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Sept. 16 2010

Lecture 5: Introduction to Mathematica IV

Graphics

Graphics are an important part of exploring mathematics and conveying its results. An informative
plot or graphic that conveys a complex idea succinctly and naturally to an educated observer is a
work of creative art. Indeed, art is sometimes defined as “an elevated means of communication,” or
“the means to inspire an observation, heretofore unnoticed, in another.” Graphics are art; they are
necessary. And, I think they are fun.

For graphics, we are limited to two and three dimensions, but, with the added possibility of ani-
mation, sound, and perhaps other sensory input in advanced environments, it is possible to usefully
visualize more than three dimensions. Mathematics is not limited to a small number of dimensions; so,
a challenge —or perhaps an opportunity—exists to use artfulness to convey higher dimensional ideas
graphically.

The introduction to basic graphics starts with two-dimensional plots.
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Lecture 05 Mathematica R© Example 1
Simple Plots

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

Here are some examples of simple x-y plots and how to decorate them. We start with very simple examples and
add a little more at each step to show how a plot can be developed incrementally. We leave all the steps in as
cut-and-paste examples.

1Plot@Sin@xDêx, 8x, -5 Pi, 5 Pi<D

2Options@PlotD

3
Plot@Sin@xDêx, 8x, -5 Pi, 5 Pi<,
PlotRange Ø 8-0.25, 1.25<,
PlotStyle Ø 8Red, Thick<D

4

PlotBSin@xDêx, 8x, -5 Pi, 5 Pi<,
PlotRange Ø 8-0.25, 1.25<,
PlotStyle Ø 8Red, Thick<,
AxesLabel Ø :"x", "

Sin HxL
x

">F

5

PlotBSin@xDêx, 8x, -5 Pi, 5 Pi<,
PlotRange Ø 8-0.25, 1.25<,
PlotStyle Ø 8Red, Thick<,
AxesLabel Ø :"x", "

Sin HxL
x

">, BaseStyle Ø

8Large, FontFamily Ø "Helvetica", Italic<F

6

PlotBSin@xDêx, 8x, -5 Pi, 5 Pi<,
PlotRange Ø 8-0.25, 1.25<,
PlotStyle Ø 8Red, Thick<,
AxesLabel Ø :"x", "

Sin HxL
x

">, BaseStyle Ø

8Large, FontFamily Ø "Helvetica", Italic<,
TicksStyle Ø 88Medium, Blue<,

8Medium, RGBColor@0.5, 0.2, 0D<<F

1: This is the simplest version of Plot: all it requires is an expression
depending on a variable and a range over which to plot that variable.
Mathematica R© has algorithms to select the region which is most
likely to be of interest.

2: Tweaking the appearance of a plot will usually involve changing
one of Plot’s options.

3: Here we change PlotRange and PlotStyle explicitly. PlotStyle
takes a list of graphics directives, and the type of PlotStyle di-
rectives will generally depend on what is being plotted (i.e., lines,
points, surfaces).

4: The AxesLabel option is used here. The BasicMathInput-palette
is useful to typesetting mathematical expressions.

5: The option BaseStyle can be used to specify the basic size, font,
font-shape, etc for the entire plot.

6: As a last example, we use a list of two styles for TickStyle to
specify both x- and y-axis ticking characteristics.

http://pruffle.mit.edu/3.016-2011/Notebooks/L05/Lecture-05.nb
http://pruffle.mit.edu/3.016-2011/pdf/L05/Lecture-05-1-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L05/Lecture-05-1-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-05/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2011
http://pruffle.mit.edu/3.016-2011/html/Lecture-05/HTMLLinks/index_1.html
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Lecture 05 Mathematica R© Example 2
Plotting Precision and an Example of Interaction

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

Even for continuous functions, a graphical representation is a discrete object. The level of precision is associated
with the mesh—which is the set where numerical evaluations are performed. More mesh points generally results
in a smoother representation, but at the cost of longer computation and memory.

Mesh and MeshStyle

1
Plot@Sin@xDêx,
8x, -5 Pi, 5 Pi<, PlotRange Ø All,
PlotStyle Ø 8Red, Thick<, Mesh Ø All,
MeshStyle Ø 8Black, PointSize@0.015D<D
MaxRecursion and PlotPoints

2

Plot@Sin@xDêx,
8x, -5 Pi, 5 Pi<, PlotRange Ø All,
PlotStyle Ø 8Red, Thick<, , Mesh Ø All,
MeshStyle Ø 8Black, PointSize@0.015D<,
MaxRecursion Ø 2, PlotPoints Ø 8D

Interactive Graphics: An Example of 
Manipulate

3

Manipulate@Plot@Sin@xDêx, 8x, -5 Pi, 5 Pi<,
PlotRange Ø All, PlotStyle Ø 8Red, Thick<,
AxesLabel Ø 8"x", "sinHxLêx"<, BaseStyle Ø
8Large, FontFamily Ø "Helvetica", Italic<,
TicksStyle Ø 88Medium, Blue<, 8Medium,

RGBColor@0.5, 0.2, 0D<<, Mesh Ø All,
MeshStyle Ø 8Black, PointSize@0.015D<,
MaxRecursion Ø recursion,
PlotPoints Ø plotpointsD,

88recursion, 3<, 1, 15, 1<,
88plotpoints, 4<, 2, 12, 1<D

1: The option Mesh→All shows the points where Plot made numer-
ical evaluations. Note that the points are not equally spaced, but
are adapted to the plot (in this case, to the curvature). MeshStyle
permits specification of how the mesh is visualized.

2: A simple way to control the mesh is with PlotPoints (which speci-
fies how many points to sample initially) and MaxRecursion (which
specifies how many times to try to optimize the adaptation of the
points on the curve).

3: This is a simple example of using Manipulate to change
PlotPoints and MaxRecursion interactively. Here, both of the
options point to variables (recursion and plotpoints) that can
be adjusted via a graphical interface.

http://pruffle.mit.edu/3.016-2011/Notebooks/L05/Lecture-05.nb
http://pruffle.mit.edu/3.016-2011/pdf/L05/Lecture-05-2-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L05/Lecture-05-2-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-05/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2011
http://pruffle.mit.edu/3.016-2011/html/Lecture-05/HTMLLinks/index_2.html
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Lecture 05 Mathematica R© Example 3
Multiple Curves, Filling, and Excluding Points

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

Here, simple examples of plotting several curves at the same time, of filling between curves, or between curves
and the axis, and of telling plot to ignore certain points, are demonstrated.

