
MIT 3.016 Fall 2009 Appendix c© W.C Carter 1

Appendix: Non-Dimensionalizing (Scaling, or Normalizing)

Units and Numbers

Many readers will find the following discussion of units and non-dimensional numbers to be banal, or
too many words for a topic which everyone understands intuitively. Perhaps, they are right. However,
I believe that what follows produces a best-practice technique to organize thoughts about the nature
of a model and the manner in which results are communicated most efficiently and naturally.

I also believe that non-dimensionalizing (also known as scaling or normalizing) should be a prelim-
inary step to developing any model.

1. Non-dimensionalizing helps the modeler decide which are the relevant variables and how they
might be related.

2. It provides a technique to do dimensional analysis1.

3. It reduces the number of extraneous symbols that appear in calculations that are the origin of
silly mistakes.

4. It eliminates the possibility of reporting nonsense such as the logarithm of a kilogram2.

It is better and correct to report “log(mass) in SI units” which is another way of saying the mass is
the ratio of the reported/predicted mass to a unit kilogram. The discussion that follows a proposition
that it is usually the best practice to report results as a dimensionless ratio of the reported quantity to
a unit that is relevant to the physics of the problem. For example, “log(µ) where µ is the ratio of the
mass to the mass of the sun” when the model is about planets—and “. . . where µ is the ratio of the
mass to that of a neutron” when the model is about atoms.

If dimensionless ratio is order unity, then so much the better: “The prediction is that the star has
12.5 solar masses,” or “We have measured band gap and it is 1.5 times larger than that of pure silicon
at room temperature.” These numbers are easier to interpret than mstar = 2.5 × 1031 kilograms and
Egap = 1.8× 10−19 joules.

Of course, sometimes it is required that a result should be reported in a unit. If so, it is easy to
turn a dimensionless quantity into one that has units by multiplication.

A Whimsical Metaphor

Suppose that we are looking for evidence of extraterrestrial intelligence—or wish to broadcast that
intelligence exists on earth—though pulses of electromagnetic radiation. How would such a thing be
accomplished?

We could broadcast numbers with fixed short pulses and pauses: 3 pulses, pause; 1 pulse, pause;
4 pulses, pause; 1 pulse, pause. . . This goes on for a while, and there are are no pulses larger than 9
(we might use two consecutive pauses as a zero–the absence of a pulse). After it becomes sufficiently
unlikely that there are going to be any pulse sequences greater than nine, a hypothesis can be formed,
“hmmm (or an alien equivalent thereof), this is probably something in base 10.” In fact the ratio of
pauses to pulses is exactly 10. If these pulses could be translated to a more convenient base, say 7, it
would begin to look like the digits of π in base 7. In fact they listen long enough to establish that they
can predict the next set of pulses with extremely high certainty.

New hypotheses can be formed. “This is either a very unusual physical phenomenon, or evidence
that there is probably another intelligence in the direction of these pulses.” After many pulses have

1Dimensional analysis in a nutshell: how one measureable quantity will depend on another (e.g, if the size of a sample
is doubled and everything else remains the same, then the concentration profile will have the same characteristics at a
time that is four times longer)

2Nevertheless, quantities like “log(mass) are often reported which is–I believe–a deplorable practice
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been sent, there is a long break, and then new sequence is transmitted—2 pulses; 7 pulses; 1 pulse; 8
pulses—indicating the digits in base 10 of e. The hypothesis of other intelligent life becomes more and
more plausible.

Additional hypotheses would follow such as: a knowledge of geometry (vis-a-vis π); a knowledge of
calculus (e); they have developed enough technology to generate and control electromagnetic pulses;
their standard unit of time is about the length of a pause; they probably learned how to count using 10
things (“What an odd being it would be to have an even number of appendages. If they had the same
number on both sides, it would be too difficult to know left-handed from right-handed: they probably
have three on one side and seven on the other, because seven is so intuitively natural”)

The fictional communication above is plausible because pure numbers are being transmitted; mutual
agreement of a standard unit is unnecessary.

Before reading on, reflect on this question for a minute or two: “How would we convey that we
might know something about the special theory of relativity; for example, that the speed of light in a
vacuum is always the same independent of the inertial reference frame.”

