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Fall 2008

Suggested Paradigms for Beginners to Mathematica

Many beginners feel that the learning curve for Mathematica R© is very steep; for many this steep
curve becomes a permanent barrier. This is unfortunate—but perhaps inevitable given the depth and
complexity of the language.

My purpose is to provide a few working examples that illustrate good practice for beginners1.
These suggestions reflect my own experience of using Mathematica R© as a tool for my work.

Thus, the suggested paradigms and styles reflect my personal tastes. I believe many advanced users
would agree with many of my suggestions, but few would agree with all. Of course, there will be
exceptions to these suggestions: depending on the type of application or size of a project, I break the
general suggestions that are presented below.

Beginners is probably well-served by starting with a small set of well-worn examples and then ex-
tending these to their own purposes. Many of the suggestions won’t make sense to first-time explorers—
my advice to read the examples and get a general sense of the landscape. Look at them again later
when you have developed a working context.

1 Many thanks to members of the mathgroup mailing list for making suggestions and general discussion. I hope to
compile a list of those who have been particularly helpful in future versions of this guide.
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Suggested Mathematica R© Paradigm 1
Avoid Assignments for Specific Cases and Avoid Assignment to Numbers

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2008.

Much of the power in Mathematica R© comes from the manipulation of symbols. It deals with numbers and
numerical calculations just fine, but it is usually best to hold of looking at cases that evaluate numerically until
the very end. Think of Mathematica R© as having two parts: the first part derives results like you might find
in a text book; the second part allows you to compute and visualize the results as you might do in a exercise in
a beginning textbook.

Avoid Defining Symbols for Specific Cases. Instead, Use 
Rules and Replacements.

Defining length like this, allows rules and replacements to be used for specific cases
later

1length = length0ë Sqrt@1 - HvêcL^2D
To show  a concrete example:
Rule-replacement is more useful, extendable,  and powerful

2lengthê. 9length0Ø 12, v Ø c ë 3=
Than defining symbols as number and then defining the expression:

3length0= 12; v = c ë 3;
length = length0ë Sqrt@1 - HvêcL^2D

Using rule-replacement allows the construction of general cases 
simply

4gravityArc = 9 velocityCos@aD time,
velocity Sin@aD time + accel time^2 ë 2=

If a specific case is needed, simple rule-replacement  works
5gravityArcê. 9velocityØ 1, accelØ - 10, a Ø Pië 4=

Using rule-replace inside plot

6ParametricPlotAgravityArcê.
9velocityØ 1, accelØ - 10, a Ø Pië 4=, 8time, 0, 0.2<E

The power of the symbolic rule-replacement scheme is easy to see when generalized to
many parameters

7

ParametricPlotAEvaluateATableA
gravityArcê. 9velocityØ 1, accelØ - 10, a Ø f Pië 2=,
9f, 0, 1, 1 ë 12=EE, 8time, 0, 1<,

PlotRangeØ 880, .1<, 80, 0.05<<E

1: This is a nice physical equation for length. It is not as interesting
at a particular values (e.g., zero-velocity length is one meter, rela-
tive velocity is 108m/s) as is the behavior of the any length at any
velocity. Here the equation is more descriptive than the numbers
one could calculate for a limited set of cases. Setting known values
(e.g., c = 3× 108m/s instead of some other set of units) limits the
types of applications of the equations.
Leaving the equation in a symbolic form, it will become easy to ask
questions such as “At what relative velocity will a length appear to
be half of its zero-velocity value?”

2: If a specific case is interesting, then don’t change the assignment,
but just use a rule-replacement (/. -¿) for the specific case.

3: As an example of bad practice, values for an initial length and ve-
locity are assigned. Susequently, the equation is used to make an
assigment to length. Here, the metaphor for length is lost to a
specific instance of length.

4: Here is another example of good practice. A vector (in
Mathematica R© , a List) is defined to give the x− and
y−components for an idealized falling object. The undefined sym-
bols (velocity, time, α (take-off angle), and accel) are sufficiently
numerous that many different cases are immediately derivative.
Moreover, the names of the symbols that define the parameters
make the result more meaningful and easy to interpret.

5: A specific case can be created by applying one rule-replace to the
entire vector.

