to be
measured: 1) Inside the cylinder radius and above the cylinder top;
2) Inside the cylinder radius and below the cylinder top; 3) Out-
side the cylinder radius and above the cylinder top; 4) Outside the
cylinder radius and below the cylinder top. These give the same
result, so long as we don’t evaluate at the cylinder’s surface.

7: The top integrand in r can be integrated for r ∈ (0, 1) and produces
a closed form.

8: A function for the contribution of the upper disk, TopContribution
, is defined.

http://pruffle.mit.edu/3.016-2011/Notebooks/L16/Lecture-16.nb
http://pruffle.mit.edu/3.016-2011/pdf/L16/Lecture-16-4-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L16/Lecture-16-4-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-16/HTMLLinks/index_4.html
http://pruffle.mit.edu/3.016-2011
http://pruffle.mit.edu/3.016-2011/html/Lecture-16/HTMLLinks/index_4.html
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Lecture 16 Mathematica R© Example 5
Integrating over the Cylinder’s Bottom Surface

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

We parameterize the cylinder’s bottom end-cap (cz = −λ/2) in terms of r (dimensionless r < 1) and θ, and then
find a closed-form solution for the double integral over the bottom surface.

1BotSurf = 8r Cos@qD, r Sin@qD, -lê2<

2BotSurfRq = D@BotSurf, qD
BotSurfRr = D@BotSurf, rD

3NormalVecBotSurf =
FullSimplify@Cross@BotSurfRq, BotSurfRrDD

4

BotIntegranddqdr =
FullSimplify@HPvecR5 ê. 8cx Ø r Cos@qD,

cy Ø r Sin@qD, cz Ø -lê2, x Ø r, y Ø 0<L.
NormalVecBotSurf, Assumptions Ø
EndAssumptionsD

5

inside = 8 0 < r < 1, l > 0, r < 1 , z > 0< ;
outside = 8 0 < r < 1, l > 0, r > 1 , z > 0<;
BotIntegrandInsidedr=
Simplify@Integrate@BotIntegranddqdr,

8q, 0, 2 p<, Assumptions Ø insideD,
Assumptions Ø insideD

BotIntegrandOutsidedr=
Simplify@Integrate@BotIntegranddqdr,

8q, 0, 2 p<, Assumptions Ø outsideD,
Assumptions Ø outside D

6BotIntegranddr = BotIntegrandOutsidedr

7BotPart = Integrate@BotIntegranddr, 8r, 0, 1<,
Assumptions Ø 8 l > 0, r > 0 , z > 0<D

8
BotContribution@dist_, height_,
AspectRat_D := Evaluate@BotPart ê.
8r Ø dist, z Ø height, l Ø AspectRat<D

9

LondonCylinderPotential@dist_, height_,
AspectRat_D := CylinderContribution@
dist, height, AspectRatD +
TopContribution@dist, height, AspectRatD +
BotContribution@dist, height, AspectRatD

1–4: As above for the cylinder’s outside and for its top surface, the bot-
tom disk is parameterized, then the local tangent is computed, and
the local oriented surface differential element is computed. The
integrand is produced with the inner-product with the vector po-
tential evaluated at the cylinder’s bottom.

5–6: Similar to our method of avoiding the singularity at the top surface
To get a closed form of the bottom-disk integral over θ, space is
divided into two regions where the potential is to be measured: 1)
Inside the cylinder; 2) Outside the cylinder. These give the same
result.

7: The bottom integrand in r can be integrated for r ∈ (0, 1) and
produces a closed form.

8: A function for the contribution of the bottom disk, BotContribution
, is defined.

9: We can produce a function to compute the potential at any point
in space by summing the contributions from all three cylinder sur-
faces. The first function is the most expensive because it contains
a numerical integration over θ.

Efficiency and Speed Issues: When to Evaluate the Right-Hand-Side of a Function in
Mathematica R© .

The standard practice is to define functions in Mathematica with :=. However, sometimes it makes
sense to evaluate the right-hand-side when the function definition is made. These are the cases where
the right hand side would take a long time to evaluate—each time the function is called, the evaluation
would be needed again and again. The following example illustrates a case where it makes sense to use
Evaluate in a function definition (or, equivalently defining the function with immediate assignment
=).

