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Oct. 16 2011

Lecture 13: Differential Operations on Vectors

Reading:
Kreyszig Sections: 9.8, 9.9 (pages410–413, 414–416)

Generalizing the Derivative

The number of different ideas, whether from physical science or other disciplines, that can be understood
with reference to the “meaning” of a derivative from the calculus of scalar functions, is very very large.
Our ideas about many topics, such as price elasticity, strain, stability, and optimization, are connected
to our understanding of a derivative.

In vector calculus, there are generalizations to the derivative from basic calculus that act on a scalar
and give another scalar back:

gradient (∇): A derivative on a scalar that gives a vector.

curl (∇×): A derivative on a vector that gives another vector.

divergence (∇·): A derivative on a vector that gives scalar.

Each of these have “meanings” that can be applied to a broad class of problems.
The gradient operation on f(~x) = f(x, y, z) = f(x1, x2, x3),

gradf = ∇f

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
=

(
∂

∂x
,

∂

∂y
,

∂

∂z

)
f (13-1)

has been discussed previously. The curl and divergence will be discussed below.
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Lecture 13 Mathematica R© Example 1
Scalar Potentials and their Gradient Fields

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

An example of a scalar potential, due three point charges in the plane, is visualized. Methods for computing a
gradient are presented.

Simple 2  D 1 ê r potential

1potential@x_ , y_, xo_ , yo_D :=
-1êSqrt@Hx - xoL^2 + Hy - yoL^2D
A field source located a distance 1 south of the origin

2HoleSouth@x_, y_D :=
potential@x, y, Cos@3 Piê2D, Sin@3 Piê2DD

3HoleNorthWest@x_ , y_D :=
potential@x, y, Cos@Piê6D, Sin@ Piê6DD

4HoleNorthEast@x_ , y_D :=
potential@x, y, Cos@ 5 Piê6D, Sin@5 Piê6DD
Function  that  returns  the  two  dimensional  (x,y)  gradient  field  of  any
function declared a function of two arguments:

5
gradfield@scalarfunction_D :=
8D@scalarfunction@x, yD, xD êê Simplify,
D@scalarfunction@x, yD, yD êê Simplify<

Generalizing the function to any arguments:

6
gradfield@scalarfunction_, x_ , y_D :=
8D@scalarfunction@x, yD, xD êê Simplify,
D@scalarfunction@x, yD, yD êê Simplify<

The sum of three potentials:

7
ThreeHolePotential@x_, y_D :=
HoleSouth@x, yD +
HoleNorthWest@x, yD + HoleNorthEast@x, yD

f(x,y) visualization of the scalar potential:

8Plot3D@ThreeHolePotential@x, yD,
8x, -2, 2<, 8y, -2, 2<D
Contour visualization of the three-hole potential

9
ContourPlot@ThreeHolePotential@x, yD,
8x, -2, 2<, 8y, -2, 2<, PlotPoints Ø 40,
ColorFunctionØ HHue@1 - Ò *0.66D &LD

1: This is the 2D 1/r-potential; here potential takes four arguments:
two for the location of the charge and two for the position where
the “test” charge “feels” the potential.

2-4: These are three fixed charge potentials, arranged at the vertices of
an equilateral triangle.

5: gradfield is an example of a function that takes a scalar function
of x and y and returns a vector with component derivatives: the
gradient vector of the scalar function of x and y.

6: However, the previous example only works for functions of x and y
explicitly. This expands gradfield to other Cartesian coordinates
other than x and y.

7: ThreeHolePotential is the superposition of the three potentials de-
fined in 2–4.

8: Plot3D is used to visualize the superposition of the potentials due
to the three charges.

9: ContourPlot is an alternative method to visualize this scalar field.
The option ColorFunction points to an example of a Pure Func-
tion—a method of making functions that do not operate with the
usual “square brackets.” Pure functions are indicated with the & at
the end; the # is a place-holder for the pure function’s argument.

