
MIT 3.016 Fall 2011 Lecture 7 c© W.C Carter 94

Sept. 23 2011

Lecture 7: Linear Algebra

Reading:
Kreyszig Sections: 13.1, 13.2, 13.5, 13.6 (pages602–606, 607–611, 623–626, 626–629)

Uniqueness and Existence of Linear System Solutions

It would be useful to use the Mathematica Help Browser and open the link to Matrices &
Linear Algebra in the Mathematics & Algorithms section. Look through the tutorials at the
bottom on the linked page.

A linear system of m equations in n variables (x1, x2, . . . , xn) takes the form

A11x1 + A12x2 + A13x3 + . . . + A1nxn = b1

A21x1 + A22x2 + A23x3 + . . . + A2nxn = b2

... =
...

Ak1x1 + Ak2x2 + Ak3x3 + . . . + Aknxn = bk

... =
...

Am1x1 + Am2x2 + Am3x3 + . . . + Amnxn = bm

(7-1)

and is fundamental to models of many systems.
The coefficients, Aij , form a matrix and such equations are often written in an “index” short-hand

known as the Einstein summation convention:

Ajixi = bj (Einstein summation convention) (7-2)

where if an index (here i) is repeated in any set of multiplied terms, (here Ajixi) then a summation
over all values of that index is implied. Note that, by multiplying and summing in Eq. 7-2, the repeated
index i disappears from the right-hand-side. It can be said that the repeated index in “contracted”
out of the equation and this idea is emphasized by writing Eq. 7-2 as

xiAij = bj (Einstein summation convention) (7-3)

so that the “touching” index, i, is contracted out leaving a matching j-index on each side. In each case,
Eqs. 7-2 and 7-3 represent m equations (j = 1, 2, . . . ,m) in the n variables (i = 1, 2, . . . , n) that are
contracted out in each equation. The summation convention is especially useful when the dimensions
of the coefficient matrix is larger than two; for a linear elastic material, the elastic energy density can
be written as:

Eelast =
1
2
εijCijklεkl =

1
2
σpqSpqrsσrs (7-4)

where Cijkl and εij are the fourth-rank stiffness tensor and second-rank elastic strain tensor; where
Sijkl and σij are the fourth-rank compliance tensor and second-rank stress tensor;

MIT 3.016 Fall 2011 Lecture 7 c© W.C Carter 95

In physical problems, the goal is typically to find the n xi for a given m bj in Eqs. 7-2, 7-3, or 7-1.
This goal is conveniently represented in matrix-vector notation:

A~x = ~b (7-5)

Lecture 07 Mathematica R© Example 1
Solving Linear Sets of Equations

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

Demonstrations of several different ways to solve a set of linear equations for several variables. Here we will
solve equations that we construct from matrices; in following examples, we will operate on the matrices directly.

Consider the set of equations
 x + 2y + z + t = a
-x + 4y - 2z = b
 x + 3y + 4z + 5t = c
 x + z + t = d

We illustrate how to use a matrix representation to write these out and
solve them…
Start with the matrix of coefficients of the variables, mymatrix:

1

mymatrix = 8
81, 2, 1, 1<,
8-1, 4, -2, 0<,
81, 3, 4, 5<,
81, 0, 1, 1<<;

mymatrix êê MatrixForm

The system of equations will only have a unique solution if the determi-
nant of mymatrix is nonzero.

2Det@mymatrixD

Now define vectors for x and b in Aê x = b

3myx = 8x, y, z, t<;

4myb = 8a, b, c, d<;
The left-hand side of the first equation will be

5Hmymatrix.myxL@@1DD
and the left-hand side of all four equations will be

6lhs = mymatrix.myx;
lhs êê MatrixForm

Now define an indexed variable linsys with four entries, each being one
of the equations in the system of interest:

7linsys@i_IntegerD := lhs@@iDD == myb@@iDD

8linsys@2D

Solving the set of equations for the unknowns x
Ø

9linsol = Solve@8linsys@1D,
linsys@2D, linsys@3D, linsys@4D<, myxD

1: This example is kind of backwards. We will take a matrix

A =

1 2 1 1
−1 4 −2 0
1 2 4 5
1 0 1 1

 unknown vector ~x =

x
y
z
t

 and known vector ~b =

a
b
c
d

and extract four equations for input to Solve to obtain the
solution to ~x. Here, the coefficient matrix is a list of row-lists.

2: A unique solution will exist if the determinant, computed with Det,
is non-zero.