1

Plot@Sin@xDêx, 8x, -5 Pi, 5 Pi<,
PlotRange Ø 8-0.25, 1.25<,
PlotStyle Ø 8Red, Thick<,
TicksStyle Ø 88Medium, Blue<,

8Medium, RGBColor@0.5, 0.2, 0D<<,
Filling Ø AutomaticD
Combining several curves

2Plot@8Sin@xDêx, Tan@xDêx<,
8x, -5 Pi, 5 Pi<, BaseStyle Ø 8Thick<D

3
Plot@8Sin@xDêx, Tan@xDêx<,
8x, -5 Pi, 5 Pi<, PlotStyle Ø 88Red, Thick<,

8Hue@0.3, 1, .5D, Thickness@0.005D<<D
Removing points with Exclusions

4
Plot@Tan@xDêx, 8x, -5 Pi, 5 Pi<,
BaseStyle Ø 8Thick, Medium<,
Exclusions Ø 8-Piê2, Piê2<D

5
Plot@Tan@xDêx, 8x, -5 Pi, 5 Pi<,
BaseStyle Ø 8Thick, Medium<, Exclusions Ø
Table@p, 8p, -9 Piê2, 9 Piê2, Pi<DD

Multiple curves with exclusions

6
Plot@8Sin@xDêx, Tan@xDêx<, 8x, -5 Pi, 5 Pi<,
PlotStyle Ø 88Red, Thick<, 8Hue@0.3, 1, .5D,

Thickness@0.005D<<, Exclusions Ø
Table@p, 8p, -9 Piê2, 9 Piê2, Pi<DD

Filling  between curves

7

Plot@8Sin@xDêx, Tan@xDêx<,
8x, -5 Pi, 5 Pi<, PlotStyle Ø 88Red, Thick<,

8Hue@0.3, 1, .5D, Thickness@0.005D<<,
PlotRange Ø 8-0.25, 1.25<, Exclusions Ø
Table@p, 8p, -9 Piê2, 9 Piê2, Piê2<D,
Filling Ø 82 Ø 881<, 8RGBColor@1, 0, 0, 0.2D,

RGBColor@0, 0, 1, 0.2D<<<D

1: Simple filling to the x-axis can be produced with
Filling→Automatic.

2: When Plot gets a list of expressions as its first argument, it will
superimpose the curves obtained from each. The curves’ colors are
chosen automatically, but can be specified. (n.b., if you find that
the colors are not changing as you’d expect, try calling Evaluate
on the list.) In this example, a vertical line appears for the tan(x)/x
function where the values change as ±∞. To change the appearance
of each curve, a list containing a style-directive list for each curve is
used for the PlotStyle option. The first style, {Red,Thick}, uses
simple directives for basic, easy-to-remember, control; the second
style uses higher precision control with Hue and Thickness.

3: The singularities in the function produce vertical lines in the above
plots. To remove these features, the option Exclusions can get a
list of points where the curve should be sliced and not evaluated.

4: Here, we use Table to produce a list of all the singularities in
tan(x)/x. This list is passed via Exclusions.

7: This is a more complex example of filling: here we ask for the filling
to take place between the second curve and the first—and to use
different filling styles when the first curve lies above or below the
second curve.

http://pruffle.mit.edu/3.016-2011/Notebooks/L05/Lecture-05.nb
http://pruffle.mit.edu/3.016-2011/pdf/L05/Lecture-05-3-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L05/Lecture-05-3-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-05/HTMLLinks/index_3.html
http://pruffle.mit.edu/3.016-2011
http://pruffle.mit.edu/3.016-2011/html/Lecture-05/HTMLLinks/index_3.html
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Lecture 05 Mathematica R© Example 4
Plotting Two Dimensional Parametric Curves and Mapped Regions

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

Here are simple examples of using ParametricPlot to plot functions for curves in the form (x(t), y(t)) and
regions in the form (x(s, t), y(s, t)).

1?ParametricPlot

2

MagicCircles@ t_, n_D :=
8 Cos@n t - Pi + 2 Pi Quotient@n t, 2 PiDên D +
Cos@2 Pi Quotient@n t, 2 PiDênD,
Sin@n t - Pi + 2 Pi Quotient@n t, 2 PiDên D +
Sin@2 Pi Quotient@n t, 2 PiDênD<

3
ParametricPlot@
MagicCircles@t, 5D, 8t, 0, 2 Pi<,
PlotStyle Ø Thick, PlotRange Ø AllD

4

Manipulate@
ParametricPlot@MagicCircles@t, ncircD,
8t, 0, lastp<, PlotStyle Ø Thick,
PlotPoints Ø 6 ncirc, Axes Ø FalseD,

88ncirc, 3<, 1, 36, 1<,
88lastp, 2 Pi<, 0.0001, 2 Pi<D

5OrbitOrbit@ r_, t_, n_D :=
8 r Cos@n t D + Cos@tD, r Sin@n tD + Sin@tD<

6
ParametricPlot@
Evaluate@OrbitOrbit@.5, t, 12DD,
8t, -Pi, Pi<, PlotStyle Ø ThickD
Now we let both r and t vary. Some regions in the disk r œ (0.25,0.75)
don't get covered, and others get covered one or more times.

7
ParametricPlot@Evaluate@OrbitOrbit@r, t, 12DD,
8t, -Pi, Pi<, 8r, .25, .75<,
PlotStyle Ø 8Thick, Red<,
Mesh Ø False, PlotPoints Ø 72D

8

ParametricPlot@Evaluate@OrbitOrbit@r, t, 6DD,
8t, -Pi, Pi<, 8r, .25, .9<,
PlotStyle Ø 8Thick, Red<,
Mesh Ø False, PlotPoints Ø 36,
ColorFunctionØ HHue@Ò3, 1, 1, 0.25D &LD

2: A function, MagicCircles[t,n] , is defined to produce some inter-
esting parametric plots. It returns data in the form {x(t),y(t)}
where t ∈ (0, 2π). The second argument, n, is a parameter which
will determine how many circles get drawn.

3: ParametricPlot is used with the PlotStyle option set for thick
curves, and PlotRange set to All.

4: Here, we make ParametricPlot the first argument to Manipulate
so that the number of circles can be varied (note, that we force n to
iterate over integers). The trajectory of the curve can be visualized
here by interactively changing the upper bound of t with lastp.

5: We cook up another function, OrbitOrbit[r,t,n] , to demonstrate
filling a region. Data is returned in the form {x(r,t),y(r,t)},
and n is a parameter.

6: If r is fixed, ParametricPlot produces a curve as before.
7: Letting both r and t vary, produces a two-dimensional region—one

might think of the region as the set of all the curves for different r.
8: This is a slightly advanced example where we use a pure function

for the ColorFunction option. I’m including this example because
I think it’s pretty.

http://pruffle.mit.edu/3.016-2011/Notebooks/L05/Lecture-05.nb
http://pruffle.mit.edu/3.016-2011/pdf/L05/Lecture-05-4-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L05/Lecture-05-4-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-05/HTMLLinks/index_4.html
http://pruffle.mit.edu/3.016-2011
http://pruffle.mit.edu/3.016-2011/html/Lecture-05/HTMLLinks/index_4.html
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Lecture 05 Mathematica R© Example 5
Simple Plots of Data

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

One of Mathematica R© ’s integrated data resources, ElementData, is used to demonstrate plotting of discrete
data.

The next command uses Mathematicas Integrated Data Resources, it will
not retrieve the data unless you have an active internet connection

1ElementData@D
Here is a list of properties that we can access from ElementData

2ElementData@"Properties"D
However,  one should always question the provenence and accuracy of
data... Let's make a sanity check: the stable phase of carbon at STP is
graphite which is hexagonal (but not close packed).

