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Oct. 16 2011

Lecture 13: Differential Operations on Vectors

Reading:
Kreyszig Sections: 9.8, 9.9 (pages410-413, 414-416)

Generalizing the Derivative

The number of different ideas, whether from physical science or other disciplines, that can be understood
with reference to the “meaning” of a derivative from the calculus of scalar functions, is very very large.
Our ideas about many topics, such as price elasticity, strain, stability, and optimization, are connected
to our understanding of a derivative.

In vector calculus, there are generalizations to the derivative from basic calculus that act on a scalar
and give another scalar back:

gradient (V): A derivative on a scalar that gives a vector.
curl (Vx): A derivative on a vector that gives another vector.
divergence (V-): A derivative on a vector that gives scalar.

Each of these have “meanings” that can be applied to a broad class of problems.
The gradient operation on f(Z) = f(z,y, z2) = f(z1, 22, 23),

(20O (0 0
gra‘df - vf (83:’8@/’82) - <8CE’ 8y7 82) f (13_1)

has been discussed previously. The curl and divergence will be discussed below.
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Lecture 13 MATHEMATICA® Example 1
Scalar Potentials and their Gradient Fields

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

An example of a scalar potential, due three point charges in the plane, is visualized. Methods for computing a
gradient are presented.

Simple 2 D 1/ r potential

potential[x_, y_, Xo_, yo_] := . . . .

-1/Sqre[(x-x0) "2 + (y-yo) “2] |1 1: This is the 2D 1/r-potential; here potential takes four arguments:
A feld sourco located a dstance 1 southof the orgh two for the location of the charge and two for the position where
HoleSouth[x_, y_] := .

potential(x, y, Cos(3Pi/2], Sin[3Pi/2]] |2 the “test” charge “feels” the potential.
HoleNorthWest[x_, y_] := . . .
ey s e p e EAEAJ |3 2-4: These are three fixed charge potentials, arranged at the vertices of
HoleNorthBastlx_, v1 i~ an equilateral triangle.

potential[x, y, Cos[5Pi/6], Sin[5Pi/6]] 4 ! &

Funciion that retums the two dimensional (xy) gradiont fid orany 52 gradfield is an example of a function that takes a scalar function
function declared a function of two arguments: A . .
gradtield[scalarfunction ] i= of x and y and returns a vector with component derivatives: the
{D[scalarfunction[x, y], x] // Simplify, 5 . .

Discalarfunction(x, v], y] // Simplify) gradient vector of the scalar function of z and y.

Generalizing the function to any arguments: . .

. ‘ 6: However, the previous example only works for functions of x and y

gradfield[scalarfunction_, x_, y_] :=

{D[scalarfunction[x, y], x] // Simplify, 6 1c1 1 i 1
e ionlx ]y 3] /) S explicitly. This expands gradfield to other Cartesian coordinates
The sum of hree potentials: other than x and y.
ThreeHolePotential[x_, 1= . . .. .
e o ER 7 T: ThreeHolePotential is the superposition of the three potentials de-
HoleNorthWest[x, y] + HoleNorthEast[x, y] .

f(x,y) visualization of the scalar potential: ﬁHEd m 274 °
Plot3D[ThreeHolePotential[x, y1, 8 8: Plot3D is used to visualize the superposition of the potentials due
{x, -2, 2}, {y, -2, 2}]

Contour visualization of the three-hole potential tO the three ChaI‘geS.
S T Y g 9: ContourPlot is an alternative method to visualize this scalar field.

{x, -2, 2}, {y, -2, 2}, PlotPoints - 40, 9
ColorFunction- (Hue[l-#x0.66] &)]

The option ColorFunction points to an example of a Pure Func-
tion—a method of making functions that do not operate with the
usual “square brackets.” Pure functions are indicated with the & at
the end; the # is a place-holder for the pure function’s argument.