3–4: These will be the left-hand- and right-hand-side vectors.
5: Matrix multiplication is indicated by the period (.). This will be

the first of the equations.
6: lhs is a column-vector with four entries, and each entry is one of

the lhs equations.
7–8: This function creates logical equalities for each corresponding entry

on the left- and right-hand-sides. unknowns.
9: The function Solve is used on a system of equations ({linsys[i]}

and variables.

http://pruffle.mit.edu/3.016-2011/Notebooks/L07/Lecture-07.nb
http://pruffle.mit.edu/3.016-2011/pdf/L07/Lecture-07-1-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L07/Lecture-07-1-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-07/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2011
http://pruffle.mit.edu/3.016-2011/html/Lecture-07/HTMLLinks/index_1.html

MIT 3.016 Fall 2011 Lecture 7 c© W.C Carter 96

Lecture 07 Mathematica R© Example 2
Inverting Matrices or Just Solving for the Unknown Vector

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

Continuing the last example, it is much more compact to invert a matrix symbolically or numerically. If a
matrix inverse is going to be used over and over again, it is probably best to compute and store the inverse once.
However, if a one-time only solution for ~x in A~x = ~b is needed, then computing the inverse is computationally
less efficient than using an algorithm designed to solve for ~x directly. Here is an example of both methods.

Doing the same thing a different way, using Mathematica's LinearSolve
function:

1?LinearSolve

LinearSolve@m, bD finds an x which
solves the matrix equation m.x == b.

LinearSolve@mD generates a
LinearSolveFunction@…D which can be
applied repeatedly to different b. à

2LinearSolve@mymatrix, mybD

And yet another way, based on x = A-1 A x = A-1 b

3Inverse@mymatrixD.myb êê MatrixForm

a
7
+

b
7
-

2 c
7

+
9 d
7

a
2
-

d
2

13 a
14

-
4 b
7

+
c
7
-

23 d
14

-
15 a
14

+
3 b
7

+
c
7
+

19 d
14

And yet even another way, a very efficient LinearSolveFunction can be
produced by LinearSolve. This function will operate on any rhs vector of
the appropriate length. This would be an efficient way to find the
numerical solution to a known matrix, but for many different rhs b.

4mymatrixsol = LinearSolve@mymatrixD;
The result can be applied as a function calling a vector :

5mymatrixsol@mybD
Simplify@mymatrixsol@mybDD

:1
7

Ha + b - 2 c + 9 dL,

a - d

2
,

1

14
H13 a - 8 b + 2 c - 23 dL,

1

14
H-15 a + 6 b + 2 c + 19 dL>

1–2: LinearSolve can take two arguments, A and ~b, and returns ~x that
solves A~x = ~b. It will be noticibly faster than the following inversion
method, especially for large matrices.

3: The matrix inverse is obtained with Inverse and a subsequent
multiplication by the right-hand-side gives the solution.

4–5: Calling LinearSolve on a matrix alone, returns an efficient func-
tion that takes the unknown vector as an argument. Here we show
the equivalence to item 3.

Uniqueness of solutions to the nonhomogeneous (heterogeneous) system

A~x = ~b (7-6)

http://pruffle.mit.edu/3.016-2011/Notebooks/L07/Lecture-07.nb
http://pruffle.mit.edu/3.016-2011/pdf/L07/Lecture-07-2-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L07/Lecture-07-2-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-07/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2011
http://pruffle.mit.edu/3.016-2011/html/Lecture-07/HTMLLinks/index_2.html

MIT 3.016 Fall 2011 Lecture 7 c© W.C Carter 97

Uniqueness of solutions to the homogeneous system

A ~xo = ~0 (7-7)

Adding solutions from the nonhomogeneous and homogenous systems

You can add any solution to the homogeneous equation (if they exist, there are infinitely many of them)
to any solution to the nonhomogeneous equation, and the result is still a solution to the nonhomogeneous
equation.

