Oct. 16 2011

Lecture 13: Differential Operations on Vectors

Reading: Kreyszig Sections: 9.8, 9.9 (pages410–413, 414–416)

Generalizing the Derivative

The number of different ideas, whether from physical science or other disciplines, that can be understood with reference to the "meaning" of a derivative from the calculus of scalar functions, is very very large. Our ideas about many topics, such as price elasticity, strain, stability, and optimization, are connected to our understanding of a derivative.

In vector calculus, there are generalizations to the derivative from basic calculus that act on a scalar and give another scalar back:

gradient (∇) : A derivative on a scalar that gives a vector.

curl $(\nabla \times)$: A derivative on a vector that gives another vector.

divergence $(\nabla \cdot)$: A derivative on a vector that gives scalar.

Each of these have "meanings" that can be applied to a broad class of problems. f(z) = f(z) + f(z)

The gradient operation on $f(\vec{x}) = f(x, y, z) = f(x_1, x_2, x_3)$,

$$\operatorname{grad} f = \nabla f\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right) = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) f$$
(13-1)

has been discussed previously. The curl and divergence will be discussed below.

Scalar Potentials and their Gradient Fields

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

An example of a scalar potential, due three point charges in the plane, is visualized. Methods for computing a gradient are presented.

Simple 2 D 1 / r potential	
<pre>potential[x_, y_, xo_, yo_] := -1/Sqrt[(x-xo)^2 + (y-yo)^2]</pre>	1
A field source located a distance 1 south of the origin	-
<pre>HoleSouth[x_, y_] := potential[x, y, Cos[3Pi/2], Sin[3Pi/2]]</pre>	2
<pre>HoleNorthWest[x_, y_] := potential[x, y, Cos[Pi/6], Sin[Pi/6]]</pre>	3
<pre>HoleNorthEast[x_ , y_] := potential[x, y, Cos[5Pi/6], Sin[5Pi/6]]</pre>	4
Function that returns the two dimensional (x,y) gradient field of function declared a function of two arguments:	any
<pre>gradfield[scalarfunction_] := {D[scalarfunction[x, y], x] // Simplify, D[scalarfunction[x, y], y] // Simplify}</pre>	5
Generalizing the function to any arguments:	-
<pre>gradfield[scalarfunction_, x_, y_] := {D[scalarfunction[x, y], x] // Simplify, D[scalarfunction[x, y], y] // Simplify}</pre>	6
The sum of three potentials:	-
ThreeHolePotential[x_, y_] := HoleSouth[x, y] + HoleNorthWest[x, y] + HoleNorthEast[x, y]	7
f(x,y) visualization of the scalar potential:	_
Plot3D[ThreeHolePotential[x, y], {x, -2, 2}, {y, -2, 2}]	8
Contour visualization of the three-hole potential	
ContourPlot[ThreeHolePotential[x, y], $\{x, -2, 2\}, \{y, -2, 2\}, PlotPoints \rightarrow 40,$ ColorFunction $\rightarrow (Hue[1 - # * 0.66] \&)$]	9

- 1: This is the 2D 1/r-potential; here *potential* takes four arguments: two for the location of the charge and two for the position where the "test" charge "feels" the potential.
- **2-4:** These are three fixed charge potentials, arranged at the vertices of an equilateral triangle.
 - 5: gradfield is an example of a function that takes a scalar function of x and y and returns a vector with component derivatives: the gradient vector of the scalar function of x and y.
 - 6: However, the previous example only works for functions of x and y explicitly. This expands *gradfield* to other Cartesian coordinates other than x and y.
 - **7:** *ThreeHolePotential* is the superposition of the three potentials defined in 2–4.
 - 8: Plot3D is used to visualize the superposition of the potentials due to the three charges.
 - 9: ContourPlot is an alternative method to visualize this scalar field. The option ColorFunction points to an example of a *Pure Function*—a method of making functions that do not operate with the usual "square brackets." Pure functions are indicated with the & at the end; the # is a place-holder for the pure function's argument.

Divergence and Its Interpretation

The divergence operates on a vector field that is a function of position, $\vec{v}(x, y, z) = \vec{v}(\vec{x}) = (v_1(\vec{x}), v_2(\vec{x}), v_3(\vec{x}))$, and returns a scalar that is a function of position. The scalar field is often called the divergence field of \vec{v} , or simply the divergence of \vec{v} .

$$\operatorname{div} \vec{v}(\vec{x}) = \nabla \cdot \vec{v} = \frac{\partial v_1}{\partial x} + \frac{\partial v_2}{\partial y} + \frac{\partial v_3}{\partial z} = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \cdot (v_1, v_2, v_3) = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \cdot \vec{v}$$
(13-2)

Think about what the divergence means.