3ElementData@6, "StandardName"D
ElementData@6, "CrystalStructure"D

We create a list of the densities of the first one hundred elements. Data
that is missing is reported with Missing[NotAvailable] or Missing[Unknown].

4Densities =
Table@ElementData@i, "Density"D, 8i, 1, 100<D

5ListPlot@DensitiesD

6
ListPlot@Densities,
BaseStyle Ø 8Large, FontFamily Ø "Helvetica",
PointSize@0.025D<D

7

ListLinePlot@Densities,
BaseStyle Ø 8Large, FontFamily Ø "Helvetica",
PointSize@0.025D<D

ListPlot@Densities, BaseStyle Ø
8Large, FontFamily Ø "Helvetica",
PointSize@0.025D<, Joined Ø TrueD

To see the data, we use the PlotMarkers Option.

8

ListLinePlot@Densities,
BaseStyle Ø 8Large, FontFamily Ø "Helvetica",
PointSize@0.025D<,

PlotMarkers Ø Automatic, AxesLabel Ø
8"Element Number", "Density HMKSL"<,
ImageSize Ø LargeD

1: ElementData will download physical data for the elements via an
internet connection. This command won’t work if you do not have
an active connection. However, similar data remain in the now
obsolete ChemicalElements package.

2: This produces a list of properties that are available. One should al-
ways suspect data sources! The stable form of carbon and graphite,
is hexagonal but not close-packed.

3: For example, this is how to access properties for carbon.
4: Table is used with ElementData to produce a list, Densities, of

the first 100 elements for subsequent use. Missing data are indicated
with the function Missing.

5: Simply using ListPlot produces an indexed scatter plot.
6: Like Plot, we can use options in ListPlot and ListLinePlot to

change the appearance of the graphic.
7: A set of line segments are drawn (approximating a curve) in

ListLinePlot—which is equivalent to using ListPlot with the
option PlotJoined set to True.

8: Using the PlotMarkers option, both the data and the line segments
are visualized.

http://pruffle.mit.edu/3.016-2011/Notebooks/L05/Lecture-05.nb
http://pruffle.mit.edu/3.016-2011/pdf/L05/Lecture-05-5-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L05/Lecture-05-5-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-05/HTMLLinks/index_5.html
http://pruffle.mit.edu/3.016-2011
http://pruffle.mit.edu/3.016-2011/html/Lecture-05/HTMLLinks/index_5.html
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Lecture 05 Mathematica R© Example 6
Getting More out of Displayed Data: Screen Interaction

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

Putting too much information on a single data graphic can make it difficult to understand. Using pop-up
windows with the mouse can be a nice way to improve graphical information flow. Here, we show how this can
be done using Tooltip. In these examples, where the extra information appears can be altered by replacing
Tooltip with StatusArea, Annotation, or PopupWindow.

Example with Tooltip to make graphics interactive----put your mouse over
a point and you get a pop-up with more information

1

ListLinePlot@Tooltip@DensitiesD,
BaseStyle Ø 8Large, FontFamily Ø "Helvetica",
PointSize@0.025D<,

PlotMarkers Ø Automatic, AxesLabel Ø
8"Element Number", "Density HMKSL"<,
ImageSize Ø LargeD
This is a slightly more complicated example of Tooltip. We create a data
structure with {x(i),y(i)} = {density(i), bulkmodulus(i)} and then tell Tooltip
to pop-up the element's symbol when the mouse is over it.

2

ListPlot@
Table@Tooltip@8ElementData@i, "Density"D,

ElementData@i, "BulkModulus"D<,
ElementData@i, "Abbreviation"D,
LabelStyle Ø 8Large<D, 8i, 1, 100<D,

BaseStyle Ø 8Large, FontFamily Ø "Helvetica",
PointSize@0.025D<, PlotMarkers Ø Automatic,

AxesLabel Ø 8"Density", "Bulk Modulus"<,
PlotLabel Ø "MKS Units",
ImageSize Ø FullD

1: This is a simple example of Tooltip: wrapping the first argument
to ListPlot or ListLinePlot inside Tooltip will show the value
of each data point when the mouse is over it.

2: I like this example which uses Tooltip[{xi,yi},labeli] to
produce an interesting way to pick material properties. Sup-
pose we were interested in finding materials that are very
stiff (large bulk modulus) but not very heavy (low density)—
plotting modulus versus density will identify “interesting” ele-
ments in the northwest region of the plot. Using Tooltip with
ElementData[i,‘‘Abbreviation’’] allows us to explore element
properties without cluttering up the plot. I use LabelStyle as an
option for Tooltip and ImageSize as an option for ListPlot to
make things readable on the display.

http://pruffle.mit.edu/3.016-2011/Notebooks/L05/Lecture-05.nb
http://pruffle.mit.edu/3.016-2011/pdf/L05/Lecture-05-6-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L05/Lecture-05-6-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-05/HTMLLinks/index_6.html
http://pruffle.mit.edu/3.016-2011
http://pruffle.mit.edu/3.016-2011/html/Lecture-05/HTMLLinks/index_6.html
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Lecture 05 Mathematica R© Example 7
Graphical Data Exploration, continued

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

We use BarChart and PieChart in the BarCharts and PieCharts packages to explore the relative abundances
of different crystal structures among the elements. A three-dimensional histogram of elements selected by their
melting points and densities is produced with Histogram3D from the Histograms package.

Here we do a small exercise to get a graphical representation of which
Crystal  Structures  the  elements  form,  and  represent  the  frequency  of
each type. First we create a list of known elemental crystal structures for
the first 100 elements.

1CrystalStructures = Table@ElementData@
i, "CrystalStructure"D, 8i, 100<D

2
UniqueStructures = Tally@Cases@

CrystalStructures, Except@Missing@_DDDD
MatrixForm@UniqueStructuresD

Here is a bar chart showing the frequency of crystal structures. 

3

Needs@"BarCharts`"D
BarChart@Transpose@UniqueStructuresD@@2DD,
BarLabels ->
Transpose@UniqueStructuresD@@1DD,
BaseStyle Ø 8Large, FontFamily Ø "Helvetica"<,
BarOrientationØ Horizontal, ImageSize Ø FullD

4

Needs@"PieCharts`"D
PieChart@Transpose@UniqueStructuresD@@2DD,
PieLabels ->
Transpose@UniqueStructuresD@@1DD,
BaseStyle Ø 8Large, FontFamily Ø "Helvetica"<,
ImageSize Ø FullD
As a last example, we produce a 3D histogram. The height of each bar
corresponds to the number of elements in a range of melting points and
range of densities.  

5

Needs@"Histograms`"D
histdata = DeleteCases@Table@

8ElementData@i, "AbsoluteMeltingPoint"D,
ElementData@i, "Density"D<, 8i, 100<D,

8Missing@_D, _< » 8_, Missing@_D<D
Histogram3D@histdata, AxesLabel Ø

8"Melting Point", "Density", "Number"<,
HistogramCategoriesØ 816, 24< D

1: CrystalStructures will be a list of the crystal structures of the
most stable solid phase. (I am not sure what is meant by most
stable—this is ambiguous, but that is what it says in the documen-
tation)

2: UniqueStructures will be a list of pairs—each item will be com-
prised of a crystal structure and how many times it appears. We
use Cases to remove missing data by using a pattern, and then use
Tally to create the data structure.