As in the use of (=), this can result in errors if the function’s variables have been defined previously.
In cases where it is desirable to create a function from an expression, it is probably safest to use rule-

http://pruffle.mit.edu/3.016-2011/Notebooks/L16/Lecture-16.nb
http://pruffle.mit.edu/3.016-2011/pdf/L16/Lecture-16-5-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L16/Lecture-16-5-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-16/HTMLLinks/index_5.html
http://pruffle.mit.edu/3.016-2011
http://pruffle.mit.edu/3.016-2011/html/Lecture-16/HTMLLinks/index_5.html
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replacement with undefined variables, observe the result, and then use cut-and-paste to define a function
with a delayed evaluation in terms of these demonstrably undefined variables.

Lecture 16 Mathematica R© Example 6
To Evaluate or Not to Evaluate when Defining Functions

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

This example illustrates a case in which immediate evaluation = would be preferable to delayed evaluation :=

Let's set a baseline to check efficiency. Here we check timing to integrate
something

1Timing@Integrate@Exp@Tan@xDD, 8x, 0, c<DD
We check the same thing again, because Mathematica  may have spent
some time loading algorithms to integrate

2Timing@Integrate@Exp@Tan@xDD, 8x, 0, c<DD
Here,  we  time  how  long  it  takes  to  create  a  function  (with  delayed
assignment), but using Evaluate on the rhs.

3Timing@DelayedEvaluated@c_D :=
Evaluate@Integrate@Exp@Tan@xDD, 8x, 0, c<DDD

The following is equivalent to the above (safer) definition---and will work
so long as c is not assigned to an expression.

4Timing@Immediate@c_D =
Integrate@Exp@Tan@xDD, 8x, 0, c<DD

The following should take the *least* amount of time to perform, but as we
shall see is not as efficient in the long run.

5Timing@FunctionDef@c_D :=
Integrate@Exp@Tan@xDD, 8x, 0, c<DD

6
?DelayedEvaluated
?Immediate
?FunctionDef

The following should give a rapid result

7Timing@DelayedEvaluated@0.5DD
Timing@Immediate@0.5DD

The  following  will  not  be  rapid,  because  it  has  to  do  the  symbolic
integration before returning the result.

8Timing@FunctionDef@0.5DD

1: When a non-trivial integral is done for the first time, Mathematica
loads various libraries. Notice the difference in timing between this
first computation of

∫
exp[tan(x)]dx and the following one.

2: The second evaluation is faster. Now, a baseline time has been
established for evaluating this integral symbolically.

3: Here, to make a function definition for the integral, the symbolic
integral is obtained and so the function definition takes longer than
it would if we had not used Evaluate.

4: Using an = is roughly equivalent to using Evaluate above and the
time to make the function assignment should be approximately the
same.

5: Here, the symbolic integration is delayed until the function is called
(later). Therefore, the function assignment is very rapid.

6: We can use the ?-operator to investigate the stored forms of the
three function definitions. The first two forms are roughly equiv-
alent, except for the delayed versus immediate function definition.
The third form uses the unevaluated integral in the definition. sym-
bolic information.

7: The function evaluation is much faster in the case where the sym-
bolic integration is not needed. This would be the preferred form
if the function were to be called many times.

8: The relatively slow speed of the function which contains the uneval-
uated integral indicates that it would be a poor choice when numeri-
cal efficiency is an issue. Therefore, if we were to use ContourPlot,
or some other function that would need to compute the result at
many different points, then the integration would be done at each
point, instead of having its closed form evaluated. Thus, the func-
tion with the embedded closed form is preferable.

http://pruffle.mit.edu/3.016-2011/Notebooks/L16/Lecture-16.nb
http://pruffle.mit.edu/3.016-2011/pdf/L16/Lecture-16-6-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L16/Lecture-16-6-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-16/HTMLLinks/index_6.html
http://pruffle.mit.edu/3.016-2011
http://pruffle.mit.edu/3.016-2011/html/Lecture-16/HTMLLinks/index_6.html
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Lecture 16 Mathematica R© Example 7
Visualizing the Hamaker Potential of a Finite Cylinder: Contours of Constant Potential

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

We use the function that we have defined above as the argument to ContourPlot. Because the function is
singular at the cylinder surface, we choose to plot the logarithm of the potential instead. Because the potential
is negative outside of the cylinder, we must use an absolute value before taking the log. To remind ourselves
that the potential is negative outside the cylinder, we multiply the log by minus-one.