Lecture 13 MATHEMATICA® Example 2 Visualizing the Gradient Field and its Divergence: The Laplacian

A visualization gradient field of the potential defined in the previous example is presented. The divergence of the gradient $\nabla \cdot \nabla \phi = \nabla^2 \phi$ (i.e., the result of the Laplacian operator ∇^2) is computed and visualized.

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

<pre>gradthreehole = gradfield[ThreeHolePotential] 1 Needs["VectorFieldPlots""]; VectorFieldPlots'VectorFieldPlot[gradthreehole, (x, -2, 2), (y, -2, 2), ScaleFactor + 0.2", ColorFunction + (Hue[1 - #1 0.66"] &), PlotPoints → 21] Function that takes a two-dimensional vector function of (x,y) as an argument and returns isd/vergence divergence[{xcomp_, ycomp_}] := simplify[D[xcomp, x] + D[ycomp, y]] divgradthreehole = divergence[gradfield[ThreediclePotential]] // Simplify Ploting the divergence of the gradient ((x, -2, 2), (y, -2, 2), PlotPoints → 50] </pre>	Gradient field of three-hole potential	
<pre>VectorFieldPlots VectorFieldPlot[gradthreehole, (x, -2, 2), (y, -2, 2), ScaleFactor → 0.2°, ColorFunction → (Rue[1 - 41 0.66°] \$), PlotPoints → 21]</pre>	gradthreehole = gradfield[ThreeHolePotential] 1	
Function that takes a two-dimensional vector function of (x,y) as an argument and returns its divergence divergence([xcomp, y ycomp,]] := 3 divergence([xcomp, x] + D[ycomp, y]] divgradthreehole = divergence[gradfield[ThreeHolePotential]] // Simplify Plotting the divergence of the gradient (v \ v, t) is the "Laplacian" v ² I, sometimes indicated with symbol Af) Plot3D[divgradthreehole,	$\label{eq:vectorFieldPlots} $$ VectorFieldPlot[$$ gradthreehole, {x, -2, 2}, {y, -2, 2}, $$ scaleFactor > 0.2, ColorFunction $> $$ 2$ }$	
argument and returns its divergence divergence divergence[{xcomp_, ycomp_]}:= 3 Simplify[[b[xcomp, x]] divgradthreehole = divergence[gradfield[ThreeHolePotential]] // Simplify Ploting the divergence of the gradient (V · (V h) sthe "Laplacian" v ² f, sometimes indicated with symbol 4f) Plot3D[divgradthreehole,		
Simplify[D[xcomp, x] + D[ycomp, y]] divgradthreehole = divergence[gradfield[ThreeHolePotential]] // Simplify Plotting the divergence of the gradient (v · (v h) is the "Laplacian" v ² /, sometimes indicated with symbol Af) Plot3D[divgradthreehole,		
$ \begin{array}{c} \mbox{gradfield[ThreeHolePotential]] / / Simplify} \end{array} \overset{4}{} \\ Plotting the divergence of the gradient \\ (\nabla \cdot (\nabla f) is the ``Laplacian'' \nabla^2 f, sometimes indicated with symbol \Delta f) \\ \mbox{Plot3D[divgradthreehole, } \end{array} $		
$(\nabla \cdot (\nabla f) \text{ is the ``Laplacian'' } \nabla^2 f, \text{ sometimes indicated with symbol } \Delta f)$ Plot3D[divgradthreehole,		4-
		-1

- **1:** We use our previously defined function *gradfield* to compute the gradient of *ThreeHolePotential* everywhere in the plane.
- 2: PlotVectorField is in the VectorFieldPlots package. Because a gradient produces a vector field from a scalar potential, arrows are used at discrete points to visualize it.
- 3: The divergence operates on a vector and produces a scalar. Here, we define a function, *divergence*, that operates on a 2D-vector field of x and y and returns the sum of the component derivatives. Therefore, taking the divergence of the gradient of a scalar field returns a scalar field that is naturally associated with the original—its physical interpretation is (minus) the rate at which gradient vectors "diverge" from a point.