3: Because BarChart needs data of the form {y1, y2, . . .}, we need
to manipulate the data. To get the data, Transpose will put the
abundances into the second row, which is also the list we need. We
use the first row of the transpose for the BarLabels option. The
plot is easier to read if horizontal, so we use the BarOrientation
option.

4: Here we simply replace the barchart with PieChart.
5: As a final example, we create a histogram of elements with similar

densities and melting points. We use a pattern with an “or” in
Cases to remove missing data with DeleteCases, because we

cannot plot data where either the density or the melting point is
missing.

http://pruffle.mit.edu/3.016-2011/Notebooks/L05/Lecture-05.nb
http://pruffle.mit.edu/3.016-2011/pdf/L05/Lecture-05-7-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L05/Lecture-05-7-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-05/HTMLLinks/index_7.html
http://pruffle.mit.edu/3.016-2011
http://pruffle.mit.edu/3.016-2011/html/Lecture-05/HTMLLinks/index_7.html
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Lecture 05 Mathematica R© Example 8
Three-Dimensional Graphics

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

Here we show examples of three-dimensional graphics, although it would be better to say, 3D graphics projected
onto a 2D screen.

1

EPot@x_, y_ , z_ , xo_ , yo_D :=

1

Hx - xoL^2 + Hy - yoL^2 + z^2

2
SheetOLatticeCharge@x_, y_ , z_D :=
Sum@EPot@x, y, z, xo, yoD,
8xo, -5, 5<, 8yo, -5, 5<D
SheetOLatticeCharge  represents the electric field produced by an 11 by
11 array of point charges arranged on the x-y plane at z = 0. The following
command evaluates and plots the field variation in the plane z = 0.25:

3
Plot3D@
Evaluate@SheetOLatticeCharge@x, y, 0.25DD,
8x, -6, 6<, 8y, -6, 6<D
Note  below  how  theplot  is  set  to  contain  the  output  of  the  Plot3D
command---it is now a symbol assigned to a graphics object.  The number
of plotpoints is increased so that we can resolve all the bumps.  This will
take a while to compute on most machines.

4
theplot = Plot3D@
Evaluate@SheetOLatticeCharge@x, y, 0.25DD,
8x, -6, 6<, 8y, -6, 6<, PlotPoints Ø 60D

This demonstrates the use of RegionFunction plot option which is pure
function. Here, only the region inside a cylinder with radius 9 (x2  + y 2  §
92) is plotted.

5
Plot3D@
Evaluate@SheetOLatticeCharge@x, y, 0.25DD,
8x, -9, 9<, 8y, -9, 9<, PlotPoints Ø 60,
RegionFunctionØ HÒ1^2 + Ò2^2 § 81 &LD
This demonstrates the use of the ColorFunction  plot option which is pure
function. Here we use one of Mathematica ColorData functions.

6

Plot3D@
Evaluate@SheetOLatticeCharge@x, y, 0.25DD,
8x, -9, 9<, 8y, -9, 9<, PlotPoints Ø 60,
RegionFunctionØ HÒ1^2 + Ò2^2 § 81 &L,
ColorFunctionØ
HColorData@"TemperatureMap"D@Ò3D &LD

1: This is the electrostatic potential as a function of (x, y, z) due to a
single positive charge located at (xo, yo, z = 0) (i.e., anywhere on
the z = 0 plane).

2: By summing over a square lattice of unit charges, this function
(SheetOLatticeCharge ) computes the electrostatic potential over a
11× 11 square-lattice of point-charges centered on the z-plane as a
function of x, y, and z.

3: Plot3D plots data of the form f(x, y) (f is the height above a point
(x, y)). Therefore, we must fix one of the coordinates; here we
visualize the electrostatic potential at a fixed height (z = 0.25).
Note that the bounds for both the “horizontal” and “into-screen”
coordinates need to be specified.
You can rotate the graphics by dragging the mouse over the surface,
translate by dragging with the shift-key held down, and zoom with
the alt-key held down.

4: With sufficiently many PlotPoints, the structure of the potential
at a fixed distance z = 0.25 is made apparent. The finer details
are not resolved at lower resolutions, but using 60 points in each
direction may be overkill and this will be slow on older computers
and may not fit on machines with little memory.

5: RegionFunction is new as of Mathematica R© 6. This is an ad-
vanced examples, but it demonstrates how one can plot over non-
rectangular domains.

6: As a last example, the use of the new ColorData functions for the
ColorFunction option is demonstrated.
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Lecture 05 Mathematica R© Example 9
Colors and Contours: Three-Dimensional Graphics in Two Dimensions

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

Three dimensions can also be visualized by drawing level sets (as in a topographical map) or by drawing colors
(as in a relief map). The data burden is usually much smaller than a 3D graphics object, is sometimes easier to
interpret, and is certainly easier to publish.

1
theconplot = ContourPlot@
Evaluate@SheetOLatticeCharge@x, y, 0.25DD,
8x, -6, 6<, 8y, -6, 6<, PlotPoints Ø 32D

2
theconplot = ContourPlot@
Evaluate@SheetOLatticeCharge@x, y, 0.25DD,
8x, -4, 4<, 8y, -4, 4<, PlotPoints Ø 50,
ColorFunctionØ Hue, Contours Ø 24D

3

thedenplot = DensityPlot@
Evaluate@SheetOLatticeCharge@x, y, 0.25DD,
8x, -4, 4<, 8y, -4, 4<,
PlotPoints Ø 50, ColorFunctionØ
ColorData@"GreenBrownTerrain"DD

1: We reproduce the 3D graphics object for the sheet of electric charges
using ContourPlot. Here, the number of contours are picked ar-
bitrarily, but PlotPoints has to be increased to resolve details of
the function. Moving the mouse over one of the contours will give
a pop-up window for the value along that contour.

2: In the representation above, we might conclude that a positive
charge (such as a hole) confined to z = 0.25 could not be “trapped”
because no minima are obvious. Increasing the number of contours
with the Contours option improves the resolution so that local
minima can be observed. Here we pass Hue to the ColorFunction
option; however, I don’t find this satisfactory because both the
largest and the smallest values are red. In other words, the color
scaling runs completely around the outside of a color wheel and
ends up where it started.
Unless options are sent requesting otherwise, the values of the plot
will be scaled so that the maximum and minimum values are 1
and 0. Thus, two plots would look the same whether the differ-
ences are very small or very large. This feature is controlled by
ColorFunctionScaling.

3: Here, instead of a single color decorating the region between
two neighboring contours, a color is plotted directly indicat-
ing the “height” of the function. ColorData is used with
GreenBrownTerrain so that the high potentials look like snow-
covered peaks and lower potentials look like green river-deltas.
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Lecture 05 Mathematica R© Example 10
Graphics Primitives, Drawing on Graphics, and Combining Graphical Objects

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

Here, examples of placing Graphics Primitives into a Graphics Object are demonstrated by direct means: by a
drawing tool, and by sequential combination.