It wouldn’t be sensible to broadcast 2-9-9-7-9-2-5. . . (i,e, c ≈ 2.997925×108 meters/second). There
is know way of indicating a unit of distance and a unit of time.

However, “important” quantities like the speed of light do appear in dimensionless number that,
as far as we know, are the same everywhere in the universe. For example, the fine structure constant
α = e2/(εoh̄c) (i.e., the square charge of an electron divided by the product of [the permittivity of
free space] [Planck’s constant divided by 2π] [the speed of light]) appears frequently in atomic physics,
The number 137 is frequently a favorite among physical scientists because 1/α is approximately 137
(α = 1/137.036)

So, the sequence 1-3-7-0-3-. . . is transmitted (presumably with as many digits as we have established
by experiment). They form the hypothesis that we know something about important physical constants
like c and h̄—and perhaps the technical quality of our experimental apparatus. After this we might
send our value of c in units of e2/(αεoh̄) and perhaps they could infer the ratio (meters/second) that
we use as a standard for speed.

There are many holes in the logic of this metaphor, but the significance is clear: the possibility of
a misunderstanding or error is reduced when physical quantities are non-dimensionalized.

Dimensions and Physics

There can be no physical consequence of the choice of units. The half-life of carbon-14 is the same
regardless of whether that data is reported in seconds, years, multiples of the world record for the 100
meter dash, or the time it takes a photon to travel one Bohr radius. Of course, the number looks
different, but the physical quantity is the same. This creates a bit of overhead, one has to keep track
of the units and make sure they are consistent. Experience shows that misunderstanding about units
can lead to unfortunate errors.

However, the ratio of half-life of Uranium-236 to that of Carbon-14 is a fixed quantity—independent
of which units are used—it is always 0.008. This ratio has no units: it is just a number and nothing
else except what it represents. In many cases, where the two half-lives are pertinent to the physical
problem that is being modeled, this ratio is more illustrative than the individual half-lives. In the case
where the individual numbers are important, many scientists know that the half-life of Carbon-14 is
about 5700 years: U-235 is easy to calculate from the ratio.

Other instances where using numbers-without-units are plotting and manipulating data. For ex-
ample, Arrhenius plots have log(c) as the y-axis and 1/T as the x-axis. (Figure 1) However, the
concentration, c, is sometimes reports in units of 1/meter3, 1/cm3, or some other inverse-volume mea-
sure. What does it mean to take the logarithm of 1/meter3? The log doesn’t make sense: note that
the expansion of log(x) around x = 1 is (x− 1)− 1

2(x− 1)2 + 1
3(x− 1)3 + O

(
(x− 1)4

)
: all powers of x

appear and wouldn’t make sense if x had a unit associated with it.
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One way to get around this is to make the units non-dimensional. For example, define new dimen-
sionless unit:

τ ≡ T/Tmelting and c ≡ c(T )/c(Tmelting) (1)

Figure 1: Examples of plotting kinetic data with the Arrhenius relation where Tmelt = 873K and c(Tmelt) =
8.7× 10−17/meters3. Each represents the same data: the first with SI units, the second with normalized
quantities, the third with “self-explanatory” graphics. Which is better? The slopes are meaningful too;
how should they be reported?

Every model should produce a measurable result than be used to compare an experiment or to
make a prediction. The types of measurement can be placed into two categories:

Dimensional: Measurements/predictions that depend on unit dimension that is agreed upon or un-
derstood by all interested parties. For example, average miles per gallon for gas mileage and
for the coefficient of linear thermal expansion, change-in-length/(reference-length×temperature)
which is typically reported as 2 × 10−6/Kelvin for hard materials, but may be more “intuitive”
if reported as 2 microns/(meter×Kelvin).

Non-Dimensional Measurements or predictions that have no units attached to them, such as the
ratio of the average diameter of a circular object to its perimeter ”numbers” (or better yet the
average diameter of a circular object to its perimeter divided by π: a measure of “nearness” to a
circle).

Measurements or predictions that are scaled by measured physical constants, such as the velocity
of an airplane divided by the velocity of sound in air at STP; the measured density of blood
at different temperature divided by the density of pure water at STP; the velocity of a neutron
divided by e2/(εoh̄).