Divergence and Its Interpretation

The divergence operates on a vector field that is a function of position, ¥(z, y, z) = 9(Z) = (v1(¥), v2(¥), v3(F)),
and returns a scalar that is a function of position. The scalar field is often called the divergence field
of ¥, or simply the divergence of .

8?)1

802
o

vy Ovs _ o o 0
dy

du (90 0\ o (00 0y
0z \0x’ 9y’ 0z V1, v2,93) = ox’ Oy’ 0z v

Think about what the divergence means.

div #(Z) =V -7 = (13-2)
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Lecture 13 MATHEMATICA® Example 2
Visualizing the Gradient Field and its Divergence: The Laplacian

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

A visualization gradient field of the potential defined in the previous example is presented. The divergence of
the gradient V - V¢ = V24 (i.e., the result of the Laplacian operator V2) is computed and visualized.

Gradient field of three-hole potential

gradthreehole = gradfield[ThreeHolePotential] |1

1: We use our previously defined function gradfield to compute the

Needs["VectorFieldPlots "];

VectorFieldplots VectorFieldplot] gradient of ThreeHolePotential everywhere in the plane.
gradthreehole, {x, -2, 2}, {y, -2, 2}, 2

ScaleFactor - 0.2, ColorFunction -» . 3 1Q 1 5

T o e s e 2: PlotVectorField is in the VectorFieldPlots package. Because

a gradient produces a vector field from a scalar potential, arrows
are used at discrete points to visualize it.

3: The divergence operates on a vector and produces a scalar. Here,
we define a function, divergence , that operates on a 2D-vector
field of x and y and returns the sum of the component derivatives.

g 2 Therefore, taking the divergence of the gradient of a scalar field
Funcion that takes a two-dimensiona vector function of (x) s an returns a scalar field that is naturally associated with the original—
argument and returns its divergence . B . . . . . .
divergencel (xcomp_, yoomp_}] 1= | 3 its physical interpretation is (minus) the rate at which gradient

Simplify[D[xcomp, x] + D[ycomp, y]]

vectors “diverge” from a point.

divgradthreehole = divergence[ 4
gradfield[ThreeHolePotential]] // Simplify 1-5.
Aq—
:

: We compute the divergence of the gradient of the scalar potential.
Plotting the divergence of the gradient . . . . . .
(V (7 )i the “Laplacian” V° f, sometimes indicated with symbol Af) This is used to visualize the Laplacian field of ThreeHolePotential

Plot3D[divgradthreehole, 5
{x, -2, 2}, {y, -2, 2}, PlotPoints -> 60]
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The above definitions are for a Cartesian (x,y, z) system. Sometimes it is more convenient to work
in other (spherical, cylindrical, etc) coordinate systems. In other coordinate systems, the derivative
operations V, V-, and Vx have different forms. These other forms can be derived, or looked up in a
mathematical handbook, or specified by using the MATHEMATICA® package “VectorAnalysis.”

Coordinate Transformations

Lecture 13 MATHEMATICA® Example 3

Download notebooks, pdf(color), pdf(bw), or html from http://pruffie.mit.edu/3.016-2011.

Examples of Coordinate Transformations obtained from the VectorAnalysis package are presented.

It is no surprise that many of these differential operations already exist in

Mathematica packages.

<< "VectorAnalysis™"

Converting between coordinate systems

The spherical coordinates expressed in terms of the cartesian x,y,z

CoordinatesFromCartesian[
{x, y, 2z}, Spherical[r, theta, phi]]

Notrgea,

z
ArcCos [

hY X2+y2+22

The cartesian coordinates expressed in terms of the spherical r 6 ¢

] , ArcTan|x, y]}

CoordinatesToCartesian[
{r, theta, phi}, Spherical[r, theta, phi]]

{r Cos[phi] Sin[theta],
rSin[phi] Sin[theta], r Cos[theta]}

The equation of a line through the origin in spherical coodinates

Simplify[
CoordinatesFromCartesian[{at, bt, ct},
Spherical[r, theta, phi]], t > 0]

1-2:

CoordinatesFromCartesian from the VectorAnalysis pack-
age transforms three Cartesian coordinates, named in the first
argument-list, into one of many coordinate systems named by the
second argument.