It can be useful to be able to build up arbitrary graphics objects piece-by-
piece using simple "graphics primitives" like Circle:

1thecirc = Graphics@Circle@82, 2<, 1.5DD

2Show@thecirc, Axes -> TrueD

3Show@thecirc, Axes -> True,
AxesOrigin Ø 80, 0<, AspectRatio Ø 1D
Now we take a simple plot…

4cosplot = Plot@Cos@xD, 8x, 0, 4 Pi<D

Adding Graphics Primitives to Plots (or 
other graphics objects) using the built-in 
Drawing Tool

Mathematica6 now has a simple drawing editor that allows you add text,
arrows,  lines,  and  shapes  to  existing  graphics.  To  do  this,  select  the
previous  graphics  output  for  the  cosine  plot.   While  the  graphics  are
selected, use the Menu Item "Drawing Tools" under Graphics. After you
have added shapes, text, etc.. move the cursor to the left of the selected
graphics object and type a symbol (below, I used "thenewplot")  for the
new (combined) graphics object to be assigned to.

5

thenewplot =

Hello World!

2 4 6 8 10

-1.0

-0.5

0.5

1.0

6thenewplot

Combining Graphical Objects using 
Show.

and overlay some text in places of our own choosing…

7
Show@cosplot, Graphics@
Text@"One Wavelength", 82 Pi, 0.5<DD,
Graphics@Text@"Two\nWavelengths",

84 Pi, 0.5<DD, PlotRange Ø AllD

8
Show@thenewplot, Graphics@
Text@"One Wavelength", 82 Pi, 1.1<DD,
Graphics@Text@"Two Wavelengths",

84 Pi, 1.1<DD, PlotRange Ø AllD

1: A Circle is a graphics primitive, and making a primitive an argu-
ment to Graphics returns a “Graphics Object.” When a graphics
object is output, graphics appear. The graphical output can be sup-
pressed by a trailing semicolon. In this case, thecirc is assigned to
the graphics object and it is displayed. If a trailing semicolon ap-
pears (e.g., a unit circle thecirc = Graphics[Circle[]];), then
the assignment is made to thecirc, but no graphics are sent to the
display.

2–3: Additional options can be added to a graphics object with Show.
The result is a new graphics object.

4: Here we create a graphics object and assign it to the symbol
cosplot by simply using Plot.

5: If the mouse is clicked on the display of the graphics object, then
it can be edited just like input. Clicking to the left of the object
allows you to type a symbol for assignment to the graphics object.
Shown here is the result of assigning a graphic to thenewplot. If the
graphic is selected, then a Drawing Tools Widget can be pulled up
under the Graphics menu item. With the widget, other primitives
such as text, lines, arrows, and shapes can be combined. When the
expression is evaluated, the combined graphics will be assigned to
thenewplot.

7–8: Here, Show is used to add text via a graphics primitive to the
original plot and to the new combined graphics object.
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Lecture 05 Mathematica R© Example 11
A Worked Example: The Two-Dimensional Wulff Construction

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

The Wulff construction is a famous thermodynamic construction that predicts the equilibrium enclosing-surface
of an anisotropic isolated body. The anisotropic surface tension, γ(n̂), is the amount of work (per unit area)
required to produce a planar surface with outward normal n̂. The construction proceeds by drawing a bisecting
plane at each point of the polar plot γ(n̂)n̂. The interior of all bisectors is the resulting Wulff shape.
A working example of the Wulff construction for a γ(θ) in two dimensions is produced here.

This next example shows a clever way to perform a famous thermody-
namic graphical construction called  the  Wulff construction. 

1

wulffline@8x_, y_<, wulfflength_D :=
Module@8q, wulffhalf = wulfflength*0.5,
x1, x2, y1, y2<, q = ArcTan@x, yD;
x1 = x + wulffhalf*Cos@q + Piê2D;
x2 = x + wulffhalf*Cos@q - Piê2D;
y1 = y + wulffhalf*Sin@q + Piê2D;
y2 = y + wulffhalf*Sin@q - Piê2D;
Graphics@Line@88x1, y1<, 8x2, y2<<DD

D

2
gammaplot@ theta_ , anisotropy_ , nfold_D :=
8Cos@thetaD + anisotropy*

Cos@Hnfold + 1L*thetaD, Sin@thetaD +
anisotropy*Sin@Hnfold + 1L*thetaD<

3
GammaPlot =
ParametricPlot@gammaplot@t, 0.1, 4D,
8t, 0, 2 Pi<, PlotStyle Ø
88Thickness@0.01D, RGBColor@1, 0, 0D<<D

4Show@Table@wulffline@gammaplot@t, 0.1, 4D, 2D,
8t, 0, 2 Pi, 2 Piê100<D, GammaPlotD

5

ToutesDesLoups@anisotropy_, nfold_D :=
Module@8GammaPlot <, GammaPlot =
ParametricPlot@gammaplot@t, anisotropy,
nfoldD, 8t, 0, 2 Pi<, PlotStyle Ø
88Thickness@0.01D, RGBColor@1, 0, 0D<<D;

Show@Table@wulffline@gammaplot@
t, anisotropy, nfoldD, 3D,

8t, 0, 2 Pi, 2 Piê100<D, GammaPlotDD

Manipulate@ToutesDesLoups@aniso, nfoldD,
88aniso, 0.1<, -0.9, 0.9<,
88nfold, 6<, 2, 16, 1<D

1: This function takes a point {x,y} as an argument and then re-
turns a graphics object of a line of specified length. The line is the
perpendicular bisector required by the Wulff construction.

2: This is an example γ(n̂) with the surface tension being smaller in
the 〈11〉-directions (if the anisotropy parameter is positive).

3: A particular instance of a γ-plot is assigned to GammaPlot.
4: Table is used to produce a list of graphics objects by calling wulf-

fline function at one hundred points on the γ-plot. The equilibrium
shape is the interior of all the curves and the γ-plot from which it
derives is superimposed by collecting all the graphics together with
Show.

5: All the above steps are collected together and bundled into a
Module to produce a single visualization function, ToutesDesLoups .
The function depends on the prior definition of gammaplot[t,α,n].

6: Here, ToutesDesLoups is used as the argument to Manipulate to
visualize the effect of changing the anisotropy factor and the n-fold
axis.

Graphical Animation: Using Time as a Dimension in Visualization

Animations can be very effective tools to illustrate time-dependent phenomena in scientific presenta-
tions. Animations are sequences of multiple images—called frames—that are written to the screen
interatively at a constant rate: if one second of real time is represented by N frames, then a real-time
animation would display a new image every 1/N seconds.