6: The behavior of a specific case can be visualized by allowing the re-
maining free parameter (after the rule-replace) to define an x−axis
in a plot.

7: More parameters can be easily expored by allowing a second param-
eter to vary and be visualized. Families of arcs are thus identified;
the physical principles become apparent though examination of a
how continuum of parameters affect the results.

http://pruffle.mit.edu/3.016-2008/Notebooks/Paradigms/ParadigmsForBeginners.nb
http://pruffle.mit.edu/3.016-2008/pdf/Paradigms/ParadigmsForBeginners-1-COL.pdf
http://pruffle.mit.edu/3.016-2008/pdf/Paradigms/ParadigmsForBeginners-1-BW.pdf
http://pruffle.mit.edu/3.016-2008/html/Paradigms/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2008
http://pruffle.mit.edu/3.016-2008/html/Paradigms/HTMLLinks/index_1.html
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Suggested Mathematica R© Paradigm 2
Everything is an Expression; Everything is an Expression.

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2008.

Everything is an expression. “. . . I have said it thrice: What I tell you three times is true.”
Everything you do or exists in Mathematica R© is encoded as an expression. When things start going wrong
and misbehaving, this is a good place to start debugging. All the tools in Mathematica R© (yes, these are
expressions too), are designed to work on expressions; so when using tool, one must understand the form of a
expression. What you see on the screen for an expression is most often not how Mathematica R© is keeping
track of that expression.

In Mathematica, Everything is an Expression:
Use FullForm to See an Expression.

1Something = EveryThing

Fullform allows you to see what Mathematica is using to keep track of your expression
2FullForm@SomethingD

Every valid syntax becomes a new expression, even if it may make no sense to the
user.

3Everything =
Graphics3D@Sphere@DD

EveryThing

Treeform is useful if you want to visually pick out parts of expressions

4
FullForm@EverythingD
TreeForm@EverythingD
TreeForm@Everything@@2, 1DDD

Using Fullform to examine an expression will  help you avoid what may seem to be
"reasonable approaches"

5what = this && that

Here the user wishes to use a rule-replacement to change the && to an ||
6what ê. 8H && L Ø H »» L<

Fullform shows how this is to be done.
7FullForm@whatD

Thus, the following works
8what ê. And Ø Or

2: FullForm gives you the representation of how Mathematica R©
is storing an expression. The expression for Something has three
parts: 1) Head[Something] or Something[[0]] will return Times.
2) Something[[1]] is the first argument of an arbitrary num-
ber of arguments for Times; here Something[[1]] is Every. 3)
Something[[2]] (which here is the same as Something[[-1]] or
Last[Something]) is the last argument of Times, Thing.

3: Any valid syntax produces an expression—even if the intent doesn’t
make much sense as in this example.

4: Using FullForm and TreeForm help navigate through
Mathematica R© ’s internal representation.

5–6: Here is an artificial example where FullForm comes to the rescue.
The user constructs a logical expression, but wants to understand
how it behaves when the logical operators are changed. In an at-
tempt to see the effect of changing an && into an ||, the user tries
a rule-replace that results in a syntax error.

7–8: FullForm will show that the internal representation of what is
And[this,that]. Thus, using a rule-replace for the And works.

Non-Dimensionalize Physical Problems: Avoid Units if Possible

This is more of a paradigm about physical sciences than about Mathematica R© . However, it
is important to see how to use Mathematica R© to non-dimensionalize.o For a physical example,
consider the simple model for the Bohr one-electron atom:

mev
2

r
=

e2

4πεor2
and mevr = nh̄

http://pruffle.mit.edu/3.016-2008/Notebooks/Paradigms/ParadigmsForBeginners.nb
http://pruffle.mit.edu/3.016-2008/pdf/Paradigms/ParadigmsForBeginners-2-COL.pdf
http://pruffle.mit.edu/3.016-2008/pdf/Paradigms/ParadigmsForBeginners-2-BW.pdf
http://pruffle.mit.edu/3.016-2008/html/Paradigms/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2008
http://pruffle.mit.edu/3.016-2008/html/Paradigms/HTMLLinks/index_2.html
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Then, if a characteristic energy Echar = mec
2 (i.e., anything with units of energy that doesn’t involve