Divergence and Its Interpretation

The divergence operates on a vector field that is a function of position, ~v(x, y, z) = ~v(~x) = (v1(~x), v2(~x), v3(~x)),
and returns a scalar that is a function of position. The scalar field is often called the divergence field
of ~v, or simply the divergence of ~v.

div ~v(~x) = ∇ · ~v =
∂v1
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+
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∂z
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)
· (v1, v2, v3) =
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,

∂

∂z

)
· ~v (13-2)

Think about what the divergence means.

http://pruffle.mit.edu/3.016-2011/Notebooks/L13/Lecture-13.nb
http://pruffle.mit.edu/3.016-2011/pdf/L13/Lecture-13-1-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L13/Lecture-13-1-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-13/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2011
http://pruffle.mit.edu/3.016-2011/html/Lecture-13/HTMLLinks/index_1.html
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Lecture 13 Mathematica R© Example 2
Visualizing the Gradient Field and its Divergence: The Laplacian

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

A visualization gradient field of the potential defined in the previous example is presented. The divergence of
the gradient ∇ · ∇φ = ∇2φ (i.e., the result of the Laplacian operator ∇2) is computed and visualized.

Gradient field of three-hole potential

1gradthreehole = gradfield@ThreeHolePotentialD

2

Needs@"VectorFieldPlots "̀D;
VectorFieldPlots`VectorFieldPlot@
gradthreehole, 8x, -2, 2<, 8y, -2, 2<,
ScaleFactor Ø 0.2`, ColorFunctionØ
HHue@1 - Ò1 0.66`D &L, PlotPoints Ø 21D

Function  that  takes  a  two-dimensional  vector  function  of  (x,y)  as  an
argument and returns its divergence

3divergence@8xcomp_ , ycomp_<D :=
Simplify@D@xcomp, xD + D@ycomp, yDD

4divgradthreehole = divergence@
gradfield@ThreeHolePotentialDD êê Simplify

Plotting the divergence of the gradient
I“ ÿ H“ f L is the ``Laplacian'' “ 2 f , sometimes indicated with symbol Df M

5Plot3D@divgradthreehole,
8x, -2, 2<, 8y, -2, 2<, PlotPoints -> 60D

1: We use our previously defined function gradfield to compute the
gradient of ThreeHolePotential everywhere in the plane.

2: PlotVectorField is in the VectorFieldPlots package. Because
a gradient produces a vector field from a scalar potential, arrows
are used at discrete points to visualize it.

3: The divergence operates on a vector and produces a scalar. Here,
we define a function, divergence , that operates on a 2D-vector
field of x and y and returns the sum of the component derivatives.
Therefore, taking the divergence of the gradient of a scalar field
returns a scalar field that is naturally associated with the original—
its physical interpretation is (minus) the rate at which gradient
vectors “diverge” from a point.

4–5: We compute the divergence of the gradient of the scalar potential.
This is used to visualize the Laplacian field of ThreeHolePotential
.

http://pruffle.mit.edu/3.016-2011/Notebooks/L13/Lecture-13.nb
http://pruffle.mit.edu/3.016-2011/pdf/L13/Lecture-13-2-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L13/Lecture-13-2-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-13/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2011
http://pruffle.mit.edu/3.016-2011/html/Lecture-13/HTMLLinks/index_2.html
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Coordinate Systems

The above definitions are for a Cartesian (x, y, z) system. Sometimes it is more convenient to work
in other (spherical, cylindrical, etc) coordinate systems. In other coordinate systems, the derivative
operations ∇, ∇·, and ∇× have different forms. These other forms can be derived, or looked up in a
mathematical handbook, or specified by using the Mathematica R© package “VectorAnalysis.”

Lecture 13 Mathematica R© Example 3
Coordinate Transformations

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

Examples of Coordinate Transformations obtained from the VectorAnalysis package are presented.

It is no surprise that many of these differential operations already exist in
Mathematica packages.

1<< "VectorAnalysis "̀

Converting between coordinate systems
The spherical coordinates expressed in terms of the cartesian x,y,z

2CoordinatesFromCartesian@
8x, y, z<, Spherical@r, theta, phiDD

: x2 + y2 + z2 ,

ArcCosB z

x2 + y2 + z2
F, ArcTan@x, yD>

The cartesian coordinates expressed in terms of the spherical r q f

3CoordinatesToCartesian@
8r, theta, phi<, Spherical@r, theta, phiDD

8r Cos@phiD Sin@thetaD,
r Sin@phiD Sin@thetaD, r Cos@thetaD<

The equation of a line  through the origin in spherical coodinates

4
Simplify@
CoordinatesFromCartesian@8a t, b t, c t<,
Spherical@r, theta, phiDD, t > 0D

1–2: CoordinatesFromCartesian from the VectorAnalysis pack-
age transforms three Cartesian coordinates, named in the first
argument-list, into one of many coordinate systems named by the
second argument.

3: CoordinatesToCartesian transforms one of many different coordi-
nate systems, named in the second argument, into the three Carte-
sian coordinates, named in the first argument (which is a list).