There are two important practical considerations for computer animation:

frame size An image is a an array of pixels, each of which is represented as a color. The amount of
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memory each color requires depends on the current image depth, but this number is typically
2-5 bytes. Typical video frames contain 1024×768 pixel images which corresponds to about 2.5
MBytes/image and shown at 30 frames per second corresponding to about 4.5 GBytes/minute.
Storage and editing of video is probably done at higher spatial and temporal resolution. Each
frame must be read from a source—such as a hard disk—and transfered to the graphical memory
(VRAM) before the screen can be redrawn with a new image. Therefore, along with storage
space the rate of memory transfer becomes a practical issue when constructing an animation.

animation rate Humans are fairly good at extrapolating action between sequential images. It de-
pends on the difference between sequential images, but animation rates below about 10 frames
per second begin to appear jerky. Older Disney-type cartoons were typically displayed at about
15 frames per second, video is displayed at 30 frames per second. Animation rates above about 75
frames per second yield no additional perceptable “smoothness.” The upper bound on computer
displays is typically 60 hertz.
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Lecture 05 Mathematica R© Example 12
Animation

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

Animations are a nice way to visualize an extra dimension, like time. An animation is composed of a sequence
of displayed graphics (frames) that are displayed iteratively. Animations are fairly easy to create–and can be
great fun.

1
Fxt@x_, t_D :=
Sin@3 Hx + 10 - tLD Exp@-Hx + 10 - tL^2D -
Sin@3 Hx - 10 + tLD Exp@-Hx - 10 + tL^2D

2

Animate@
Plot@Fxt@xvar, timevarD, 8xvar, -15, 15<,
PlotRange Ø 8-1, 1<, PlotStyle Ø 8Thick, Red<,
Filling Ø Axis, FillingStyle Ø
8RGBColor@0, 0.5, 0, 0.5D, RGBColor@
0, 0, 0.5, 0.5D<D, 8timevar, 0, 25<D

This is the solution to the temperature evolution equation (the diffusion
equation) for a square of length L initially at 500K embedded in a plate
initially  at  100K  ,  k  is  the  themal  diffusivity  (units  length2 /time).   We
introduce a "normalized" time and space variables variable t= k t/L2  and x
= x/L and h=y/L

3

TempSquare =

100 + 400 IntegrateB
ExpB-

Hx-xoL2 + Hy-yoL2
4 k t

F
4 p k t

,

8xo, -Lê2, Lê2<, 8yo, -Lê2, Lê2<F
NormalizeRules = 9t Ø t L2 ë k, x Ø x L ,

y Ø h L , xo Ø xo L, yo Ø ho L=;
TempSquare = Simplify@TempSquare ê.

NormalizeRules, Assumptions Ø k > 0 && L > 0D
We divide by 500 so that the temperatures should scale between zero
and one, and then use ColorFunctionScaling->False so that the colors are
consistent over time.

4

ListAnimate@
Table@Plot3D@TempSquareê500, 8h, -1, 1<,

8x, -1, 1<, PlotRange Ø 80, 1<, PlotPoints Ø
50, ColorFunctionØ "TemperatureMap",
ColorFunctionScalingØ FalseD,

8t, 0.001, .1, 0.002<DD

1: We will create a simple animation by cooking up a function f(x, t)
and then plotting it for a range of x and for a sequence of t’s.

2: This plot would be the frame associated with t = 0.
3: Using Plot as the argument to Animate produces the animation.

Note, xvar ‘belongs’ to Plot while timevar belongs to Animate.
Can you imagine what the animation would look like if we animated
over x and plotted over t? No? Try it!

4: We will produce a three-dimensional animation of how the temper-
ature would change in a flat plate, if at time t = 0 there is a square
at a different temperature than the rest of the plate. The governing
partial differential equation is ∂T/∂t = κ∇2T and for initial condi-
tions T (x, y, t = 0) = 500 when −L/2 < x, y < L/2 and T = 100
otherwise, the closed form solution can be expressed as an integral.
To make a plot, we must send a function that can be evaluated
numerically. To do this, we must non-dimensionalize variables (also
known, as dimensional scaling or normalizing variables). This is
done by dividing variables having physical units (such as x), with a
characteristic quantity in the model that has the same physical units
(here, we will use the model’s length L to produce a dimensionless
variable ξ = x/L) NormalizeRules is a set of rules that can be
applied to our physical problem. After the normalization rules are
applied, the properly scaled solution should be a non-dimensional
temperature-quantity as a function of non-dimensional space- and
time-quantities.

5: Finally, we will use Plot3D inside ListAnimate. Plot3D’s argu-
ment is scaled by dividing by the maximum temperature, so that
all temperature-like quantities scale between zero and one. We turn
off ColorFunctionScaling so that the ‘meaning’ of each color re-
mains constant in the animation. ListAnimate takes a list of
frames that are produced via Table.
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Lecture 05 Mathematica R© Example 13
An Example of Animating a Random Walk

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

A random walk process is an important concept in diffusion and other statistical phenomena. Functions to
simulate a random walk in two dimensions are constructed and then visualized with animations.

1randomwalk@0D = 80, 80, 0<<

2

randomwalk@nstep_Integer?PositiveD :=
randomwalk@nstepD =
8nstep, randomwalk@nstep - 1DP2T +
RandomReal@0.5D 8Cos@

theta = RandomReal@2 pDD, Sin@thetaD<<
Create a function that returns a graphic object putting the step number at
the correct place:

3
gtext@nstep_Integer?NonNegativeD :=
gtext@nstepD = Graphics@
Text@ToString@randomwalk@nstepD@@1DDD,
randomwalk@nstepD@@2DDDD;

4locations = Show@Table@gtext@iD, 8i, 0, 100<D,
PlotRange Ø All, AspectRatio Ø 1D

5
gline@nstep_IntegerD := gline@nstepD =

Graphics@Line@8randomwalk@nstep - 1D@@2DD,
randomwalk@nstepD@@2DD<DD;

6
Show@Table@gtext@iD, 8i, 0, 100<D,
Table@gline@jD, 8j, 1, 100<D,
PlotRange Ø All, AspectRatio Ø 1D

7Animate@Show@gtext@iD, gline@iDD,
8i, 1, 49, 1<D
If  we  use  the  PlotRange from a  graphical  object  that  contains  all  the
points, we can fix the framesize, we use AbsoluteOptions

8prange =
PlotRange ê. AbsoluteOptions@locationsD

9Animate@Show@gtext@iD, gline@iD,
PlotRange Ø prangeD, 8i, 1, 100, 1<D

10
Animate@
Show@Table@8gtext@iD, gline@iD<, 8i, 1, j<D,
PlotRange Ø prangeD, 8j, 2, 100<D

1–2: This is a recursive function that simulates a random walk process.
Each step in the random walk is recorded as a list structure, {
{iteration number}, { x , y }}, and assigned to randomwalk
[iteration number]. For each step (or iteration), a number between 0
and 1/2 is selected (for the magnitude of the displacement), and an
angle between 0 and 2π is selected (for the direction), with each of
these numbers being selected randomly from a uniform distribution
(using RandomReal). The function includes an assignment, so all
previous values are stored in memory.

3: The function gtext calls randomwalk to create a text graphics-
object located at the position corresponding to nstep.

4: This shows the history of a random walk after 50 iterations by
combining the graphics objects created by gtext . The resulting
graphics object gets assigned, because we will use some information
contained in it later.