any model parameters), Rchar = e2/(4πεomc2) (the classical radius of an electron), and a characteristic
velocity c, dimensionless results for the nth Bohr radius, electron velocity, and energy with respect to
a completely ionized system are:

rn

Rchar
=

n2

α2
and

vn

c
=

α

n
and

En

Echar
=
−α

n2
where α ≡ e2

4πεoh̄c

α is known as the fine structure constant and is dimensionless. Its value is about 1/137 no matter what
units and is the same on any planet no matter what the size of the inhabitants’ feet, their number of
fingers, or their arbitrary choice of a system of units. Such dimensionless constants appear and simplify
physical results; they make the results easier to compare to physical objects.

It is recommended that non-dimensionalizing is done at the first step. It reduces the number of
parameters that appear in equations and reduces the embarassing accident that units don’t match.

Suggested Mathematica R© Paradigm 3
Non-Dimensionaliz Physical Problems

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2008.

A few examples (and mistakes) are illustrated for the important process of eliminating units.

Non-Dimensionalize Representations of Physical Quantities.

When trying to non-dimensionalize, FullForm comes in very handy.

1dimForce = -k Hx - xoL
dimEnergy= k Hx - xoL^2 ë 2

Note. the following won't work because there is no x/xo in the fullform.  Below, using x
alone on the left-hand-side of a rule does work.

2dimForceê. 8xêxo Ø zeta<

3FullForm@dimForceD
FullForm@dimEnergyD

Because "x" is sitting alone, it should be on the left-side of a rule.

4nondimRules =
8x Ø zetaxo, charForceØ k xo, charEnergyØ k xo^2<

5nondimForce = SimplifyB
dimForce

charForce
ê. nondimRules F

6nondimEnergy = SimplifyB
dimEnergy

charEnergy
ê. nondimRules F

1: The traditional form of Hooke’s law and potential energy in a spring
are assigned to symbols. There are two parameters in these laws:
the spring constant k and the ‘force-free length’ xo. The goal is to
non-dimensionalize these equations.

2: This will not work. An attempt to introduce a non-dimensional
length ζ = x/xo will fail here because x/xo does not appear in the
expression. (Note TextForm[x/xo] is Times[x, Power[xo, -1]])

4: A set of rules like this will work in a subsequent replacement:
Any x will have to be replaced, and any place that charForce or
charEnergy are used to non-dimensionalize something with force
or energy units, the k and xo will cancel.

4–5: Here is an example of using the rules and replacement to find non-
dimensional quantities.

http://pruffle.mit.edu/3.016-2008/Notebooks/Paradigms/ParadigmsForBeginners.nb
http://pruffle.mit.edu/3.016-2008/pdf/Paradigms/ParadigmsForBeginners-3-COL.pdf
http://pruffle.mit.edu/3.016-2008/pdf/Paradigms/ParadigmsForBeginners-3-BW.pdf
http://pruffle.mit.edu/3.016-2008/html/Paradigms/HTMLLinks/index_3.html
http://pruffle.mit.edu/3.016-2008
http://pruffle.mit.edu/3.016-2008/html/Paradigms/HTMLLinks/index_3.html
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Suggested Mathematica R© Paradigm 4
Using Evaluate in Plot and related functions
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The ‘normal’ behavior of a Mathematica R© function is to evaluate its arguments before they are passed onto
the function. For example, Det[amat.bmat] will first compute the matrix product and pass the result to Det
the determinant function.
However, there a some functions that ‘hold’ their arguments unevaluated. This ‘hold’ behavior is most often
encountered in Plot.
Without going into the reasons why Plot may wish to hold its arguments, this behavior can lead to unexpected
results. Here are some examples where the arguments are forced with Evaluate.

Use Evaluate in Plot (Plot is one example of a function that 
"Holds" is arguments unevaluated until later.)

Not using Evaluate : slow and monochrome.

1Plot@Table@LegendreP@i, zD, 8i, 1, 11, 2<D,
8z, -1, 1<, PlotStyleØ Thickness@0.01DD

Using Evaluate : Fast and multicolored.

