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Lecture 9: Eigensystems of Matrix Equations

Reading:
Kreyszig Sections: 8.1, 8.2, 8.3 (pages334–338, 340–343, 345–348)

Eigenvalues and Eigenvectors of a Matrix

The conditions for which general linear equation
A~x = ~b (9-1)

has solutions for a given matrix A, fixed vector ~b, and unknown vector ~x have been determined.

The operation of a matrix on a vector—whether as a physical process, or as a geometric transformation, or just a general
linear equation—has also been discussed.

Eigenvalues and eigenvectors are among the most important mathematical concepts with a very large number of applications
in physics and engineering.

An eigenvalue problem (associated with a matrix A) relates the operation of a matrix multiplication on a particular vector ~x
to its multiplication by a particular scalar λ.

A~x = λ~x (9-2)

This equation indicates that the matrix operation can be replaced—or is equivalent to—a stretching or contraction of the
vector: “A has some vector ~x for which its multiplication is simply a scalar multiplication operation by λ.” ~x is an eigenvector
of A and λ is ~x’s associated eigenvalue.

http://pruffle.mit.edu/3.016-2006/
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The condition that Eq. 9-2 has solutions is that its associated homogeneous equation:

(A− λI)~x = ~0 (9-3)

has a zero determinant:
det(A− λI) = 0 (9-4)

Eq. 9-4 is a polynomial equation in λ (the power of the polynomial is the same as the size of the square matrix).

The eigenvalue-eigenvector system in Eq. 9-2 is solved by the following process:

1. Solve the characteristic equation (Eq. 9-4) for each of its roots λi.

2. Each root λi is used as an eigenvalue in Eq. 9-2 which is solved for its associated eigenvector ~xi

http://pruffle.mit.edu/3.016-2006/
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Lecture 09 Mathematica R© Example 1

Calculating Matrix Eigenvalues and Eigenvectors
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

The symbolic computation of eigenvalues and eigenvectors is demonstrated for simple 2× 2 matrices. This example is illustrative—more
interesting uses would be for larger matrices. In this example, a “cheat” is employed so that a matrix with “interesting” eigenvalues and
eigenvectors is used as computation fodder.

1mymatrix = 882 + Pi, -2 + Pi<, 8-2 + Pi, 2 + Pi<<;
mymatrix êê MatrixForm

K 2 + p -2 + p
-2 + p 2 + p

O

Solve the characteristic equation for the two eigenvalues:

2Solve@
Det@mymatrix - l IdentityMatrix@2DD ã 0, lD
Compute the eigenvectors:

3Eigenvectors@mymatrixD
48evec1, evec2< = Eigenvectors@mymatrixD

Eigensystem will solve for eigenvalues and corresponding eigenvectors 
in one step:

5Eigensystem@mymatrixD

882 p, 4<, 881, 1<, 8-1, 1<<<
Note the output format above: the first item in the list is a list of the two 
eigenvalues; the second item in the list is a list of the two corresponding 
eigenvectors.  Thus,  the eigenvector corresponding  2 p is (1,1).

1: A “typical” 2 × 2 matrix mymatrix is defined for the calculations that follow. We will calculate its
eigenvalues directly and with a built-in function.

2: Its eigenvalues can be obtained by by using Solve for the characteristic equation Eq. 9-4 in terms
of λ.

3: And, its eigenvectors could be obtained by putting each eigenvalue back into Eq. 9-2 and then solving
~x for each unique λ. However, this tedious procedure can also be performed with Eigenvectors

4: Here, a matrix of eigenvectors is defined with named rows evec1 and evec2.

5: Eigensystem generates the same results as Eigenvectors and Eigenvalues in one step.

http://pruffle.mit.edu/3.016-2006/
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http://pruffle.mit.edu/3.016-2011/html/Lecture-09/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2011/html/Lecture-09/HTMLLinks/index_1.html


3.016 Home

JJ J I II

Full Screen

Close

Quit

c©W. Craig Carter

The matrix operation on a vector that returns a vector that is in the same direction is an eigensystem. A physical system
that is associated can be interpreted in many different ways:

geometrically The vectors ~x in Eq. 9-2 are the ones that are unchanged by the linear transformation on the vector.

iteratively The vector ~x that is processed (either forward in time or iteratively) by A increases (or decreases if λ < 1) along
its direction.