1LogAbsCyl@r_, h_, AR_D :=
Log@Abs@LondonCylinderPotential@r, h, ARDDD

2
Plot@LogAbsCyl@0.0, h, 4D, 8h, 0, 2.5<,
Exclusions Ø 82.0<, PlotRange Ø 80, 18<,
PlotStyle Ø 8Thick, Darker@BlueD<,
BaseStyle Ø 8Medium<D

3
Plot@LogAbsCyl@x, 0, 1D,
8x, 0.0, 1.5<, Exclusions Ø 81.0<,
PlotRange Ø 80, 20<, PlotStyle Ø 8Thick, Red<,
BaseStyle Ø 8Medium<, ImageSize Ø LargeD

4

conplotouter =
ContourPlot@-LogAbsCyl@dist, h, 4D,
8dist, 0, 1.5<, 8h, 0, 2.5<,
RegionFunctionØ Function@8dist, h<,
dist > 1.01 »» h > 2.01D,

PlotRange Ø 8-15, 1<, Contours Ø 15,
ColorFunctionØ "AvocadoColors",
AspectRatio Ø Automatic,
ImageSize Ø Medium, Exclusions Ø
88dist ã 1.0, Abs@dist - 1.0D < 0.001<,
8h ã 2.0, Abs@h - 2D < 0.001<<D

5

conplotinner =
ContourPlot@LogAbsCyl@dist, h, 4DD,

8dist, 0, 1.5<, 8h, 0, 2.5<, RegionFunctionØ
Function@8dist, h<, dist < 0.99 && h < 1.99D,
PlotRange Ø 80, 15<, Contours Ø 16,
ColorFunctionØ "LakeColors",
AspectRatio Ø Automatic, ImageSize Ø Medium,
BaseStyle -> 8Medium<, AspectRatio Ø Automatic

6Show@conplotinner, conplotouterD 

1: We define a short-hand function to wrap around the potential func-
tion so that the log(|P |) is computed.

2–3: To get an idea of what the function looks like, we plot the potential
first along the cylinder axis, and then for a distance within the
mid-plane.

4: We break the contour-plots into an inner and an outer graphic. Here
we use ContourPlot to plot (minus) the logarithm of the potential
outside the cylinder. RegionFunction is used to to limit the region
over which the plot is computed and displayed. Furthermore, the
numerical integration is ill-behaved along lines that continue from
the cylinder’s corner; we use Exclusions to avoid these regions.
We use a green tone, AvocadoColors, to indicate the negative
values.

5: Here, we produce the contour-plot for the region inside the cylin-
der. Again, we use the RegionFunction-option of ContourPlot.
We use blue tones, LakeColors, to indicate the positive potential
values.

6: We combine the inner and outer regions into a single plot by using
Show.

http://pruffle.mit.edu/3.016-2011/Notebooks/L16/Lecture-16.nb
http://pruffle.mit.edu/3.016-2011/pdf/L16/Lecture-16-7-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L16/Lecture-16-7-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-16/HTMLLinks/index_7.html
http://pruffle.mit.edu/3.016-2011
http://pruffle.mit.edu/3.016-2011/html/Lecture-16/HTMLLinks/index_7.html
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Lecture 16 Mathematica R© Example 8
Visualizing the Hamaker Potential of a Finite Cylinder: Three-Dimensional Plots

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

We produce and equivalent visualization with Plot3D. From the form of these plots, it is clear that a non-polar
molecule would be attracted to the cylinder, with a force that becomes unbounded in the vicinity of the cylinder.
The barrier to cross into the cylinder is infinite at the cylinder surface. However, within a cylinder there is a
force that pushes a foreign particle to the center of the cylinder. The Hamaker force would tend to push pores
towards the middle of a dielectric cylinder.