2Plot@Evaluate@Table@LegendreP@i, zD, 8i, 1, 11, 2<DD,
8z, -1, 1<, PlotStyleØ Thickness@0.01DD

The  following  won't  work  as  expected,  because  Plot  "holds"  onto  Integrate  without
making the integration

3Plot@Integrate@Sin@xD, xD, 8x, 0, 2 Pi<D

Evaluation forces the Integrate function to do its job
4Plot@Evaluate@Integrate@Sin@xD, xDD, 8x, 0, 2 Pi<D

1: In this case, the Table is unevaluated and passed to Plot. Here
the result is produced more slowly; the lines are not colored the
way that they would be if the argument was a list.

2: Forcing the argument of Plot to be a list produces a faster and
polychromatic result.

3: This will not work as expected. The expression Integrate. . . is
passed to Plot and plot doesn’t know what to do with the expres-
sion.

4: Forcing evaluation produces the expected result.

http://pruffle.mit.edu/3.016-2008/Notebooks/Paradigms/ParadigmsForBeginners.nb
http://pruffle.mit.edu/3.016-2008/pdf/Paradigms/ParadigmsForBeginners-4-COL.pdf
http://pruffle.mit.edu/3.016-2008/pdf/Paradigms/ParadigmsForBeginners-4-BW.pdf
http://pruffle.mit.edu/3.016-2008/html/Paradigms/HTMLLinks/index_4.html
http://pruffle.mit.edu/3.016-2008
http://pruffle.mit.edu/3.016-2008/html/Paradigms/HTMLLinks/index_4.html
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Suggested Mathematica R© Paradigm 5
Longer and Descriptive Variable Names can be Self-Documenting

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2008.

In books and on scratch paper, it might be wasteful and tedious to use longer notation; this is probably why
f(x) dominates discussion even though the result of the function, (e.g., profit) and the argument of the function
(e.g., cost) are the underlying ideas.
On a screen, constraints of space and bad handwriting are much less. Why not use variables names that are
meaningful and help document what you are thinking about?

Use Longer Variable Names to Avoid Conflicts and 
Confusion; be careful not to reuse a -defined symbol 
Mathematica-defined symbol.

1
absSin@xval_D := Abs@Sin@xDD
myAbsSinPlot@repeats_D :=
Plot@Sin@2 Pi repeatsxD, 8x, 0, 1<D
myAbsSinPlot@3D

Localize with Modules

Here, Module will "hide" the temporary assignment to f

2blah@ n_D := Module@8f<, Table@
8f = Integrate@Sin@xD^i, xD, f ê. x Ø i Pi< , 8i, 1, n<DD

3blah@6D

Using f again later causes no dificulties
4DSolve@f'@xD ã a, f@xD, xD

On the other hand (this is generally bad practice), if f is not "hidden." It could lead to
subsequent difficulties.

5blah@ n_D :=
Table@8f = Integrate@Sin@xD^i, xD, f ê. x Ø i Pi< , 8i, 1, n<D

6blah@6D

7DSolve@f'@xD ã a, f@xD, xD

8Clear@fD

1: These are examples of naming a function and its argument in a
contextual way. Mathematica R© ’s internal functions use capital
letters in standard way—all the first letters are capitalized. If new
symbols have a lower-case first letter, then which functions are the
user’s and which are intrinsic to Mathematica R© are unlikely to
be confused.

2–3: Sometimes a variable is defined within a function that is not
needed once the function is finished. For example, consider
Integrate[f[x],x,0,1] and Integrate[f[y],y,0,1]. These
should produce the same result: x and y are used by the func-
tion internally and then abandoned. The temporary values of x or
y should have no influence outside of the function.
Especially with larger complicated functions, creation and debug-
ging are simplified by defining internal variables.
Module (as well as Block and With) provides a way to hide internal
variables from the rest of a program.
Using Module when an internal variable is used no where else, is
good practice.

4: Because f was placed in a module, its previous definition does not
interfere.