4: For example, this would be the equation of a line radiating from
the origin in spherical coordinates.

http://pruffle.mit.edu/3.016-2011/Notebooks/L13/Lecture-13.nb
http://pruffle.mit.edu/3.016-2011/pdf/L13/Lecture-13-3-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L13/Lecture-13-3-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-13/HTMLLinks/index_3.html
http://pruffle.mit.edu/3.016-2011
http://pruffle.mit.edu/3.016-2011/html/Lecture-13/HTMLLinks/index_3.html
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Lecture 13 Mathematica R© Example 4
Frivolous Example Using Geodesy, VectorAnalysis, and CityData.

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

We compute distances from Boston to Paris along different routes.

  (The  following  will  not  work  unless  you  have  an  active  internet
connection)

1CityData@"Boston", "Latitude"D

2CityData@"Marseille", "Latitude"D

3CityData@"Paris", "Longitude"D

4

SphericalCoordinatesofCity@
cityname_StringD := 8
6378.1 , CityData@cityname, "Latitude"D
Degree,
CityData@cityname, "Longitude"D Degree<

5SphericalCoordinatesofCity@"Boston"D

6
LatLong@city_StringD :=
8CityData@city, "Latitude"D,
CityData@city, "Longitude"D<

7
CartesianCoordinatesofCity@
cityname_StringD := CoordinatesToCartesian@
SphericalCoordinatesofCity@citynameD,
Spherical@r, theta, phiDD

8CartesianCoordinatesofCity@"Paris"D

9
MinimumTunnel@city1_String, city2_StringD :=
Norm@CartesianCoordinatesofCity@city1D -
CartesianCoordinatesofCity@city2DD

10MinimumTunnel@"Boston", "Paris"D

11Needs@"Geodesy`"D

12SphericalDistance@
LatLong@"Paris"D, LatLong@"Boston"DD

13SpheroidalDistance@
LatLong@"Paris"D, LatLong@"Boston"DD

1–3: CityData provides downloadable data. The data includes—among
many other things—the latitude and longitude of many cities in
the database. This show that Marseilles is north of Boston (which
I found to be surprising).

4–5: SphericalCoordinatesofCity takes the string-argument of a city
name and uses CityData to compute its spherical coordinates (i.e.,
(rearth, θ, φ) are same as (average earth radius = 6378.1 km, lati-
tude, longitude)). We use Degree which is numerically π/180.

6: LatLong takes the string-argument of a city name and uses
CityData to return a list-structure for its latitude and longitude.
We will use this function below.

7–8: CartesianCoordinatesofCity uses a coordinate transform and
SphericalCoordinatesofCity

9–10: If we imagine traveling through the earth instead of around it, we
would use the Norm of the difference of the Cartesian coordinates
of two cities.

11–12: Comparing the great circle route using SphericalDistance
(from the Geodesy package) to the Euclidean distance, is a re-
sult that surprises me. It would save only about 55 kilometers to
dig a tunnel to Paris—sigh.

13: SpheroidalDistance accounts for the earth’s extra waistline for
computing great-circle distances.

http://pruffle.mit.edu/3.016-2011/Notebooks/L13/Lecture-13.nb
http://pruffle.mit.edu/3.016-2011/pdf/L13/Lecture-13-4-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L13/Lecture-13-4-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-13/HTMLLinks/index_4.html
http://pruffle.mit.edu/3.016-2011
http://pruffle.mit.edu/3.016-2011/html/Lecture-13/HTMLLinks/index_4.html
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Lecture 13 Mathematica R© Example 5
Gradient and Divergence Operations in Other Coordinate Systems

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

A 1/rn-potential is used to demonstrate how to obtain gradients and divergences in other coordinate systems.

1
SimplePot@x_ , y_ , z_, n_D :=

1

Hx^2 + y^2 + z^2L
n

2

2gradsp = Grad@
SimplePot@x, y, z, 1D, Cartesian@x, y, zDD

:- x

Ix2 + y2 + z2M3ê2
,

-
y

Ix2 + y2 + z2M3ê2
, -

z

Ix2 + y2 + z2M3ê2
>

The above is equal to r
ØìJ »» rØ »»N

3

3SimplePot@r_, n_D :=
1

rn

4gradsphere =
Grad@SimplePot@r, 1D, Spherical@r, q, jDD

5Grad@SimplePot@r, 1D, Cylindrical@r, q, zDD

6Grad@SimplePot@r, 1D,
ProlateSpheroidal@r, q, jDD

7
GradSimplePot@x_, y_, z_, n_D :=
Evaluate@Grad@SimplePot@x, y, z, nD,
Cartesian@x, y, zDDD

8Div@GradSimplePot@x, y, z, nD,
Cartesian@x, y, zDD êê Simplify

9Div@GradSimplePot@x, y, z, 1D,
Cartesian@x, y, zDD êê Simplify

0

1: SimplePot is the simple 1/rn potential in Cartesian coordinates.
2: Grad is defined in the VectorAnalysis: in this form it takes a

scalar function and returns its gradient in the coordinate system
defined by the second argument.