A(~x + ~xo) = ~b (7-8)

MIT 3.016 Fall 2011 Lecture 7 c© W.C Carter 98

Determinants

MIT 3.016 Fall 2011 Lecture 7 c© W.C Carter 99

Lecture 07 Mathematica R© Example 3
Determinants, Rank, and Nullity

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

Several examples of determinant calculations are provided to illustrate the properties of determinants. When a
determinant vanishes (i.e., detA = 0), there is no solution to the inhomogeneous equation det A = ~b, but there
will be an infinity of solutions to det A = 0; the infinity of solutions can be characterized by solving for a number
rank of the entries of ~x in terms of the nullity of other entries of ~x

Create a matrix with one row as a linear combination of the others

1

myzeromatrix =
8mymatrix@@1DD, mymatrix@@2DD,
p* mymatrix@@1DD +
q * mymatrix@@2DD + r* mymatrix@@4DD,
mymatrix@@4DD<;

myzeromatrix êê MatrixForm

1 2 1 1

-1 4 -2 0

p - q + r 2 p + 4 q p - 2 q + r p + r

1 0 1 1

2Det@myzeromatrixD

3LinearSolve@myzeromatrix, mybD
This was not expected to have a solution

4MatrixRank@mymatrixD
MatrixRank@myzeromatrixD

5NullSpace@mymatrixD
NullSpace@myzeromatrixD

Try solving this inhomogeneous system of equations using Solve:

6zerolhs = myzeromatrix.myx

7zerolinsys@i_IntegerD :=
zerolhs@@iDD == myb@@iDD

8zerolinsolhet =
Solve@Table@zerolinsys@iD, 8i, 4<D, myxD
No solution, as expected, Let's solve the homogeneous problem:

9zerolinsolhom = Solve@Table@zerolinsys@iD ê.
8a Ø 0, b Ø 0, c Ø 0, d Ø 0<, 8i, 4<D, myxD

88y Ø 0, x Ø -2 t, z Ø t<<

1: A matrix is created where the third row is the sum of p× first row,
q × second row, and r × fourth row. In other words, one row is a
linear combination of the others.

2: The determinant is computed with Det, and its value should reflect
that the rows are not linearly independent.

3: An attempt to solve the linear inhomogeneous equation (here, using
LinearSolve) should fail.

4: When the determinant is zero, there may still be some linearly-
independent rows or columns. The rank gives the number of
linearly-independent rows or columns and is computed with
MatrixRank. Here, we compare the rank of the original matrix
and the linearly-dependent one we created.

5: The null space of a matrix, A, is a set of linearly-independent vec-
tors that, if left-multiplied by A, gives a zero vector. The nullity is
how many linearly-independent vectors there are in the null space.
Sometimes, vectors in the null space are called killing vectors. By
comparing to the above, you will see examples of the rank + nullity
= dimension rule for square matrices.

6–8: Here, an attempt to use Solve for the heterogeneous system with
vanishing determinant is attempted, but of course it is bound to
fail. . .

9: However, this is the solution to the singular homogeneous problem
(A~x = ~0, where detA = 0. The solution is three (the rank) di-
mensional surface embedded in four dimensions (the rank plus the
nullity). Notice that the solution is a multiple of the null space that
we computed in item 5.

Properties and Roles of the Matrix Determinant

In example 07-1, it was stated (item 2) that a unique solution exists if the matrix’s determinant was
non-zero. The solution,

~x =

2a+2b−4c+18d

det A
7a−7d
det A

13a−8b+2c−23d
det A

−15a+6b+2c+19d
det A

 (7-9)

http://pruffle.mit.edu/3.016-2011/Notebooks/L07/Lecture-07.nb
http://pruffle.mit.edu/3.016-2011/pdf/L07/Lecture-07-3-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L07/Lecture-07-3-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-07/HTMLLinks/index_3.html
http://pruffle.mit.edu/3.016-2011
http://pruffle.mit.edu/3.016-2011/html/Lecture-07/HTMLLinks/index_3.html

MIT 3.016 Fall 2011 Lecture 7 c© W.C Carter 100

indicates why this is the case and also illustrates the role that the determinant plays in the solution.
Clearly, if the determinant vanishes, then the solution is undetermined unless ~b is a zero-vector ~0 =
(0, 0, 0, 0). Considering the algebraic equation, ax = b, the determinant plays the same role for matrices
that the condition a = 0 plays for algebra: the inverse exists when a 6= 0 or detA 6= 0.

The determinant is only defined for square matrices; it derives from the elimination of the n unknown
entries in ~x using all n equation (or rows) of

A~x = 0 (7-10)

For example, eliminating x and y from(
a11 a12

a21 a22

) (
x
y

)
=

(
0
0

)
gives the expression

det
(

a11 a12

a21 a22

)
≡ a11a22 − a12a21 = 0

(7-11)

and eliminating x, y, and z from a11 a12 a13

a21 a22 a23

a31 a32 a33

 x
y
z

 =

 0
0
0

gives the expression

detA ≡ a11a22a33 − a11a32a23 + a21a32a13 − a21a12a33 + a31a12a23 − a31a22a13 = 0
(7-12)

The following general and true statements about determinants are plausible given the above expressions:

• Each term in the determinant’s sum us products of N terms—a term comes from each column.