Measurements or predictions that are scaled by quantities that pertain to a particular model. For
example, the height of a cylinder l can be normalized by introducing a non-dimensional height
λ = l/R where R is the cylinder radius; the volume of the cylinder is λπR3 (all the length units
appear as R). Another is sample is the force on a spring: F = k(x − xo). A non-dimensional
length ε ≡ (x− xo)/xo and a non-dimensional force φ = F/(kxo), to produce a non-dimensional
form of Hooke’s law: φ = ε. In other words, the force versus displacement plot for every linear
spring looks the same if one plots F/(kxo) on the y-axis and (x− xo)/xo on the x-axis.

Example: Scaling the Lennard-Jones Potential

A simple and useful model for the interaction between two atoms is the Lennard-Jones potential:

U(r) =
a

r12
+

b

r6
(2)
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and is sometimes called the 6–12 potential. The rationale for the potential is that there is a short-range
(a/r12) repulsive term that models the overlap of the electronic orbitals of two atoms; the long-range
(−b/r6) attractive term that can be derived from two fluctuating dipoles3. The reference zero-energy
in this model is chosen at r =∞. With this rationale, the potential U(r) in Eq. 2 should be attractive
at large r (i.e., positive slope), repulsive at small r (negative slope) and have a minimum (zero slope) at
the equilibrium separation rmin. So, given the function in Eq. 2 in parameters a b, and a quick way to
plot and verify that the function has this behavior, what do beginners (and, sadly, many experienced
scientists and engineers) do? They guess (Fig. 2).
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Figure 2: Hit and miss method to visualize physical behavior of a model: given parameters a and b,
how does one find the right ballpark for picking these parameters? It is bad enough to guess for only
two parameters; it becomes much worse of their are many model parameters. Even worse, a and b have
energy-length units; what does it mean to pick a number for their values? Once picked, what are the
meaning of the units for the energy and distance in the plot?

There is a methodical—and in my opinion superior—method: non-dimensionalizing.
In Eq. 2 there are two characteristic parameters: the equilibrium separation and the depth of the

well. There are two meaningful physical quantities; there are two opaque model parameters. The
method follows from solving two equations for two unknowns:

d

dr

(
a

r6
+

b

r12

) ∣∣∣∣
r=rmin

≡ 0 → r6
min = −2b

a
(3)

(
a

r6
min

+
b

r12
min

)
≡ −Emin (4)

3Sometimes called London dispersion forces
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where Emin is chosen as a positive term so that the minimum is located at a negative value, −Emin,
relative to the zero at r =∞. Solving for a and b in terms of rmin and Emin and inserting into Eq. 2:

a = −2Eminr
6
min

b = Eminr
12
min

→ U(r)
Emin

=
(

r12
min

r12
− 2r6

min

r6

)
(5)

Both sides of the above equation are non-dimensional. This can be taken one step futher by introducing
a characteristic non-dimensional energy ρ ≡ r/rmin and υ(ρ) ≡ U(r)/Emin:

υ(ρ) =
1

ρ12
− 2

ρ6
(6)

All the physics of the Lennard-Jones potential can be found in Eq. 5 or Eq. 6. In hindsight, the
form of the dimensionless equation could have been guessed without solving: the function had to be
U(rmin) = −Emin and the powers of the length terms had to be six and twelve.

It is now a simple matter to derive other physical quantities—expanding the energy about its
minimum:

υ(ρ)− υ(ρ = 1) =
k

2
(∆ρ)2 +

α

6
(∆ρ)3 =

72
2

(∆ρ)2 − 1512
6

(∆ρ)3 (7)

The cofactor k = 72 is the non-dimensional spring-constant for this Lennard-Jones system; the di-
mensional spring-constant is 72 × Emin/r2

min. The characteristic atomic oscillation frequency must be

ω =
√

k/(Matom/Mproton) =
√

72/µ. Thus the dimensinal characteristic oscillation frequency is

ω ≈ 6
√

2/Z ×

√
Emin

Mproton

1
rmin

(8)

and this provides a new dimensionless quantity, a characteristic time: τ = The latent heat of evapo-
ration for argon is about 1/10 electron volt, we can take that as an approximation to Etextmin, rmin

is probably around 10 angstroms, a proton has a mass of about 10−27 kilograms; so the characteristic
frequency for bound argon is about 1012/second. For an atom with four times the mass, the frequency
would be about half.