CoordinatesToCartesian transforms one of many different coordi-
nate systems, named in the second argument, into the three Carte-
sian coordinates, named in the first argument (which is a list).
For example, this would be the equation of a line radiating from
the origin in spherical coordinates.
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Lecture 13 MATHEMATICA® Example 4
Frivolous Example Using Geodesy, VectorAnalysis, and CityData.

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

We compute distances from Boston to Paris along different routes.

(The following will not work unless you have an active internet

connection)
CltyparalTRoston’, Taritnde] |7 1-3: CityData provides downloadable data. The data includes—among
CltypatalTMarseille’, Taritudel] |2 many other things—the latitude and longitude of many cities in
Cityparallparis’, Tongitnde] |3 the database. This show that Marseilles is north of Boston (which
SP:;:;:;:‘_’;:S:;; o et o I found to be surprising).

o ‘45 SphericalCoordinatesofCity takes the string-argument of a city

CityData[cityname, "Longitude"] Degree}

name and uses CityData to compute its spherical coordinates (i.e.,
(Tearth, 0, @) are same as (average earth radius = 6378.1 km, lati-
6 tude, longitude)). We use Degree which is numerically 7/180.

SphericalCoordinatesofCity["Boston"] |5

LatLong[city_String] :=
{CityData[city, "Latitude"],
CityData[city, "Longitude"]}

6: LatLong takes the string-argument of a city name and uses

CartesianCoordinatesofCity[

cityname_String] := CoordinatesToCartesian| |, CityData to return a list-structure for its latitude and longitude.
SphericalCoordinatesofCity[cityname], . . .
Spherical[x, theta, phil] We will use this function below.
CartesianC dinate fCity["Paris" . . . .
prteslanCoordinatesoreltylParte ) |8 7-8: CartesianCoordinatesofCity  uses a coordinate transform and

MinimumTunnel[cityl_String, city2_String] := . . .
Norm[CartesianCoordinatesofCity[cityl] - 9 Sph@T'ZCGZCOOTdZTLatESOfCZty

CartesianCoordinatesofCity[city2]]

9-10: If we imagine traveling through the earth instead of around it, we

LatLong["Paris"], LatLong["Boston"]]

MinimumTunnel["Boston", "Paris"] |10

i would use the Norm of the difference of the Cartesian coordinates
vy "] | 11

SphericalDistance[ |12 Of two citles.

11-12: Comparing the great circle route using SphericalDistance
(from the Geodesy package) to the Euclidean distance, is a re-
sult that surprises me. It would save only about 55 kilometers to
dig a tunnel to Paris—sigh.

SpheroidalDistance[ 13
LatLong["Paris"], LatLong["Boston"]]

13: SpheroidalDistance accounts for the earth’s extra waistline for
computing great-circle distances.
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Lecture 13 MATHEMATICA® Example 5

Gradient and Divergence Operations in Other Coordinate Systems

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

A 1/r™-potential is used to demonstrate how to obtain gradients and divergences in other coordinate systems.

SimplePot[x_, y_, z_, n_] :=
1

(X°2 + y*2 + 2°2)7

gradsp = Grad|[

SimplePot is the simple 1/r™ potential in Cartesian coordinates.