5: We compute the divergence of the gradient of the scalar potential. This is used to visualize the Laplacian field of *ThreeHolePotential*

Coordinate Systems

The above definitions are for a Cartesian (x, y, z) system. Sometimes it is more convenient to work in other (spherical, cylindrical, etc) coordinate systems. In other coordinate systems, the derivative operations ∇ , ∇ , and ∇ × have different forms. These other forms can be derived, or looked up in a mathematical handbook, or specified by using the MATHEMATICA® package "VectorAnalysis."

Lecture 13 MATHEMATICA Example 3

Coordinate Transformations

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

Examples of *Coordinate Transformations* obtained from the VectorAnalysis package are presented.

< "VectorAnalysis"	1
Converting between coordinate syste	ms
The spherical coordinates expressed in terms of the cartesian x,y,z	
oordinatesFromCartesian[{x, y, z}, Spherical[r, theta, phi]]	2
$\left\{ \sqrt{\mathbf{x}^2+\mathbf{y}^2+\mathbf{z}^2} \right.$,	
$\label{eq:arcCos} \begin{split} & \text{ArcCos}\Big[\frac{z}{\sqrt{x^2+y^2+z^2}}\Big] \text{, } \text{ArcTan}[x, y] \Big\} \end{split}$	
The cartesian coordinates expressed in terms of the spherical r $\theta\phi$	
oordinatesToCartesian[{r, theta, phi}, Spherical[r, theta, phi]]	3
<pre>{r Cos[phi] Sin[theta], r Sin[phi] Sin[theta], r Cos[theta]}</pre>	
The equation of a line through the origin in spherical coodinates	
<pre>implify[CoordinatesFromCartesian[{at, bt, ct}, Spherical[r, theta, phi]], t > 0]</pre>	4

- -2: CoordinatesFromCartesian from the VectorAnalysis package transforms three Cartesian coordinates, named in the first argument-list, into one of many coordinate systems named by the second argument.
- **3:** CoordinatesToCartesian transforms one of many different coordinate systems, named in the second argument, into the three Cartesian coordinates, named in the first argument (which is a list).
- **4:** For example, this would be the equation of a line radiating from the origin in spherical coordinates.

Frivolous Example Using Geodesy, VectorAnalysis, and CityData.

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

We compute distances from Boston to Paris along different routes.

- 1-3: CityData provides downloadable data. The data includes—among many other things—the latitude and longitude of many cities in the database. This show that Marseilles is north of Boston (which I found to be surprising).
 - 5: SphericalCoordinatesofCity takes the string-argument of a city name and uses CityData to compute its spherical coordinates (i.e., $(r_{earth}, \theta, \phi)$ are same as (average earth radius = 6378.1 km, latitude, longitude)). We use Degree which is numerically $\pi/180$.

6: LatLong takes the string-argument of a city name and uses CityData to return a list-structure for its latitude and longitude. We will use this function below.

- -8: CartesianCoordinatesofCity uses a coordinate transform and SphericalCoordinatesofCity
- **9-10:** If we imagine traveling *through* the earth instead of around it, we would use the Norm of the difference of the Cartesian coordinates of two cities.
- 11-12: Comparing the great circle route using SphericalDistance (from the Geodesy package) to the Euclidean distance, is a result that surprises me. It would save only about 55 kilometers to dig a tunnel to Paris—sigh.
 - **13:** SpheroidalDistance accounts for the earth's extra waistline for computing great-circle distances.

Gradient and Divergence Operations in Other Coordinate Systems

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

A $1/r^n$ -potential is used to demonstrate how to obtain gradients and divergences in other coordinate systems.

SimplePot[x_, y_, z_, n_] :=	1
$(x^2 + y^2 + z^2)^{\frac{n}{2}}$	
<pre>gradsp = Grad[SimplePot[x, y, z, 1], Cartesian[x, y, z]]</pre>	2
$\left\{-\frac{x}{\left(x^{2}+y^{2}+z^{2} ight)^{3/2}}, ight.$	
$-\frac{y}{\left(x^{2}+y^{2}+z^{2}\right)^{3/2}},-\frac{z}{\left(x^{2}+y^{2}+z^{2}\right)^{3/2}}\Big]$	
The above is equal to $ec{r} \left/ \left({_{ }ec{r}} {_{ }} ight)^s$	
SimplePot[r_, n_] := $\frac{1}{r^n}$	3
<pre>gradsphere = Grad[SimplePot[r, 1], Spherical[r, θ, φ]]</pre>	4
<pre>Grad[SimplePot[r, 1], Cylindrical[r, θ, z]]</pre>	5
Grad[SimplePot[r, 1], ProlateSpheroidal[r, θ, φ]]	6
<pre>GradSimplePot[x_, y_, z_, n_] := Evaluate[Grad[SimplePot[x, y, z, n], Cartesian[x, y, z]]]</pre>	7
<pre>Div[GradSimplePot[x, y, z, n], Cartesian[x, y, z]] // Simplify</pre>	8
<pre>Div[GradSimplePot[x, y, z, 1], Cartesian[x, y, z]] // Simplify</pre>	9
0	