Scaling and non-dimensionalizing frequently permits a rapid comparision similar physical systems,
but with differing parameters. I believe putting numbers in from the very beginning is much less
instructive—and much more prone to errors due to unit matching on both sides of an equation.

There is also a physical interpretation of the cubic term (∆ρ)3 in Eq. 7. This cubic term has a
negative coefficient; therefore the total energy is lowered if the atom spends a bit more time at ∆ρ > 0
(i.e., expanded). This is a useful way to interpret the physics of the coefficient of thermal expansion.

Here is an example of how to do this Lennard-Jones scaling with Mathematica.
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Example Scaling for Lennard-Jones Potential
Example of Non-Dimensionalizing: The Lennard-Jones Potential

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2009.

In this example, a suggested sequence of Mathematica R© operations to non-dimensionalize a potential is
presented.

1 Example of Non-Dimensionalizing the Lennard-Jones Potential
1LJPotential = aë r^6 + bë r^12

AFind the solutions for extrema of the potential in terms of r by solving for the zeros of the derivative

2rminsol = Simplify@Solve@D@LJPotential, rD ã 0, rDD

This result may look a bit confusing at first, but they are all the same solution. An alternative way to observe this is shown 
at the end of this notebook.

BDefine Eminsol as the value at the minimum

3Eminsol = LJPotential ê. rminsol

CSolve for a and b in terms of the physical parameters Emin and rmin (using the second of the six solutions).  Using 
Emin as positive, then -Emin is used for the minimum.

4absols = Solve@8rmin ã r ê. rminsol@@2DD, -Emin ã Eminsol@@2DD<, 8a, b<D

DThis illustrated that all the solutions are the same.

5Solve@8rmin ã r ê. rminsol@@3DD, -Emin ã Eminsol@@3DD<, 8a, b<D

ENon-dimensionalize the potential by dividing by an energy.  Here we want the potential to be -1 at the minimum, so 
we divide by the potential by Emin

6LJScaled = ExpandALJPotentialë Emin ê. absolsE@@1DD

FThe right hand side is non-dimensional, introduce a non-dimensional variable r

7LJDimensionless = LJScaled ê. r Ø r rmin

8Series@LJScaled, 8r, rmin, 3<D
Series@LJDimensionless, 8r, 1, 3<D

9PlotBLJDimensionless, 8r, .5, 3<, PlotLabel Ø "Non-Dimensionalized Lennard-Jones Potential", AxesLabel Ø :"
r

rmin
", "

Potential

Emin
">F

1 Define the Lennard-Jones potential in terms of
a and b.

2 Solve for the mininum; name the rule for the
solution. The result may be a bit odd, but the
value of r6 is the same for all the solutions.
Because the potential depends only on r6 and
r2×6, this makes sense.

3 Replace the solution to find the value of the
minima.

4–5 Introduce the two physical variables through
equalities.

6 Introduce the dimensionless energy by dividing
through by the characteristic energy.

7 Introduce the dimensionless length using a
rule.

8–9 Examples of looking at the expansion near the
stable solution and a plot that is easier to un-
derstand in terms of physical variables.

It would be possible to define all quantities up from (e.g., g = −9.9meter/second2) and then type
expressions such as x = xo + v t + g t2̂/2 to make sure units are consistent. But, I think this is
not such a good idea because it doesn’t take advantage of Mathematica’s symbolic capabilities.

Nevertheless, there are ways to automatically keep track of units. Here is an example using the
Units package.

http://pruffle.mit.edu/3.016-2009/Appendices/Notebooks/LJPotential-Scaling.nb
http://pruffle.mit.edu/3.016-2009/Appendices/pdf/LJPotential-Scaling-COL.pdf
http://pruffle.mit.edu/3.016-2009/Appendices/pdf/LJPotential-Scaling.pdf
http://pruffle.mit.edu/3.016-2009/Appendices/html/LJPotential-Scaling/
http://pruffle.mit.edu/3.016-2009
http://pruffle.mit.edu/3.016-2009/Appendices/html/LJPotential-Scaling/
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Example Using Units with the Units Package
Example of Using Units in Calculationsl

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2009.