5–8: This is an example of bad practice and will lead to an error. Because
Module is not used, the appearance of f in 7 will inherent its

definition for its last use in 6.

http://pruffle.mit.edu/3.016-2008/Notebooks/Paradigms/ParadigmsForBeginners.nb
http://pruffle.mit.edu/3.016-2008/pdf/Paradigms/ParadigmsForBeginners-5-COL.pdf
http://pruffle.mit.edu/3.016-2008/pdf/Paradigms/ParadigmsForBeginners-5-BW.pdf
http://pruffle.mit.edu/3.016-2008/html/Paradigms/HTMLLinks/index_5.html
http://pruffle.mit.edu/3.016-2008
http://pruffle.mit.edu/3.016-2008/html/Paradigms/HTMLLinks/index_5.html
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Suggested Mathematica R© Paradigm 6
Work Symbolically and Delay the Introduction of Numbers: Introduction

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2008.

Examples with increasingly better style are presented in the next five versions of exploring the solution to a
damped-forced harmonic oscillator.
The goal is to examine the behavior near resonance and in the limit of zero viscosity.
Physically, the problem is similar to pushing a pendulum in-time with the pendulum’s period. The viscosity
correlates the wind or friction forces that would make an observed non-forced pendulum slowly come to rest.
A mathematical development is included in the example.

Work Symbolically First and With Exact Values; Then 
Inexact Numbers or Numerically Last if Necessary

A sequence from of examples working from 
(what I would consider) naive practice to good 
practice.  This example analysis a damped and 
forced linear harmonic oscillator.  There are 
countless problems in physical sciences that 
reduce to this problem.  The statement begins 
with a differential statement of F=ma, and adds 
a frictional force proportional to the velocity.  
The system has an external driving , Fapp(t) 
(e.g., a child swinging her legs on a swing):

Fapp =  mass acceleration  + viscosity velocity 
+ spring_constant displacement
Fapp =  m a + n v + k  y

Fapp(t) = m d
2 y
dt2

 + n dydt  + k y(t)

In this example, a simple external periodic 
driving force Fapp(t) = Focos(wapp t) is 
demonstrated.  The frequency, wapp, as we will 
show is a very important predictor of physical 
behavior.  A particular driving frequency, wres= 
k êm , gives insightful results.

In this example, the behavior at small values of 
viscosity and its approach to zero are 
investigated.

1DSolve@f'@xD ã a, f@xD, xD

1: The set of examples all use the built-in Mathematica R© function
DSolve. DSolve takes one or more equations that involve a

function and its derivatives, the function that is being solved for,
and the variable on which the function depends.
The result is returned in the form of a rule that can be used in
subsequent rule-replaces.

http://pruffle.mit.edu/3.016-2008/Notebooks/Paradigms/ParadigmsForBeginners.nb
http://pruffle.mit.edu/3.016-2008/pdf/Paradigms/ParadigmsForBeginners-6-COL.pdf
http://pruffle.mit.edu/3.016-2008/pdf/Paradigms/ParadigmsForBeginners-6-BW.pdf
http://pruffle.mit.edu/3.016-2008/html/Paradigms/HTMLLinks/index_6.html
http://pruffle.mit.edu/3.016-2008
http://pruffle.mit.edu/3.016-2008/html/Paradigms/HTMLLinks/index_6.html
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Suggested Mathematica R© Paradigm 7
Work Symbolically and Delay the Introduction of Numbers: Naive Approach
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Here, the user puts in numbers for the resonant frequency and makes a guess at what would represent a small
parameter.

Naive (solve a specific model with real numbers near 
the resonant frequency)

This is an example where little of the symbolic power of the software is being used.
The user is inserting real number, coefficients, and using a small numerical parameter
that is "assumed" to make the viscosity behave as if it were small.

1
NaiveODEsol =
DSolve@8Cos@1.73205tD ã D@y@tD, 8t, 2<D + 10^H-6L D@y@tD, tD +

3.0 y@tD, y@0D ã 0, y'@0D ã 0<, y@tD, tD
This will work just fine, the form of the solution is not very meaningful,

2ysolNaive = y@tD ê. NaiveODEsol

Simplify  will  show  that  there  are  small  imaginary  parts  that  probably  arise  from
numerical imprecision.

3Simplify@ysolNaiveD

Using Chop, the small numbers can be removed (whether they belong there or not),
and then plotted. It shows resonant behavior.

4Plot@ysolNaive, 8t, 0, 30<D

1: This will work fine, it just won’t be very informative about the
general behavior of the system.