- 1: SimplePot is the simple $1/r^n$ potential in Cartesian coordinates.
- 2: Grad is defined in the VectorAnalysis: in this form it takes a scalar function and returns its gradient in the coordinate system defined by the second argument.
- **3:** An alternate form of *SimplePot* is defined in terms of a single coordinate; *if* r is the spherical coordinate $r^2 = x^2 + y^2 + z^2$ (referring back to a Cartesian (x, y, z)), then this is equivalent the function in **1**.
- 4: Here, the gradient of 1/r is obtained in spherical coordinates; it is equivalent to the gradient in 2, but in spherical coordinates.
- 5: Here, the gradient of 1/r is obtained in cylindrical coordinates, but it is not equivalent to 2 nor 4, because in cylindrical coordinates, $(r, \theta, z), r^2 = x^2 + y^2$, even though the form appears to be the same.
- 6: Here, the gradient of 1/r is obtained in prolate spheroidal coordinates.
- 7: We define a function for the x-y-z gradient of the $1/r^n$ scalar potential. Evaluate is used in the function definition, so that Grad is not called each time the function is used.
- 8: The Laplacian $(\nabla^2(1/r^n))$ has a particularly simple form, $n(n-1)/r^{2+n}$
- **9:** By inspection of $\nabla^2(1/r^n)$ or by direct calculation, it follows that $\nabla^2(1/r)$ vanishes identically.

Curl and Its Interpretation

The curl is the vector-valued derivative of a vector function. As illustrated below, its operation can be geometrically interpreted as the rotation of a field about a point.

For a vector-valued function of (x, y, z):

$$\vec{v}(x,y,z) = \vec{v}(\vec{x}) = (v_1(\vec{x}), v_2(\vec{x}), v_3(\vec{x})) = v_1(x,y,z)\hat{i} + v_2(x,y,z)\hat{j} + v_3(x,y,z)\hat{k}$$
(13-3)

the curl derivative operation is another vector defined by:

$$\operatorname{curl} \vec{v} = \nabla \times \vec{v} = \left(\left(\frac{\partial v_3}{\partial y} - \frac{\partial v_2}{\partial z} \right), \left(\frac{\partial v_1}{\partial z} - \frac{\partial v_3}{\partial x} \right), \left(\frac{\partial v_2}{\partial x} - \frac{\partial v_1}{\partial y} \right) \right)$$
(13-4)

or with the memory-device:

$$\operatorname{curl} \vec{v} = \nabla \times \vec{v} = \det \begin{pmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ v_1 & v_2 & v_3 \end{pmatrix}$$
(13-5)

For an example, consider the vector function that is often used in Brakke's Surface Evolver program:

$$\vec{w} = \frac{z^n}{(x^2 + y^2)(x^2 + y^2 + z^2)^{\frac{n}{2}}}(\hat{y}\hat{i} - x\hat{j})$$
(13-6)

This will be shown below, in a MATHEMATICA® example, to have the property:

$$\nabla \times \vec{w} = \frac{nz^{n-1}}{(x^2 + y^2 + z^2)^{1+\frac{n}{2}}} (x\hat{i} + y\hat{j} + z\hat{k})$$
(13-7)

which is spherically symmetric for n = 1 and convenient for turning surface integrals over a portion of a sphere, into a path-integral, over a curve, on a sphere.

Computing and Visualizing Curl Fields

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

Examples of curls are computing for a particular family of vector fields. Visualization is produced with the VectorFieldPlot3D function from the VectorFieldPlots package.