• Each term is one of all possible the products of an entry from each column.

• There is a plus or minus in front each term in the sum, (−1)p, where p is the number of neighbor
exchanges required to put the rows in order in each term written as an ordered product of their
columns (as in Eqs. 7-11 and 7-12).

These, and the observation that it is impossible to eliminate ~x in Eqs. 7-11 and 7-12 if the information
in the rows is redundant (i.e., there is not enough information—or independent equations—to solve for
the ~x), yield the general properties of determinants that are illustrated in the following example.

MIT 3.016 Fall 2011 Lecture 7 c© W.C Carter 101

Lecture 07 Mathematica R© Example 4
Properties of Determinants and Numerical Approximations to Zero

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

Rules, corresponding to how det A changes when the columns of A are permuted or multiplied by a constant,
are demonstrated.

1rv@i_D :=
rv@iD = Table@RandomReal@8-1, 1<D, 8j, 6<D
Now use rv to make a 6 x 6 matrix, then find its determinant:

2RandMat = Table@rv@iD, 8i, 6<D

3Det@RandMatD
Switching two rows changes the sign but not the magnitude of the
determinant:

4Det@8rv@2D, rv@1D, rv@3D, rv@4D, rv@5D, rv@6D<D
Multiply one row by a constant and calculate determinant:

5Det@8a*rv@2D, rv@1D,
rv@3D, rv@4D, rv@5D, rv@6D<D

Multiply two rows by a constant and calculate determinant:

6Det@8a*rv@2D, a*rv@1D,
rv@3D, rv@4D, rv@5D, rv@6D<D

Multiply all rows by a constant and calculate determinant:

7Det@
a 8rv@2D, rv@1D, rv@3D, rv@4D, rv@5D, rv@6D<D

8
Clear@a, b, c, d, eD
LinDepVec = a*rv@1D + b*rv@2D +
c*rv@3D + d*rv@4D + e*rv@5D

Example of numerical precision: this determinant should evaluate to
zero…

9Det@8rv@1D, rv@2D,
rv@3D, rv@4D, rv@5D, LinDepVec<D

-4.85723µ10-17 a +

4.85723µ10-17 b + 4.16334µ10-17 c -

4.85723µ10-17 d - 1.38778µ10-17 e

However, numerical precision does

10Chop@Det@8rv@1D, rv@2D,
rv@3D, rv@4D, rv@5D, LinDepVec<DD

1–2: A matrix, RandMat , is created from rows with random real entries
between -1 and 1.

3–4: This will demonstrate that switching neighboring rows of a matrix
changes the sign of the determinant.

5–6: Multiplying one column of a matrix by a constant a, multiplies the
matrix’s determinant by one factor of a; multiplying two rows by
a gives a factor of a2. Multiplying every entry in the matrix by a
changes its determinant by an.

7: Because the matrix has one linearly-dependent column, its deter-
minant should vanish. This example demonstrates what happens
with limited numerical precision operations on real numbers. The
determinant is not zero, but could be considered effectively zero.

8: We create a row which is an arbitrary linear combination of the
first five rows of RandMat.

9: This determinant should be zero. However, because the entries are
numerical, differences which are smaller than the precision with
which a number is stored, may make it difficult to distinguish be-
tween something that is numerically zero and one that is precisely
zero. This is sometimes known as round-off error.

10: Problems with numerical imprecision can usually be alleviated with
Chop which sets small magnitude numbers to zero.

http://pruffle.mit.edu/3.016-2011/Notebooks/L07/Lecture-07.nb
http://pruffle.mit.edu/3.016-2011/pdf/L07/Lecture-07-4-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L07/Lecture-07-4-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-07/HTMLLinks/index_4.html
http://pruffle.mit.edu/3.016-2011
http://pruffle.mit.edu/3.016-2011/html/Lecture-07/HTMLLinks/index_4.html

MIT 3.016 Fall 2011 Lecture 7 c© W.C Carter 102

Lecture 07 Mathematica R© Example 5
Determinants and the Order of Matrix Multiplication

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

Symbolic matrices are constructed to show examples of the rules det(AB) = det A det B and AB 6= BA.