In fact, the eigensystem can be (and will be many times when they are) generalized to other interpretations and generalized
beyond linear matrix systems.

Here are some examples where eigenvalues arise. These examples generalize beyond matrix eigenvalues.

• As an analogy that will become real later, consider the “harmonic oscillator” equation for a mass, m, vibrating with a
spring-force, k, this is simply Newton’s equation:

m
d2x

dt2
= kx (9-5)

If we treat the second derivative as some linear operator, Lspring on the position x, then this looks like an eigenvalue
equation:

Lspringx =
k

m
x (9-6)

• Letting the positions xi form a vector ~x of a bunch of atoms of mass mi, the harmonic oscillator can be generalized to
a bunch of atoms that are interacting as if they were attached to each other by springs:

mi
d2xi

dt2
=

∑
i’s near neighbors j

kij(xi − xj) (9-7)

http://pruffle.mit.edu/3.016-2006/
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For each position i, the j-terms can be added to each side, leaving and operator that looks like:

Llattice =



m1
d2

dt2
−k12 0 −k14 . . . 0

−k21 m2
d2

dt2
−k23 0 . . . 0

...
. . .

...
... mi

d2

dt2
...

. . .
mN−1

d2

dt2
−kN−1 N

0 0 . . . −kN N−1 mN
d2

dt2


(9-8)

The operator Llattice has diagonal entries that have the spring (second-derivative) operator and one off-diagonal entry
for each other atom that interacts with the atom associated with row i. The system of atoms can be written as:

k−1Llattice~x = ~x (9-9)

which is another eigenvalue equation and solutions are constrained to have unit eigenvalues—these are the ‘normal
modes.’

• To make the above example more concrete, consider a system of three masses connected by springs.

http://pruffle.mit.edu/3.016-2006/
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Figure 9-5: Four masses connected by three springs

The equations of motion become:
m1

d2

dt2
−k12 −k13 −k14

−k12 m2
d2

dt2
0 0

−k13 0 m2
d2

dt2
0

−k14 0 0 m2
d2

dt2




x1

x2

x3

x4

 =


k12 + k13 + k14 0 0 0

0 k12 0 0
0 0 k13 0
0 0 0 k14




x1

x2

x3

x4

 (9-10)

which can be written as
L4×4~x = k~x (9-11)

http://pruffle.mit.edu/3.016-2006/
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or
k−1L4×4~x = ~x (9-12)

As will be discussed later, this system of equations can be “diagonalized” so that it becomes four independent equations.
Diagonalization depends on finding the eigensystem for the operator.

• The one-dimensional Shrödinger wave equation is:

− ~
2m

d2ψ(x)
dx2

+ U(x)ψ(x) = Eψ(x) (9-13)

where the second derivative represents the kinetic energy and U(x) is the spatial-dependent potential energy. The
“Hamiltonian Operator” H = − ~

2m
d2

dx2 +U(x), operates on the wave-function ψ(x) and returns the wave-function’s total
energy multiplied by the wave-vector;

Hψ(x) = Eψ(x) (9-14)

This is another important eigenvalue equation (and concept!)

Symmetric, Skew-Symmetric, Orthogonal Matrices

Three types of matrices occur repeatedly in physical models and applications. They can be placed into three categories
according to the conditions that are associated with their eigenvalues:

All real eigenvalues Symmetric matrices—those that have a ”mirror-plane” along the northwest–southeast diagonal (A =
AT )—must have all real eigenvalues.

Hermitian matrices—the complex analogs of symmetric matrices—in which the reflection across the diagonal is combined
with a complex conjugate operation (aij = āji), must also have all real eigenvalues.

All imaginary eigenvalues Skew-symmetric (diagonal mirror symmetry combined with a minus) matrices (−A = AT )
must have all complex eigenvalues.

Skew-Hermitian matrices—-the complex analogs of skew-symmetric matrices (aij = −āji)—have all imaginary eigen-
values.

http://pruffle.mit.edu/3.016-2006/
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Unitary Matrices: unit determinant Real matrices that satisfy AT = A−1 have the property that product of all the
eigenvalues is ±1. These are called orthogonal matrices and they have orthonormal rows. Their determinants are also
±1.