In this example, Mathematica’s Units package is used to keep track of–and mix–units in a computation.

1 Examples of Using the Units Package
ALoading the Package

1Needs@"Units`"D

BSimple Example of an Unusual Conversion of Units

2ConvertA24 Mileë Gallon, 1ë AcreE

CExample of Mixing Units in a Simple Physics Problem

Motion of an object that obeys the ODE d
2 x

dt2
=-g

3x = xo + vo t - g t^2ë 2
velocity = D@x, tD

Define a particular instance of velocity by giving initial conditions and constants in different units

4ParticularVelocity = velocity ê. 9g Ø 32 Footë HSecondL^2, vo -> 1024 Milli Meterë Minute, xo -> 1 Yard, t Ø 1.5 Minute=

The velocity remains in mixed units, but is easily converted to a consistent unit

5ConvertAParticularVelocity, Mileë DayE

And additional example for position

6
conditions = 9g Ø 9.8 Meterë HSecondL^2, vo Ø 10 000 Leagueë Fortnight, xo Ø 0, t Ø 1 Second=

Convert@x ê. conditions, MeterD

1 Loading in the Units package.
2 Miles per gallon has units of inverse area and

so does 1/acre: here is an example of how to
find the conversion factor.

3 Define an example model for the position of an
object in free-fall through a vacuum. Assign
the correct expression to the velocity by using
a derivative of the position.

4 Use a Replace with a set of rules to find a
particular velocity. In this example, the units
for the variables are chosen inconsistently. It
is an artificial example, but will turn out fine.
The result will have strange mixed-up units as
well.

5 The Convert function in the Units package al-
lows the expression to reported in chosen units.

6 Here is an additional example for the position.

Example: Scaling a Partial Differential Equation (The Diffusion Equation)

Sometimes, it can be very instructive to non-dimensionlize variables within differential equations. For
an example, consider the diffusion equation which is a model for the time-evolution of the concentration
as a function of its position, or c(x, t). The concentration is a function of where and when (For example,
the concentration will have the value 1 mole/cubic meter at 0.01 meters below the surface after 12
minutes; or, at 10 minutes, the spatial variation of the concentration is given by a spatial function
c(x, t = 12min); or, considering the point at x = 0.01meter, the time variation of the concentration

http://pruffle.mit.edu/3.016-2009/Appendices/Notebooks/UsingUnits.nb
http://pruffle.mit.edu/3.016-2009/Appendices/pdf/UsingUnits-COL.pdf
http://pruffle.mit.edu/3.016-2009/Appendices/pdf/UsingUnits.pdf
http://pruffle.mit.edu/3.016-2009/Appendices/html/UsingUnits/
http://pruffle.mit.edu/3.016-2009
http://pruffle.mit.edu/3.016-2009/Appendices/html/UsingUnits/
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will be by a spatial function c(x = 0.01meter, t)). The diffusion equation has the form:

∂c(x, t)
∂t

= D
∂2c(x, t)

∂x2
(9)

D is known as the diffusion coefficient—it is a material quantity that depends on what species is
flowing (diffusing) and through what medium—what are its units? Because the units must match
on both sides of Eq. 9, D must have the same units as x2/t (i.e., length2/time. The concentration
c(x, t) is the same on both sides of the diffusion equation 9—therefore it doesn’t matter if the value of
concentration is reported in somethings/(cubic meter) or in somethings/(cubic foot), as long as it is
consistent. However, the units of position inside c(x, t) must be the same as that of x in the ∂x2.

It is conventional to introduce a characteristic “diffusion length LD and tD,” where LD =
√

DtD”
which is a rough approcimation to how far a species would travel in time tD. In any case, the quantity

η ≡ x√
Dt

(10)

is a dimensionless variable.
As shown below, introducing η into the Eq. 9 is a clever trick. First, for the left-hand-side of Eq. 9:

∂c

∂t
→ ∂η

∂t

∂c

∂η
=

−x

2D1/2t3/2

∂c

∂η
(11)

where the definition in Eq. 10 is used in the last step above. For the right-hand-side of Eq. 9:

∂c

∂x
→ ∂η

∂x

∂c

∂η

∂2c

∂x2
→ ∂2η

∂x2

∂c

∂η
+

(
∂c

∂η

)2 ∂2c

∂η2
=

(
∂c

∂η

)2 ∂2c

∂η2
=

1
Dt

∂2c

∂η2

(12)

The diffusion equation becomes:

∂c

∂t
= D

∂2c

∂x2
→ dc

dη
=
−2
η

d2c

dη2
(13)

where the ∂ → d because η is the only variable in the differential relation.
The scaled equation 13 is easy to solve, let q ≡ dc/dη then

dq

dη
=− ηq

2
dq

q
=
−η

2
dη →

∫
dq

q
=

∫
−η

2
dη

integrating once log
q

C1
= −η2 → q ≡ dc

dη
= C1 exp(−η2)

integrating again c(η) = C2 +
√

πC1erf
(η

2

)

c(x, t) =c0 + (c∞ − c0)erf
(

x√
4Dt

)
(14)

Here is an example of how to do the above derivation in Mathematica:
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Example Using Non-Dimensional Variables in the Diffusion Equation
Example of Non-Dimensionalizing a Partial Differential Equation

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2009.

In this example, the diffusion one dimensional equation ∂C/∂t = D∂2c/∂x2 is converted to an ODE by intro-
ducing the non-dimensional quantity: η ≡ x/

√
η
√

Dt.

1 Scaling the diffusion equation: ∂c
∂t  = D ∂

2c
∂x2

Try c[x,t] ôc[h[x,t]] and investigate the forms of the left- and right-hand-sides of the diffusion equation

left-hand-side, introduce a temporary variable for h, the rule x Ø h Sqrt[ Diffusivity t] will be used later
1etatemp = xë Sqrt@Diffusivity tD

Instead of c[x,t], try c[eta[x,t]]: left-hand-side = ∂c
∂ t

 

2lhs = D@c@etatempD, tD

right-hand-side D ∂
2 c

∂x2

3rhs = Diffusivity D@c@etatempD, 8x, 2<D

Plug the lhs and rhs into the diffusion equation, and use the rule x Ø h Sqrt[ Diffusivity t], this turns the partial differential equation into an ordinary differential equation.
4DE = FullSimplify@Hlhs ã rhsL ê. x Ø h Sqrt@ Diffusivity tD, Assumptions Ø 8t > 0, Diffusivity > 0<D

h c£@hD + 2 c££@hD ã 0

This is one form of the solution with arbitrary constants
5DSolve@DE, c@hD, hD

This is one form of the solution with meaningful constants
6DSolve@8DE, c@0D ã czero, c@¶D == cinf<, c@hD, hD êê Simplify

::c@hD Ø czero + Hcinf - czeroL ErfB
h

2
F>>

1 Introduce a symbol for the dimensionless unit
η. The symbol η will be used later, so here
another placeholder is used.

2 Define the left-hand-side of the diffusion equa-
tion ∂c/∂t.

3 Define the right-hand-side of the diffusion
equation D∂2c/∂t2.

4 Using a logical equals, a rule to introduce the
symbol η, and a Simplify, the diffusion equa-
tion becomes a second order ODE in the vari-
able η.

5 Here, DSolve is used to find the general solu-
tion.

6 Here is the solution with boundary conditions
at η = 0 and η =∞.

Why wouldn’t one use this non-dimensionlizing trick with the diffusion equation all the time?. The
answer is that the boundary conditions must be invariant to the scaling η = x/

√
Dt. This kind of

scaling usually holds when the domain is infinite (i.e., half-space), but would be very unusual for finite
boundary conditions.

http://pruffle.mit.edu/3.016-2009/Appendices/Notebooks/Scaling-Diffusion-Equation.nb
http://pruffle.mit.edu/3.016-2009/Appendices/pdf/Scaling-Diffusion-Equation-COL.pdf
http://pruffle.mit.edu/3.016-2009/Appendices/pdf/Scaling-Diffusion-Equation.pdf
http://pruffle.mit.edu/3.016-2009/Appendices/html/Scaling-Diffusion-Equation/
http://pruffle.mit.edu/3.016-2009
http://pruffle.mit.edu/3.016-2009/Appendices/html/Scaling-Diffusion-Equation/
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