Creating a symbolic matrix

1SymVec = 8a, a, a, c, c, c<;

2Permuts = Permutations@SymVecD
Permuts êê Dimensions

3

SymbMat = 8
Permuts@@1DD,
Permuts@@12DD,
Permuts@@6DD,
Permuts@@18DD,
Permuts@@17DD,
Permuts@@9DD<;

SymbMat êê MatrixForm

4DetSymbMat = Simplify@Det@SymbMatDD
Creating a matrix of random rational numbers

5

RandomMat =

TableBTableBRandomInteger@8-100, 100<D
RandomInteger@81, 100<D

,

8i, 6<F, 8j, 6<F;
MatrixForm@RandomMatD

6DetRandomMat = Det@RandomMatD

7CheckA = Det@SymbMat.RandomMatD êê Simplify

8DetRandomMat*DetSymbMat == CheckA

Does the determinant of a product depend on the order of multiplication?

9CheckB = Det@RandomMat.SymbMatD êê Simplify

10CheckA ã CheckB

However, the product of two matrices depends on which matrix is on the
left and which is on the right

11HRandomMat.SymbMat - SymbMat.RandomMatL êê
Simplify êê MatrixForm

1–3: Using Permutations to create all possible permutations of two sets
of three identical objects for subsequent construction of a symbolic
matrix, SymbMat, for demonstration purposes.

4: The symbolic matrix has a fairly simple determinant—it can only
depend on two symbols and must be sixth-order.

5: A matrix with random rational numbers is created. . .

6: And, of course, its determinant is also a rational number.
7–10: This demonstrates that the determinant of a product is the product

of determinants and is independent of the order of multiplication. . .

11: However, the result of multiplying two matrices does depend on the
order of multiplication: AB 6= BA, in general.
Matrix multiplication is non-commutative: AB 6= BA for most
matrices. However, any two matrices for which the order of multi-
plication does not matter (AB = BA) are said to commute. Com-
mutation is an important concept in quantum mechanics and crys-
tallography.
Think about what commuting matrices means physically. If two
linear transformations commute, then the order in which they are
applied doesn’t matter. In quantum mechanics, an operation is
roughly equivalent to making an observation—commuting opera-
tors means that one measurement does not interfere with a com-
muting measurement. In crystallography, operations are associated
with symmetry operations—if two symmetry operations commute,
they are, in a sense, “orthogonal operations.”

http://pruffle.mit.edu/3.016-2011/Notebooks/L07/Lecture-07.nb
http://pruffle.mit.edu/3.016-2011/pdf/L07/Lecture-07-5-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L07/Lecture-07-5-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-07/HTMLLinks/index_5.html
http://pruffle.mit.edu/3.016-2011
http://pruffle.mit.edu/3.016-2011/html/Lecture-07/HTMLLinks/index_5.html

MIT 3.016 Fall 2011 Lecture 7 c© W.C Carter 103

The properties of determinants

Vector Spaces

Consider the position vector

~x =

 x
y
z

 =

 x1

x2

x3

 (7-13)

The vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1) can be used to generate any general position by suitable
scalar multiplication and vector addition:

~x =

 x
y
z

 = x

 1
0
0

 + y

 0
1
0

 + z

 0
0
1

 (7-14)

Thus, three dimensional real space is “spanned” by the three vectors: (1, 0, 0), (0, 1, 0), and (0, 0, 1).
These three vectors are candidates as “basis vectors for <3.”

Consider the vectors (a,−a, 0), (a, a, 0), and (0, a, a) for real a 6= 0.

~x =

 x
y
z

 =
x + y

2a

 a
−a
0

 +
x− y

2a

 a
a
0

 +
x− y + 2z

2a

 0
a
a

 (7-15)

So (a,−a, 0), (a, a, 0), and (0, a, a) for real a 6= 0 also are basis vectors and can be used to span <3.

MIT 3.016 Fall 2011 Lecture 7 c© W.C Carter 104

The idea of basis vectors and vector spaces comes up frequently in the mathematics of materials
science. They can represent abstract concepts as well as being shown by the following two dimensional
basis set:

basis vector 1 basis vector 2

+ +

+ +

+ +

= =

= =

= =

1.0 1.0

0.5 0.7

0.2 1.0

1.0 0.1

1.0 0.5

1.0 0.0

Figure 7-3: A vector space for two-dimensional CsCl structures. Any combination of center-
site concentration and corner-site concentration can be represented by the sum of two basis
vectors (or basis lattice). The set of all grey-grey patterns is a vector space of patterns.