5: To improve the physical interpretation of the previous graphic, it
would be an aid to the eye if the individual jumps were indicated.
To do this, the function gline calls randomwalk to create a line
graphics-object connecting the position corresponding to nstep to
its previous position.

7: Thus, we could animate by combining the line and the text with
Show and using that as the argument to Animate. However, this
result will be unsatisfactory because the “length scale” of each frame
will not be consistent.

8: To solve this problem, we find the bounds of a graphics object
(locations) that contains all the points, and then query its
PlotRange using AbsoluteOptions and this is assigned to a sym-
bol prange.

9: The animation is consistent now, but could still use some improve-
ment.

10: Here, we animate the graphics object that also contains the history
of prior jumps. This is not a terribly efficient way to do this because
we recreate the early steps many times over, but it works for our
purposes.
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Lecture 05 Mathematica R© Example 14
Worked Example (part A): Visualizing the Spinodal and Common Tangent Construction

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

The spinodal and common tangent construction is a fundamental thermodynamic concept used for the creation
of an alloy phase diagram from molar-free energies. This construction appears repeatedly in studies of materials.
An example of visualizing this construction as a function of temperature will be worked out in detail for the case
of a single curve and a binary alloy.
First, we will work out all the steps in detail that are used to build up a single visualization, and then we will
collect it all together in a reusable function.

A prototype molar free energy of mixing using the same xlogx function for
the  ideal  entropy  of  mixing  terms.   The  temperature  term is  a  scaled
energy (RT), and it is assumed that enthalpies have been scaled so that
the temperatures of interest (if there are any) are between T=0 and T=10.

1

xlogx@0D =
xlogx@1D = xlogx@0.0D = xlogx@1.0D = 0;
xlogx@x_D := x Log@xD
Gmolar@X_, T_D :=
5 X H1 - XL + T Hxlogx@XD + xlogx@1 - XDL + Xê2
Here is the shape of our prototype free energy at T=3/2

2p1 = Plot@Gmolar@x, 3ê2D,
8x, 0, 1<, PlotStyle Ø ThickD

We will need the bounds of the above graphics object:

3
88graphxmin, graphxmax<,

8graphymin, graphymax<< =
PlotRange ê. AbsoluteOptions@p1, PlotRangeD
First  let's  determine  where  the  spinodal  region  (by  finding  where  the
second derivative with respect to composition is negative

4ddg = D@Gmolar@x, 3ê2D, 8x, 2<D
Then,  use  RegionPlot  to  illustrate  the  range  over  which  spinodal
decomposition is spontaneous

5
p2 = RegionPlot@ddg < 0,

8x, graphxmin, graphxmax<,
8T, graphymin, graphymax<,
PlotStyle Ø RGBColor@0, 1, .5, 0.1DD

Show them both together to identify the spinodal region

6Show@p1, p2D

1: We cook up a prototypical molar free-energy as a function of molar
composition, X, and temperature T. The x log x terms are calculated
with a handy function, xlogx , which will handle the zeroes without
numerical difficulty at 0 Log[0].

2: The molar free-energy is plotted at a particular temperature (T =
1.5) and assigned to a symbol, pl.

3: We will need the bounds of the plot to create other graphical ob-
jects. We grab the bounds with AbsoluteOptions and assign them
to variables using a handy assignment construction {a,b} = List.

4: The spinodal region is the easiest to visualize—it is the region where
the second derivative of the molar free-energy is negative. The
second derivative is assigned to ddg.

5: RegionPlot evaluates its first argument over a square region and
fills where the argument is true. It is exactly what we need in order
to visualize the spinodal region. We use the bounds that we calcu-
lated from the free energy curve as the bounds for RegionPlot.

6: Showing both plots together, we visualize the spinodal region.
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Lecture 05 Mathematica R© Example 15
Worked Example (part B): Visualizing the Spinodal and Common Tangent Construction

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

The common tangent is any finite line segment that touches the molar free-energy at two points which have the
same derivative. For phase diagrams, we are interested only in lower common tangents (i.e., lines that touch the
molar free-energy, but always lie below all values). One can picture the common tangent by imagining that an
elastic string is stretched along a molar free-energy curve; the common tangents are where the string pulls away
from the the curves.
The common tangent is related to the convex hull that appears in computational geometry.

We  can  use  the  ConvexHull  to  find  the  common  tangent  lines;  this
function is in the Computational Geometry Package.

1<< ComputationalGeometry`

First we compute a list of values along the molar free energy curve, then
compute those that lie outside the common tangent(s) (i.e., the convex
hull). Because the points are given in order, we might as well
sort them on the way back out.  Note, the convex hull program gives the
indices of the vertices that are on the hull.

2
npoints = 100;
gvals = Table@8x, Gmolar@x, 3ê2D<,

8x, 0, 1, 1êN@npoints - 1D<D;
We  only  want  the  lower  convex  hull;  therefore  we  add  some  "fictive"
points to the beginning and the end of the data.  The the fictive points add
a rectangle to the top of the curve that should be part of the computed
convex hull.

3
gmax = Max@Transpose@gvalsD@@2DDD;
PrependTo@gvals, 80, 10* Abs@gmaxD<D;
AppendTo@gvals, 81, 10* Abs@gmaxD<D;

After we compute this hull, we shift the hull by one and take off its first
and last  element.  We strip  the first  and last element from the discrete
values of free energy as well.

4
chull = Sort@ConvexHull@gvalsDD;
chull = Drop@Drop@chull - 1, 1D, -1D
gvals = Drop@Drop@gvals, 1D, -1D

The  common  tangent(s)  correspond  to  gaps  in  the  vertex  list  of  the
common tangent. We will use Split to find the set of continous sequences.

5convexparts = Split@chull, HÒ2 - Ò1 < 2L &D

881, 2, 3, 4, 5, 6<, 895, 96, 97, 98, 99, 100<<

1: To calculate convex hulls, the ComputationalGeometry package is
needed.

2: ConvexHull operates on discrete data. Discrete data are created
by evaluating Gmolar at npoints evenly-spaced mesh-points. We
use Table and assign the discrete data list to gvals.

3: ConvexHull calculates the entire hull (i.e., the polygon that en-
closes all other points), and we are only interested in the lower hull.
Thus, we add a rectangle to the top of the data which is guaranteed
to be part of the hull, calculate the hull and discard the upper parts.
Here we use PrependTo to add a point ten times higher than the
maximum value on the left side of the region, and use AppendTo to
add a corresponding point to the right side of the region. We have
thus added a known rectangle that we will remove later.

4: ConvexHull returns a list of indices of points from the original data.
Because the original data was created in an orderly left-to-right way,
we can use Sort to put the data in a predictable form. Because
there was an additional point added at the beginning of gvals, we
will need to shift the indices down by one (by subtracting 1 from
each index), and then we use Drop to remove the first and last
elements of both chull and gvals.