3: An alternate form of SimplePot is defined in terms of a single coor-
dinate; if r is the spherical coordinate r2 = x2 + y2 + z2 (referring
back to a Cartesian (x, y, z)), then this is equivalent the function
in 1.

4: Here, the gradient of 1/r is obtained in spherical coordinates; it is
equivalent to the gradient in 2, but in spherical coordinates.

5: Here, the gradient of 1/r is obtained in cylindrical coordinates, but
it is not equivalent to 2 nor 4, because in cylindrical coordinates,
(r, θ, z), r2 = x2+y2, even though the form appears to be the same.

6: Here, the gradient of 1/r is obtained in prolate spheroidal coordi-
nates.

7: We define a function for the x–y–z gradient of the 1/rn scalar po-
tential. Evaluate is used in the function definition, so that Grad
is not called each time the function is used.

8: The Laplacian (∇2(1/rn)) has a particularly simple form, n(n −
1)/r2+n

9: By inspection of ∇2(1/rn) or by direct calculation, it follows that
∇2(1/r) vanishes identically.

Curl and Its Interpretation

The curl is the vector-valued derivative of a vector function. As illustrated below, its operation can be
geometrically interpreted as the rotation of a field about a point.

For a vector-valued function of (x, y, z):

~v(x, y, z) = ~v(~x) = (v1(~x), v2(~x), v3(~x)) = v1(x, y, z)̂i + v2(x, y, z)ĵ + v3(x, y, z)k̂ (13-3)

the curl derivative operation is another vector defined by:

curl ~v = ∇× ~v =
((

∂v3

∂y
− ∂v2

∂z

)
,

(
∂v1

∂z
− ∂v3

∂x

)
,

(
∂v2

∂x
− ∂v1

∂y

))
(13-4)

http://pruffle.mit.edu/3.016-2011/Notebooks/L13/Lecture-13.nb
http://pruffle.mit.edu/3.016-2011/pdf/L13/Lecture-13-5-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L13/Lecture-13-5-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-13/HTMLLinks/index_5.html
http://pruffle.mit.edu/3.016-2011
http://pruffle.mit.edu/3.016-2011/html/Lecture-13/HTMLLinks/index_5.html
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or with the memory-device:

curl ~v = ∇× ~v = det

 î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

v1 v2 v3

 (13-5)

For an example, consider the vector function that is often used in Brakke’s Surface Evolver program:

~w =
zn

(x2 + y2)(x2 + y2 + z2)
n
2

(yî− xĵ) (13-6)

This will be shown below, in a Mathematica R© example, to have the property:

∇× ~w =
nzn−1

(x2 + y2 + z2)1+
n
2

(xî + yĵ + zk̂) (13-7)

which is spherically symmetric for n = 1 and convenient for turning surface integrals over a portion of
a sphere, into a path-integral, over a curve, on a sphere.
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Lecture 13 Mathematica R© Example 6
Computing and Visualizing Curl Fields

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

Examples of curls are computing for a particular family of vector fields. Visualization is produced with the
VectorFieldPlot3D function from the VectorFieldPlots package.

1
LeavingKansas@x_, y_, z_ , n_D :=

zn

Hx^2 + y^2L Hx^2 + y^2 + z^2L
n

2

8y, -x, 0<

2

Needs@"VectorFieldPlots "̀D;

VectorFieldPlot3D@LeavingKansas@x, y, z, 3D,
8x, -1, 1<, 8y, -1, 1<,
8z, -0.5, 0.5<, VectorHeads Ø True,
ColorFunctionØ HHue@Ò1 0.66`D &L,
PlotPoints Ø 21, ScaleFactor Ø 0.5`D

3

VectorFieldPlot3D@
LeavingKansas@x, y, z, 3D, 8x, 0, 1<,
8y, 0, 1<, 8z, 0.0, 0.5<, VectorHeads Ø True,
ColorFunctionØ HHue@Ò1 0.66D &L,
PlotPoints Ø 15, ScaleFactor Ø 0.5D