Linear Transformations

MIT 3.016 Fall 2011 Lecture 7 c© W.C Carter 105

Lecture 07 Mathematica R© Example 6
Visualization Example: Polyhedra

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

A simple octagon with different colored faces is transformed by operating on all of its vertices with a matrix.
This example demonstrates how symmetry operations, like rotations reflections, can be represented as a matrix
multiplication, and how to visualize the results of linear transformations generally.

We now demonstrate the use of matrix multiplication for manipulating an
object, specifically an octohedron. The Octahedron is made up of eight
polygons and the initial coordinates of the vertices were set to make a
regular octahedron with its main diagonals parallel to axes x,y,z. The
faces of the octahedron are colored so that rotations and other transforma-
tions can be easily tracked.

1<< "PolyhedronOperations "̀
Show@PolyhedronData@"Octahedron"DD

Above, the color of the three dimensional object derives from the colors in
the light sources. For example, note that there appears to be a blue light
pointing down from the left. The lights stay fixed as we rotate the object. If
Lighting Ø None, then the polyhedron's faces will appear to be black.

2Show@PolyhedronData@"Octahedron"D,
Lighting Ø NoneD
We can extract data from the Octahedron, and build our own with
individually colored faces. We will need the individual colors to identify
what happens to the polyhedron under linear transformaions.

3PolyhedronData@"Octahedron", "Faces"D
The object ColOct is defined below to draw an octahedron and it invokes
the Polygon function to draw the triangular faces by connecting three
points at specific numerical coordinates that we obtain from the Octahe-
dron data. Because we will turn off lighting, we will ask that each of the
faces glow, using the Glow graphics directive

4

octa = 8p@1D, p@2D, p@3D, p@4D, p@5D, p@6D< =
PolyhedronData@
"Octahedron", "Faces"D@@1DD;

colface@i_D := Glow@Hue@iê8DD ;
ColOct =

88colface@0D, Polygon@8p@4D, p@5D, p@6D<D<,
8colface@1D, Polygon@8p@4D, p@6D, p@2D<D<,
8colface@2D, Polygon@8p@4D, p@2D, p@1D<D<,
8colface@3D, Polygon@8p@4D, p@1D, p@5D<D<,
8colface@4D, Polygon@8p@5D, p@1D, p@3D<D<,
8colface@5D, Polygon@8p@5D, p@3D, p@6D<D<,
8colface@6D, Polygon@8p@3D, p@1D, p@2D<D<,
8colface@7D, Polygon@8p@6D, p@3D, p@2D<D<<;

5Show@Graphics3D@ColOctD, Lighting Ø NoneD

1: The package PolyhedronOperations contains Graphics Objects
and other information such as vertex coordinates of many common
polyhedra. This demonstrates how an Octahedron can be drawn
on the screen. The color of the faces comes from the light sources.
For example, there is a blue source behind your left shoulder; as
you rotate the object the faces—oriented so that they reflect light
from the blue source—will appear blue-ish. The color model and
appearance is an advanced topic.

2: Setting Lighting→None removes the light sources and the octa-
hedron will appear black. Our objective is to observe the effect of
linear transformation on this object. To do this, will will want to
identify each of the octahedron’s faces by “painting” it.

3: We will build a custom octahedron from the Mm’s version using
PolyhedronData.

4: The data is extracted by grabbing the first part of PolyhedronData
(i.e., [[1]]). We assign the name of the list octa , and name its
elements p[i] in one step.
A function is defined and will be used to call Glow and Hue for
each face. When the face glows and the lighting is off, the face will
appear as the “glow color”, independent of its orientation.
ColOct is a list of graphics-primitive lists: each element of the
list uses the glow directive and then uses the points of the original
octahedron to define Polygons in three dimensions.

5: We wrap ColOct inside Graphics3D and use Show with lighting
off to visualize.

http://pruffle.mit.edu/3.016-2011/Notebooks/L07/Lecture-07.nb
http://pruffle.mit.edu/3.016-2011/pdf/L07/Lecture-07-6-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L07/Lecture-07-6-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-07/HTMLLinks/index_6.html
http://pruffle.mit.edu/3.016-2011
http://pruffle.mit.edu/3.016-2011/html/Lecture-07/HTMLLinks/index_6.html

MIT 3.016 Fall 2011 Lecture 7 c© W.C Carter 106

Lecture 07 Mathematica R© Example 7
Linear Transformations: Matrix Operations on Polyhedra

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

A moderately sophisticated Mathematica R© function is defined to help visualize the effect of operating on
each point of a polyhedron with a 3× 3-matrix representing a symmetry operation.