5: Thinking about the indices on the convex hull, any ordered sequence
of the sorted list must be part of original discrete data and also part
of the convex hull. We are interested in connecting the last point
of any isolated sequence to the first point of the next sequence. We
can use Split to find the isolated sequences.

http://pruffle.mit.edu/3.016-2011/Notebooks/L05/Lecture-05.nb
http://pruffle.mit.edu/3.016-2011/pdf/L05/Lecture-05-15-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L05/Lecture-05-15-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-05/HTMLLinks/index_15.html
http://pruffle.mit.edu/3.016-2011
http://pruffle.mit.edu/3.016-2011/html/Lecture-05/HTMLLinks/index_15.html
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Lecture 05 Mathematica R© Example 16
Worked Example (part C): Visualizing the Spinodal and Common Tangent Construction

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

With the information contained in the convex hull data, graphical objects are created to represent the gaps in
that data. The gaps coincide with the common tangents.

Now we create graphics objects for each of the two-phase regions (i.e.,
the gaps in the convex hull) and collect them all into a graphics list for
subsequent display.

1

len = Length@convexpartsD;
graphicslist = 8<;
i = 1;
While@i + 1 § len, leftpoint =
gvals@@Last@ convexparts@@iDD D DD ;
rightpoint = gvals@@
First@ convexparts@@i + 1DD D DD;

ctline = 8Red, Thick,
Line@8leftpoint, rightpoint<D<;

twophaseregion = 8RGBColor@0.5, 0, 0, 0.2D,
Rectangle@8leftpoint@@1DD, graphymin<,
8rightpoint@@1DD, graphymax<D<;

AppendTo@graphicslist, ctlineD;
AppendTo@graphicslist, twophaseregionD;
i++

D
p3 = Graphics@graphicslistD

2Show@p1, p2, p3D

1: We traverse the list convexparts and construct graphical objects
corresponding to the regions of isolated sequences. Because it is
possible that a curve may have any number of common tangents, we
accumulate graphics primitives in a list as we encounter common
tangents. A graphics object is created from the list of graphics
primitives.
The number of isolated sequences is assigned to len and we start
with an empty list graphicslist. Then, we loop over the list of
length len. At each iteration in the loop, we identify the last vertex
on the previous point of the convex hull sequence and the first part
of the next sequence. We use those indices to extract the points
on the curve that have been stored in gvals. With the two points,
we create red lines for the common tangents—and with the extra
graphical information about the original plot, draw a rectangle for
the region.
Finally, a new graphics object (p3) is created.

2: Our final visualization is obtained by showing all three graphics
objects together.

http://pruffle.mit.edu/3.016-2011/Notebooks/L05/Lecture-05.nb
http://pruffle.mit.edu/3.016-2011/pdf/L05/Lecture-05-16-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L05/Lecture-05-16-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-05/HTMLLinks/index_16.html
http://pruffle.mit.edu/3.016-2011
http://pruffle.mit.edu/3.016-2011/html/Lecture-05/HTMLLinks/index_16.html
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Lecture 05 Mathematica R© Example 17
Worked Example (part D): Visualizing the Spinodal and Common Tangent Construction

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

The previous three parts illustrate how one might actually go about developing a complex visualization: create
simple working parts and then integrate them together into something more complex. (Don’t get the impression
that I didn’t make any errors or silly conceptual mistakes as I created this example! It was very time consuming
and, while it looks fairly straightforward in hindsight, it was a challenge to build.) However, once finished, it is
useful to collect everything into a single function that can be reused.

1

Needs@"ComputationalGeometry "̀D;
CommonTangentConstruction@
Gm_, T_, npts_: 100D :=
Module@8x, y, p1, p2, p3, gxmin, gxmax,
gymin, gymax, ddg, gvals, gmax,
chull, conprts, len, glist = 8<, i = 1,
lftpt, rtpt, ctline, twophasreg<,
p1 = Plot@Gm@x, TD, 8x, 0, 1<,
PlotStyle Ø ThickD;

88gxmin, gxmax<, 8gymin, gymax<< =
PlotRange ê.
AbsoluteOptions@p1, PlotRangeD;

ddg = D@Gm@x, TD, 8x, 2<D;
p2 = RegionPlot@ddg < 0,

8x, gxmin, gxmax<, 8y, gymin, gymax<,
PlotStyle Ø RGBColor@0, 1, .5, 0.1DD;

gvals = Table@8x, Gm@x, TD<,
8x, 0, 1, 1êN@npts - 1D<D;

gmax = Max@Transpose@gvalsD@@2DDD;
PrependTo@gvals, 80, 10* Abs@gmaxD<D;
AppendTo@gvals, 81, 10* Abs@gmaxD<D;
chull = Sort@ConvexHull@gvalsDD;
chull = Drop@Drop@chull - 1, 1D, -1D;
gvals = Drop@Drop@gvals, 1D, -1D;
conprts = Split@chull, HÒ2 - Ò1 < 2L &D;
len = Length@conprtsD;
While@i + 1 § len,
lftpt = gvals@@Last@ conprts@@iDD D DD ;
rtpt = gvals@@ First@ conprts@@i + 1DD D DD;
ctline =
8Red, Thick, Line@8lftpt, rtpt<D<;
twophasreg = 8RGBColor@0.5, 0, 0, 0.2D,
Rectangle@8lftpt@@1DD, gymin<,
8rtpt@@1DD, gymax<D<;

AppendTo@glist, ctlineD;
AppendTo@glist, twophasregD; i++D;

p3 = Graphics@glistD; Show@p1, p2, p3DD

1: Here is the result, CommonTangentConstruction , which collects
the previous three examples together and returns a single graphical
object. CommonTangentConstruction takes two arguments for the
molar free-energy function, Gm, and temperature T, and an optional
third argument for the precision to calculate the hull. The optional
argument is indicated by the :100 and will default to 100 if not
passed to the function.
The first argument must be the name of a defined function of com-
position and temperature.

http://pruffle.mit.edu/3.016-2011/Notebooks/L05/Lecture-05.nb
http://pruffle.mit.edu/3.016-2011/pdf/L05/Lecture-05-17-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L05/Lecture-05-17-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-05/HTMLLinks/index_17.html
http://pruffle.mit.edu/3.016-2011
http://pruffle.mit.edu/3.016-2011/html/Lecture-05/HTMLLinks/index_17.html
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Lecture 05 Mathematica R© Example 18
Worked Example (part E): Visualizing the Spinodal and Common Tangent Construction

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2011.

Examples of visualizing with CommonTangentConstruction are presented here.

1CommonTangentConstruction@Gmolar, 1.5D

2Manipulate@CommonTangentConstruction@
Gmolar, T, 300D, 88T, 2<, 0, 3<D

T

1: This is the construction at T = 1.5.
2: Here we use the construction as an argument to Manipulate so

that we can observe the effect of temperature on the spinodal and
common tangent construction.

http://pruffle.mit.edu/3.016-2011/Notebooks/L05/Lecture-05.nb
http://pruffle.mit.edu/3.016-2011/pdf/L05/Lecture-05-18-COL.pdf
http://pruffle.mit.edu/3.016-2011/pdf/L05/Lecture-05-18-BW.pdf
http://pruffle.mit.edu/3.016-2011/html/Lecture-05/HTMLLinks/index_18.html
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