Grad is defined in the VectorAnalysis: in this form it takes a

; A 2
SimplePot[x, y, z, 1], Cartesian[x, y, z]] | . . . . .
scalar function and returns its gradient in the coordinate system
o 2 = defined by the second argument.
Xz + y2 + ZZ !
v z An alternate form of SimplePot is defined in terms of a single coor-
f : }
(eyteat)?® (2 eyiea?)? dinate; if r is the spherical coordinate r? = 22 + 3% + 22 (referring
T back to a Cartesian (x,y, z)), then this is equivalent the function
in 1.
SimplePot[r_, n_] := i,. |3 . . . . 3 . L.
: 4: Here, the gradient of 1/r is obtained in spherical coordinates; it is
gradsphere = . . . . . .
Grad[SimplePot[r, 1], Sphericallr, 8, o]] |4 equivalent to the gradient in 2, but in spherical coordinates.
CradlsimplePor(x, 1), ertimaricaris &, =] |5 5: Here, the gradient of 1/r is obtained in cylindrical coordinates, but
G A, o 6 it is not equivalent to 2 nor 4, because in cylindrical coordinates
ProlateSpheroidal[r, 6, ¢]] b) b)
Gradsimplerotix_, ¥, z_, o] it (r,0,z2), 2 = 22 +y?, even though the form appears to be the same.
Evaluate[Grad[SimplePot[x, y, z, n], 7
Cartesian(x, ¥, 2111 6: Here, the gradient of 1/r is obtained in prolate spheroidal coordi-
Div[GradSimplePot[x, y, z, n],
Cartesian[x, y, z]] // Simplify |8 nates'
pivGradsimplepot(x, v, z, 11, | 9 7: We define a function for the x—y—z gradient of the 1/r™ scalar po-

Cartesian([x, y, z]] // Simplify

tential. Evaluate is used in the function definition, so that Grad

’ is not called each time the function is used.

8: The Laplacian (VZ(1/r™)) has a particularly simple form, n(n —
1)jr2én

9: By inspection of V2(1/r™) or by direct calculation, it follows that
V2(1/r) vanishes identically.

Curl and Its Interpretation

The curl is the vector-valued derivative of a vector function. As illustrated below, its operation can be
geometrically interpreted as the rotation of a field about a point.
For a vector-valued function of (z,y, 2):

(x,y,2) = 6(&) = (01(Z), v2(F), v3(7)) = v1(2,y, 2)i + va(w,y, 2)] + va(@, y, 2)k (13-3)
the curl derivative operation is another vector defined by:
N 5 (97)3 8v2 (97)1 avg 8@2 am
1 pu— pu— _— e — - — T 1 _4
w5 =vx0= (- 52) (50 %) (5 %)) (13-4
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or with the memory-device:

i gk
=~ = 0 o) 0
curl =V xd=det | 57z 7 & (13-5)
v1 V2 U3

For an example, consider the vector function that is often used in Brakke’s Surface Evolver program:
n
(13-6)

z 2 ~
(yi — xj)

W= -
(% +y?) (2% +y* + 22)2

This will be shown below, in a MATHEMATICA® example, to have the property:
nzn—l N . .
V X W= w(zi +yj + zk 13-7

which is spherically symmetric for n = 1 and convenient for turning surface integrals over a portion of

a sphere, into a path-integral, over a curve, on a sphere.
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Lecture 13 MATHEMATICA® Example 6

Computing and Visualizing Curl Fields

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

Examples of curls are computing for a particular family of vector fields. Visualization is produced with the
VectorFieldPlot3D function from the VectorFieldPlots package.

LeavingKansas[x_, y_, z_, n_] :=

20

— {y, -x, 0}
(x%2 + y°2) (x"2 +y"2 +2°2)2

Needs [ "VectorFieldPlots™"];

VectorFieldPlot3D[LeavingKansas[x, y, z, 3],
(x, -1, 1}, {y, -1, 1},
{z, -0.5, 0.5}, VectorHeads - True,
ColorFunction - (Hue[#10.66"] &),
PlotPoints » 21, ScaleFactor » 0.5 ]

VectorFieldPlot3D[
LeavingKansas[x, y, z, 3], {x, 0, 1},
{y, 0, 1}, {z, 0.0, 0.5}, VectorHeads - True,
ColorFunction - (Hue[#10.66] &),
PlotPoints - 15, ScaleFactor - 0.5]