4Curl@LeavingKansas@x, y, z, 3D,
Cartesian@x, y, zDD êê Simplify

5
Glenda@x_, y_, z_, n_D :=
Simplify@Curl@LeavingKansas@x, y, z, nD,
Cartesian@x, y, zDDD

6

VectorFieldPlot3D@
Evaluate@Glenda@x, y, z, 1DD,
8x, -0.5, 0.5<, 8y, -0.5, 0.5<,
8z, -0.25, 0.25<, VectorHeads Ø True,
ColorFunctionØ HHue@Ò1 0.66`D &L,
PlotPoints Ø 21D
Demonstrate  that  the  divergence  of  the  curl  vanishes  for  the  above
function independent of n

7DivCurl =
Div@Glenda@x, y, z, nD, Cartesian@x, y, zDD

8Simplify@DivCurlD

1: LeavingKansas is the family of vector fields indicated by 13-6.
2–3: The function will be singular for n > 1 along the z − axis. This

singularity will be reported during the numerical evaluations for
visualization. There are two visualizations—the second one is over
a sub-region but is equivalent because of the cylindrical symmetry
of LeavingKansas . The singularity in the second case could be re-
moved easily by excluding points near z = 0, but Mathematica R©
seems to handle this fine without doing so.

4–6: This demonstrates the assertion, that for Eq. 13-7, the curl has
cylindrical symmetry for arbitrary n, and spherical symmetry for
n = 1.

7–8: This demonstrates that the divergence of the curl of ~w vanishes for
any n; this is true for any differentiable vector field.

One important result that has physical implications is that the curl of a gradient is always zero:
f(~x) = f(x, y, z):

∇× (∇f) = 0 (13-8)

Therefore if some vector function ~F (x, y, z) = (Fx, Fy, Fz) can be derived from a scalar potential,
∇f = ~F , then the curl of ~F must be zero. This is the property of an exact differential df = (∇f) ·

http://pruffle.mit.edu/3.016-2011/Notebooks/L13/Lecture-13.nb
http://pruffle.mit.edu/3.016-2011/pdf/L13/Lecture-13-6-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L13/Lecture-13-6-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-13/HTMLLinks/index_6.html
http://pruffle.mit.edu/3.016-2011
http://pruffle.mit.edu/3.016-2011/html/Lecture-13/HTMLLinks/index_6.html
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(dx, dy, dz) = ~F · (dx, dy, dz). Maxwell’s relations follow from equation 13-8:

0 =
∂Fz

∂y
− ∂Fy

∂z
=

∂ ∂f
∂z

∂y
−

∂ ∂f
∂y

∂z
=

∂2f

∂z∂y
− ∂2f

∂y∂z

0 =
∂Fx

∂z
− ∂Fz

∂x
=

∂ ∂f
∂x

∂z
−

∂ ∂f
∂z

∂x
=

∂2f

∂x∂z
− ∂2f

∂z∂x

0 =
∂Fy

∂x
− ∂Fx

∂y
=

∂ ∂f
∂y

∂x
−

∂ ∂f
∂x

∂y
=

∂2f

∂y∂x
− ∂2f

∂x∂y

(13-9)

Another interpretation is that gradient fields are curl-free, irrotational, or conservative.
The notion of “conservative” means that, if a vector function can be derived as the gradient of a

scalar potential, then integrals of the vector function over any path is zero for a closed curve—meaning
that there is no change in “state;” energy is a common state function.

Here is a picture that helps visualize why the curl invokes names associated with spinning, rotation,
etc.

�i
�k

�j

∂vy

∂x >0∂vx
∂y <0

Figure 13-11: Consider a small paddle wheel placed in a set of stream lines defined by a vector
field of position. If the vy component is an increasing function of x, this tends to make the

paddle wheel want to spin (positive, counter-clockwise) about the k̂-axis. If the vx component
is a decreasing function of y, this tends to make the paddle wheel want to spin (positive,
counter-clockwise) about the k̂-axis. The net impulse to spin around the k̂-axis is the sum of
the two.
Note that this is independent of the reference frame because a constant velocity ~v = const.
and the local acceleration ~v = ∇f can be subtracted because of Eq. 13-10.

Another important result is that divergence of any curl is also zero, for ~v(~x) = ~v(x, y, z):

∇ · (∇× ~v) = 0 (13-10)
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