LeavingKansas[x_, y_, z_, n_] := $\frac{z^{n}}{(x^{2} + y^{2})(x^{2} + y^{2} + z^{2})^{\frac{n}{2}}} \{y, -x, 0\}$	1	
(x ² + y ²) (x ² + y ² + z ²) ² Needs["VectorFieldPlots [*] "];	1	2-
$eq:vectorFieldPlot3D[LeavingKansas[x, y, z, 3], (x, -1, 1), (y, -1, 1), (z, -0.5, 0.5), VectorHeads \rightarrow True, ColorFunction \rightarrow (Hue[#10.66^] &), PlotPoints \rightarrow 21, ScaleFactor \rightarrow 0.5^]$	2	
VectorFieldPlot3D[LeavingKansas[x, y, z, 3], {x, 0, 1}, {y, 0, 1}, {z, 0.0, 0.5}, VectorHeads \rightarrow True, ColorFunction \rightarrow (Hue[#10.66] &, PlotPoints \rightarrow 15, ScaleFactor \rightarrow 0.5]	3	
Curl[LeavingKansas[x, y, z, 3], Cartesian[x, y, z]] // Simplify	4	4-
<pre>Glenda[x_, y_, z_, n_] := Simplify[Curl[LeavingKansas[x, y, z, n], Cartesian[x, y, z]]]</pre>	5	
VectorFieldPlot3D[Evaluate[Glenda[x, y, z, 1]], {x, -0.5, 0.5], {y, -0.5, 0.5}, {z, -0.25, 0.25}, VectorHeads → True, ColorFunction → (Hue[±10.66 ⁻] £), PlotPoints → 21]	6	7-
Demonstrate that the divergence of the curl vanishes for the a function independent of n	bove	
DivCurl = Div[Glenda[x, y, z, n], Cartesian[x, y, z]]	7	
Simplify[DivCurl]	8	

- 1: LeavingKansas is the family of vector fields indicated by 13-6.
- **3:** The function will be singular for n > 1 along the z axis. This singularity will be reported during the numerical evaluations for visualization. There are two visualizations—the second one is over a sub-region but is equivalent because of the cylindrical symmetry of *LeavingKansas*. The singularity in the second case could be removed easily by excluding points near z = 0, but MATHEMATICA® seems to handle this fine without doing so.
- 6: This demonstrates the assertion, that for Eq. 13-7, the curl has cylindrical symmetry for arbitrary n, and spherical symmetry for n = 1.
- 7-8: This demonstrates that the divergence of the curl of \vec{w} vanishes for any n; this is true for any differentiable vector field.

One important result that has physical implications is that the curl of a gradient is always zero: $f(\vec{x}) = f(x, y, z)$:

$$\nabla \times (\nabla f) = 0 \tag{13-8}$$

Therefore if some vector function $\vec{F}(x, y, z) = (F_x, F_y, F_z)$ can be derived from a scalar potential, $\nabla f = \vec{F}$, then the curl of \vec{F} must be zero. This is the property of an exact differential $df = (\nabla f)$. $(dx, dy, dz) = \vec{F} \cdot (dx, dy, dz)$. Maxwell's relations follow from equation 13-8:

$$0 = \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} = \frac{\partial \frac{\partial f}{\partial z}}{\partial y} - \frac{\partial \frac{\partial f}{\partial y}}{\partial z} = \frac{\partial^2 f}{\partial z \partial y} - \frac{\partial^2 f}{\partial y \partial z}$$

$$0 = \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} = \frac{\partial \frac{\partial f}{\partial x}}{\partial z} - \frac{\partial \frac{\partial f}{\partial z}}{\partial x} = \frac{\partial^2 f}{\partial x \partial z} - \frac{\partial^2 f}{\partial z \partial x}$$

$$0 = \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} = \frac{\partial \frac{\partial f}{\partial y}}{\partial x} - \frac{\partial \frac{\partial f}{\partial x}}{\partial y} = \frac{\partial^2 f}{\partial y \partial x} - \frac{\partial^2 f}{\partial x \partial y}$$
(13-9)

Another interpretation is that gradient fields are *curl-free*, *irrotational*, *or conservative*.

The notion of "conservative" means that, if a vector function can be derived as the gradient of a scalar potential, then integrals of the vector function over any path is zero for a closed curve—meaning that there is no change in "state;" energy is a common state function.

Here is a picture that helps visualize why the curl invokes names associated with spinning, rotation, etc.

Another important result is that divergence of any curl is also zero, for $\vec{v}(\vec{x}) = \vec{v}(x, y, z)$:

$$\nabla \cdot (\nabla \times \vec{v}) = 0 \tag{13-10}$$