Curl[LeavingKansas[x, y, z, 3],
Cartesian([x, y, z]] // Simplify

Glenda[x_, y_, z_, n_] :=
Simplify[Curl[LeavingKansas[x, y, z, n],
Cartesian[x, y, z]1]

VectorFieldPlot3D[
Evaluate[Glenda[x, y, z, 1]],
{x, -0.5, 0.5}, {y, -0.5, 0.5},
{z, -0.25, 0.25}, VectorHeads - True,
ColorFunction - (Hue[#10.66] &),
PlotPoints - 21]

Demonstrate that the divergence of the curl vanishes for the above

function independent of n

DivCurl =
Div[Glenda[x, y, z, n], Cartesian[x, y, z]]

|7

Simplify[DivCurl]

|8

T—8:

LeavingKansas is the family of vector fields indicated by 13-6.

The function will be singular for n > 1 along the z — azis. This
singularity will be reported during the numerical evaluations for
visualization. There are two visualizations—the second one is over
a sub-region but is equivalent because of the cylindrical symmetry
of LeavingKansas . The singularity in the second case could be re-
moved easily by excluding points near z = 0, but MATHEMATICA®)
seems to handle this fine without doing so.

This demonstrates the assertion, that for Eq. 13-7, the curl has
cylindrical symmetry for arbitrary n, and spherical symmetry for
n = 1.

This demonstrates that the divergence of the curl of w vanishes for
any n; this is true for any differentiable vector field.

One important result that has physical implications is that the curl of a gradient is always zero:

f(f) = f(m,y,z):

V x (Vf) =0 (13-8)

Therefore if some vector function ﬁ(w,y,z) = (Fy, Fy, F,) can be derived from a scalar potential,
Vf= ﬁ, then the curl of F must be zero. This is the property of an ezact differential df = (Vf) -
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(dz,dy,dz) = F. (dz,dy,dz). Maxwell’s relations follow from equation 13-8:

of
Ozmg_a@:fgg_a@::yf__yf
dy 0z oy 0z 020y  Oyoz

Ozmg_agzjgg_a%::a%__a%
0z ox 0z ox O0x0z 020z

2]
Ozmg_amz:%i_8%::8%<_a%
Oox dy ox oy 0ydxr  O0x0y

Another interpretation is that gradient fields are curl-free, irrotational, or conservative.

165

(13-9)

The notion of “conservative” means that, if a vector function can be derived as the gradient of a
scalar potential, then integrals of the vector function over any path is zero for a closed curve—meaning

that there is no change in “state;” energy is a common state function.

Here is a picture that helps visualize why the curl invokes names associated with spinning, rotation,

etc.

the two.

and the local acceleration ¥ = V f can be subtracted because of Eq. 13-10.

Figure 13-11: Consider a small paddle wheel placed in a set of stream lines defined by a vector
field of position. If the v, component is an increasing function of x, this tends to make the
paddle wheel want to spin (positive, counter-clockwise) about the f-axis. If the vy component
is a decreasing function of y, this tends to make the paddle wheel want to spin (positive,
counter-clockwise) about the k-axis. The net impulse to spin around the k-axis is the sum of

Note that this is independent of the reference frame because a constant velocity ¥ = const.

Another important result is that divergence of any curl is also zero, for ¥(Z) = v(x,y, 2):

V- (Vx¥) =0

(13-10)



	Lecture 13: Differential Operations on Vectors
	Lecture 13: Generalizing the Derivative
	Example 13-1:  Scalar Potentials and their Gradient Fields 

	Lecture 13: Divergence and Its Interpretation
	Example 13-2: Visualizing the Gradient Field and its Divergence: The Laplacian
	Coordinate Systems
	Example 13-3:  Coordinate Transformations 
	Example 13-4:  Frivolous Example Using   Geodesy,   VectorAnalysis, and   CityData. 
	Example 13-5: Gradient and Divergence Operations in Other Coordinate Systems

	Lecture 13: Curl and Its Interpretation
	Example 13-6: Computing and Visualizing Curl Fields