1

plotoutside3D =
Plot3D@-LogAbsCyl@dist, h, 4D, 8dist, 0, 1.5<,
8h, 0, 2.5<, RegionFunctionØ Function@

8dist, h<, dist > 1.01 »» h > 2.01D,
PlotRange Ø 8-15, 1<, MeshFunctions -> 8Ò3 &<,
ColorFunctionØ "AvocadoColors",
AspectRatio Ø Automatic,
ImageSize Ø Large, BaseStyle -> 8Medium<,
AspectRatio Ø AutomaticD

2

plotinside3D =
Plot3D@LogAbsCyl@dist, h, 4D, 8dist, 0, 1.5<,
8h, 0, 2.5<, RegionFunctionØ Function@

8dist, h<, dist < 0.99 && h < 1.99D,
PlotRange Ø 80, 15<, MeshFunctions -> 8Ò3 &<,
ColorFunctionØ "LakeColors",
AspectRatio Ø Automatic,
ImageSize Ø Large, BaseStyle -> 8Medium<,
AspectRatio Ø AutomaticD

3Show@plotinside3D,
plotoutside3D, PlotRange Ø 8-15, 15<D

4

1–2: Plot3D is used as in the previous example with the
RegionFunction option to separate the inner- from the outer-
evaluation. The MeshFunctions option is used to produce shading
that is consistent with the contour plots in the previous example.

3: We use Show with an extended PlotRange to produce the combined
three dimensional surface representing the potential as a function
of distance from the axis cylinder and height above its mid-plane.

Stokes’ Theorem

The final generalization of the fundamental theorem of calculus is the relation between a vector function
integrated over an oriented surface and another vector function integrated over the closed curve that
bounds the surface.

A simplified version of Stokes’s theorem has already been discussed—Green’s theorem in the plane

http://pruffle.mit.edu/3.016-2011/Notebooks/L16/Lecture-16.nb
http://pruffle.mit.edu/3.016-2011/pdf/L16/Lecture-16-8-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L16/Lecture-16-8-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-16/HTMLLinks/index_8.html
http://pruffle.mit.edu/3.016-2011
http://pruffle.mit.edu/3.016-2011/html/Lecture-16/HTMLLinks/index_8.html
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can be written in full vector form:∫ ∫
R

(
∂F2

∂x
− ∂F1

∂y

)
dxdy =

∫
R
∇× ~F · d ~A

=
∮

∂R
(F1dx + F2dy) =

∮
∂R

~F · d~r

ds
ds

(16-6)

as long as the region R lies entirely in the z = constant plane.
In fact, Stokes’s theorem is the same as the full vector form in Eq. 16-6 with R generalized to an

oriented surface embedded in three-dimensional space:∫
R
∇× ~F · d ~A =

∮
∂R

~F · d~r

ds
ds (16-7)

Plausibility for the theorem can be obtained from Figures 16-15 and 16-16. The curl of the vector
field summed over a surface “spills out” from the surface by an amount equal to the vector field itself
integrated over the boundary of the surface. In other words, if a vector field can be specified everywhere
for a fixed surface, then its integral should only depend on some vector function integrated over the
boundary of the surface.

Maxwell’s equations

The divergence theorem and Stokes’s theorem are generalizations of integration that invoke the diver-
gence and curl operations on vectors. A familiar vector field is the electromagnetic field and Maxwell’s
equations depend on these vector derivatives as well:

∇ · ~B = 0 ∇× ~E =
∂ ~B

∂t

∇× ~H =
∂ ~D

∂t
+~j ∇ · ~D = ρ

(16-8)

in MKS units and the total electric displacement ~D is related to the total polarization ~P and the
electric field ~E through:

~D = ~P + εo
~E (16-9)

where εo is the dielectric permittivity of vacuum. The total magnetic induction ~B is related to the
induced magnetic field ~H and the material magnetization through

~B = µo( ~H + ~M) (16-10)

where µo is the magnetic permeability of vacuum.

Ampere’s Law

Ampere’s law that relates the magnetic field lines that surround a static current is a macroscopic
version of the (static) Maxwell equation ∇× ~H = ~j:
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Gauss’ Law

Gauss’ law relates the electric field lines that exit a closed surface to the total charge contained within
the volume bounded by the surface. Gauss’ law is a macroscopic version of the Maxwell equation
∇ · ~D = ρ:
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