1

transoct@tmat_, description_StringD :=
8ColOct ê.

8Polygon@8a_List, b_List, c_List<D Ø
Polygon@8tmat.a, tmat.b, tmat.c<D<,

Text@Style@MatrixForm@tmatDD, 80, 0, -.25<D,
Text@Style@description, Darker@RedDD,
80, 0, .25<, Background Ø WhiteD<

2
Show@Graphics3D@
transoct@881, 0, 0<, 80, 1, 0<, 80, 0, -1<<,
"mirror-@001D"DD, Lighting Ø NoneD

3

identity = IdentityMatrix@3D;
rot90@001D = 880, -1, 0<, 81, 0, 0<, 80, 0, 1<<;
ref@010D = 881, 0, 0<, 80, -1, 0<, 80, 0, 1<<;
o@1, 1D = transoct@identity, "original"D;
o@1, 2D = transoct@rot90@001D, "90-@001D"D;
o@1, 3D = transoct@ref@010D, "m-@010D"D;
o@2, 1D = transoct@ref@010D.rot90@001D,

"90-@100D then m-@010D"D;
o@2, 2D = transoct@rot90@001D.ref@010D,

"m-@010D then 90-@100D"D;

4RotationTransform@Pi, 81, 1, 0<D

5o@2, 3D = transoctB
0 1 0

1 0 0

0 0 -1

, "180-@110D"F;

6

sc@q_, f_D :=
3 8Cos@qD Sin@fD, Sin@qD Sin@fD, Cos@fD<
Manipulate@GraphicsGrid@
Table@Show@Graphics3D@o@i, jDD,
Lighting Ø None, ViewPoint Ø sc@q, fD,
ImageSize Ø 8200, 200<,
PlotRange Ø 88-1, 1<, 8-1, 1<, 8-1, 1<<D,

8j, 3<, 8i, 2<DD, 88q, 2.1<, 0, 2 p<,
88f, -1.4<, -p ê2, p ê2<D

1: This is a moderately sophisticated example of rule usage inside of
a function (transoct) definition: the pattern matches triangles (
Polygons with three points) in a graphics primitive; names the
points; and then multiplies a matrix by each of the points. The
first argument to transoct is the matrix which will operate on the
points; the second argument is an identifyer that will be used with
Text to annonate the graphics.

2: This demonstrates the use of transoct : we get a rotate-able 3D
object with floating text identifying the name of the operation and
the matrix that performs the operation.

3: We will build an example that will visualize several symmetry steps
simultaneously (say that fast outloud). We define matrices for iden-
tity , rot90[001] , and ref[010] , respectively, which leave the poly-
hedra’s points unchanged, rotate counter-clockwise by 90◦ around
the [001]-axis, and reflect through the origin in the direction of the
[010]-axis.
We use these matrices to create new octahedra corresponding to
combinations of symmetry operations.

4–5: It is not always straightforward to write down the matrix corre-
sponding to an arbitrary symmetry operation. Mathematica R©
has functions to help find many of them; here, we use
RotationTransform to find the matrix corresponding to rotation
by 180◦ around the [110]-axis.

6: This will display six of the octahedra with their annotated symme-
try operations. Manipulate is used to change the viewpoint to
someplace on a sphere of radius 3 (by changing the latitude angle,
φ, and the longitude θ). A function to return a cartesian represen-
tation of the spherical coordinates is defined first and is used as the
ViewPoint for each Graphics3D-object. Table iterates over the
o[i,j] and passes its result to GraphicsGrid.

http://pruffle.mit.edu/3.016-2011/Notebooks/L07/Lecture-07.nb
http://pruffle.mit.edu/3.016-2011/pdf/L07/Lecture-07-7-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L07/Lecture-07-7-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-07/HTMLLinks/index_7.html
http://pruffle.mit.edu/3.016-2011
http://pruffle.mit.edu/3.016-2011/html/Lecture-07/HTMLLinks/index_7.html

MIT 3.016 Fall 2011 Lecture 7 c© W.C Carter 107

Lecture 07 Mathematica R© Example 8
Visualization Example: Invariant Symmetry Operations on Crystals

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

Each crystal’s unit cell can be uniquely characterized by the symmetry operations (i.e., fixed rotation about an
axis, reflection across a plane, and inversion through the origin) which leave the unit cell unchanged. The set of
such symmetry operations define the crystal point group. There are only 32 point groups in three dimensions.
In this example, we demonstrate invariant operations for an FCC cell.