This is generalized by complex matrices that satisfy ĀT = A−1. These are called unitary matrices and their (complex)
determinants have magnitude 1. Orthogonal matrices, A, have the important physical property that they preserve the
inner product: ~x · ~y = (A~x) · (A~y). When the orthogonal matrix is a rotation, the interpretation is that the vectors
maintain their relationship to each other if they are both rotated.

http://pruffle.mit.edu/3.016-2006/
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Imaginary axis: (0, i)

Real Axis (1, 0)

|λ|=1

Unitary
Hermitian

Skew−Hermitian

Figure 9-6: The Symmetric (complex Hermetic), Skew-Symmetric (complex Skew-Hermitian),
Orthogonal, and Unitary Matrix sets characterized by the position of their eigenvalues in the
complex plane.
(Hermits live alone on the real axis; Skew-Hermits live alone on the imaginary axis)

Orthogonal Transformations

Multiplication of a vector by an orthogonal matrix is equivalent to an orthogonal geometric transformation on that vector.

For orthogonal transformation, the inner product between any two vectors is invariant. That is, the inner product of two
vectors is always the same as the inner product of their images under an orthogonal transformation. Geometrically, the

http://pruffle.mit.edu/3.016-2006/
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projection (or the angular relationship) is unchanged. This is characteristic of a rotation, or a reflection, or an inversion.

Rotations, reflections, and inversions are orthogonal transformations. The product of orthogonal matrices is also an orthogonal
matrix.

http://pruffle.mit.edu/3.016-2006/
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Lecture 09 Mathematica R© Example 2

Coordinate Transformations to The Eigenbasis
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

Here we demonstrate that a matrix, composed of columns of constructed eigenvectors of a matrix, can be used to diagonalize a matrix,
and the resulting diagonal entries are the matrix eigenvalues.

1simtrans = 8evec2, evec1< êê Transpose;
simtrans êê MatrixForm

2Inverse@simtransD.mymatrix.simtrans êê
Simplify êê MatrixForm

Ù Shows that the transformation to the diagonal basis is a rotation of p/4 
Ù Which makes sense considering in initialization steps that mymatrix was 

created with a rotation on p/4 of a diagonal matrix
The next command produces an orthonormal basis of the eigenspace 
(i.e., the eigenvectors are of unit magnitude):

3Orthogonalize@Eigenvectors@mymatrixD,
Method Ø "GramSchmidt"D êê MatrixForm

The command RotationTransform computes a matrix that will rotate 
vectors ccw about the origin in two dimensions, by a specified angle:

4RotationTransformBp

4
F@881, 0<, 80, 1<<D êê

MatrixForm

This last result shows that the transformation to the eigenvector space 
involves rotation by p/4--and that the matrix corresponding to the eigenvec-
tors produces this same transformation
Here is a demonstration of the general result A x i  = li  x i , where x  is an 
eigenvector and l its corresponding eigenvalue: 

5evec1
evec2

6mymatrix.evec1

7mymatrix.evec2

MatrixPower multiplies a matrix by itself n times…

8MatrixPower@mymatrix, 12D.evec2 êê Simplify

1: The matrix simtrans is constructed by assigning rows defined by the eigenvectors from the previous
example and then transposing ( Transpose) so that the eigenvectors are the columns.

2: The original matrix is left-multiplied by the inverse of simtrans and right-multiplied by simtrans ;
the result will be a diagonal matrix with the original matrix’s eigenvalues as diagonal entries.

3: The eigenvectors are already orthogonal. There is a process called Gram-Schmidt orthogonalization
used to define a set of vectors that are normal to each other. These orthogonalized vectors form
a convenient basis Linear combinations of the basis vectors can produce any other vector in same
vector space; for the orthogonalized basis, the basis vectors are as independent as possible. Here,
GramSchmidt produces vectors that are also normalized to unit vectors. This, and other useful vector
functions such as Normalize are available for common vector operations.

4: The geometrical interpretation of this operation can be found by comparing a matching
MatrixTransform to the matric composed of eigenvector columns. Here, we see that eigenvector-
matrix is equivalent to the π/4 rotation matrix.

6–7: These demonstrate that Eq. 9-2 is true.

8: This demonstrates that An~x = λn~x.

http://pruffle.mit.edu/3.016-2006/
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special, 122
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MatrixTransform, 126

Normalize, 126
normalized to unit vectors, 126

orthogonal transformations, 124
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simtrans, 126
skew-hermits, 123
Solve, 118
special matrices, 122

transformation
to eigenbasis, 126

Transpose, 126
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