1

corners = Flatten@Table@8i, j, k<,
8i, 0, 1<, 8j, 0, 1<, 8k, 0, 1<D, 2D

faces = Join@Permutations@80.5, 0.5, 0<D,
Permutations@80.5, 0.5, 1<DD

fccsites = Join@faces, cornersD
srad = 2 ì 4;

FCC = Table@
Sphere@fccsites@@iDD, sradD, 8i, 1, 14<D

axes = 8 8RGBColor@1, 0, 0, .5D,
Cylinder@880, 0, 0<, 82, 0, 0<<, .05D<,

8RGBColor@0, 1, 0, .5D,
Cylinder@880, 0, 0<, 80, 2, 0<<, .05D<,

8RGBColor@0, 0, 1, .5D,
Cylinder@880, 0, 0<, 80, 0, 2<<, .05D<<;

fccmodel = Translate@Join@FCC, axesD,
8-.5, -.5, -.5<D

Graphics3D@fccmodelD

2

bbox = 1.25 88-1, 1<, 8-1, 1<, 8-1, 1<<;
ManipulateBGridB::"original",

"2pê3-@111D", "roto-inversion: 3
ê
">,

8Graphics3D@fccmodel, PlotRange Ø bbox,
ViewPoint Ø sc@q, fDD,
Graphics3D@Rotate@fccmodel, 2 p ê3,

81, 1, 1<D, PlotRange Ø bbox,
ViewPoint Ø sc@q, fDD, Graphics3D@
Rotate@GeometricTransformation@
fccmodel, -IdentityMatrix@3DD,
2 p ê3, 81, 1, 1<D, PlotRange Ø bbox,

ViewPoint Ø sc@q, fDD<>F,
88q, 2.2<, 0, 2 p<, 88f, -.6<,

-p ê2, p ê2<F

1: The first two commands define faces and corners which are the
coordinates of the face-centered and corner lattice-sites. Note the
use of Flatten in corners has the qualifier 2—it limits the scope of
Flatten which would normally turn a list of lists into a (flat) single
list. Join is used to collect the two coordinate lists together into
fccsites . The atoms will be visualized with the Sphere graphics
primitive and we use srad to set the radius of a close-packed FCC
structure. FCC is a list of (a list of) graphics primitives for each of
the fourteen spheres, and then three cylinders with Opacity and
color are used to define the coordinate axes graphics: axes .
fccmodel is created by joining the spheres and the cylinders, and
then using Translate on the resulting graphics primitives to put
the center of the FCC cell at the origin.

2: Translate is an example of a function that operates directly on
graphics primitives. We use related functions that also operate on
graphics primitives, Rotate and GeometricTransformation, to
illustrate how rotation by 120◦ about [111], and how inversion (mul-
tiplication by “minus the identity matrix”) followed by the same
rotation, are invariant symmetry operations for the FCC lattice.

http://pruffle.mit.edu/3.016-2011/Notebooks/L07/Lecture-07.nb
http://pruffle.mit.edu/3.016-2011/pdf/L07/Lecture-07-8-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L07/Lecture-07-8-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-07/HTMLLinks/index_8.html
http://pruffle.mit.edu/3.016-2011
http://pruffle.mit.edu/3.016-2011/html/Lecture-07/HTMLLinks/index_8.html

	Lecture 7: Linear Algebra
	Lecture 7: Uniqueness and Existence of Linear System Solutions
	Example 7-1: Solving Linear Sets of Equations
	Example 7-2: Inverting Matrices or Just Solving for the Unknown Vector
	Uniqueness of solutions to the nonhomogeneous (heterogeneous) system
	Uniqueness of solutions to the homogeneous system
	Adding solutions from the nonhomogeneous and homogenous systems

	Lecture 7: Determinants
	Example 7-3: Determinants, Rank, and Nullity
	Properties and Roles of the Matrix Determinant
	Example 7-4: Properties of Determinants and Numerical Approximations to Zero
	Example 7-5: Determinants and the Order of Matrix Multiplication
	The properties of determinants

	Lecture 7: Vector Spaces
	Lecture 7: Linear Transformations
	Example 7-6: Visualization Example: Polyhedra
	Example 7-7: Linear Transformations: Matrix Operations on Polyhedra
	Example 7-8: Visualization Example: Invariant Symmetry Operations on Crystals