2: The solution can be extracted from the rules produced by DSolve.
3: The resulting solution can be simplified and show that numerical

imprecision is probably creeping into the results.
4: Nevertheless, the solution be plotted However, Chop may be needed

to remove small imaginary parts of the solution.

http://pruffle.mit.edu/3.016-2008/Notebooks/Paradigms/ParadigmsForBeginners.nb
http://pruffle.mit.edu/3.016-2008/pdf/Paradigms/ParadigmsForBeginners-7-COL.pdf
http://pruffle.mit.edu/3.016-2008/pdf/Paradigms/ParadigmsForBeginners-7-BW.pdf
http://pruffle.mit.edu/3.016-2008/html/Paradigms/HTMLLinks/index_7.html
http://pruffle.mit.edu/3.016-2008
http://pruffle.mit.edu/3.016-2008/html/Paradigms/HTMLLinks/index_7.html
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Suggested Mathematica R© Paradigm 8
Work Symbolically and Delay the Introduction of Numbers: Beginner Approach
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Here the user defines an intermediate expression so that the DSolve step is a bit easier to read. However, the
user is still using numbers and guessing at a small parameter.

Beginner (use some intermediate steps to define 
system, solve a specific model with real numbers, remove 
possible numerical artifacts from limited precision numbers)

A function (Sqrt) is used to produce more accurate "on resonance" conditions, but this
will  prove  to  be  problematic  because of  the  smallness of  the  numerical  parameter.
Numerical coefficients are still used, which is poor practice generally.

The user stores the equation so that it might be changed and used again later for a
different case. This is a good idea.

1
specificODEandBCs=
8Cos@Sqrt@3.0D tD ã D@y@tD, 8t, 2<D + 10^H-12L D@y@tD, tD +

3.0 y@tD, y@0D ã 0, y'@0D ã 0<
This will work just fine again.

2BeginnerODEsol= DSolve@specificODEandBCs, y@tD, tD

3ysolBeginner = y@tD ê. BeginnerODEsol

The earlier form of ysolBeginner will probably not be used, reassigning that symbol will
help keep the notebook organized (i..e, this avoids "symbol inflation")

4ysolBeginner = Chop@Simplify@ysolBeginnerDD

The  solution  doesn't  appear  to  show  resonant  behavior  in  contradiction  with  the
previous example

5Plot@ysolBeginner, 8t, 0, 30<D

1: Defining the set of equations this way allows one to make changes
to an expression and reuse it in the solution step.

4: Because ysolBeginner will probably not be used in its previous
form, the expression is reassigned. This reduces ”symbol inflation,”
but could possible introduce errors because the use of Chop could
(but is unlikely to) remove relevant parts of the solution.

http://pruffle.mit.edu/3.016-2008/Notebooks/Paradigms/ParadigmsForBeginners.nb
http://pruffle.mit.edu/3.016-2008/pdf/Paradigms/ParadigmsForBeginners-8-COL.pdf
http://pruffle.mit.edu/3.016-2008/pdf/Paradigms/ParadigmsForBeginners-8-BW.pdf
http://pruffle.mit.edu/3.016-2008/html/Paradigms/HTMLLinks/index_8.html
http://pruffle.mit.edu/3.016-2008
http://pruffle.mit.edu/3.016-2008/html/Paradigms/HTMLLinks/index_8.html
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Suggested Mathematica R© Paradigm 9
Work Symbolically and Delay the Introduction of Numbers: Rookie Approach
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The user uses a more informed method to introduce a meaningful small parameter and intends to uses exact
numbers. Although it is a bit deceptive, the clever introduction of a small parameter inserts numerical values
into the equation. Thus, DSolve will produce a numerical approximation as well—which was not the intent of
the rookie.

Rookie (combine several steps, use an informed choice 
for a small parameter)

An informed decision is used for the small paramer, however it is still numerical, exact
coefficients are used which may be expected to make solution look much nicer.

1
mp = $MachinePrecision
specificODEandBCs=
8Cos@Sqrt@3D tD ã D@y@tD, 8t, 2<D + 10^H-2 mpL D@y@tD, tD +

3 y@tD, y@0D ã 0, y'@0D ã 0<
Anticipating the form of the solution, the user combines assignment with a rule-replace-
with-result technique.  Because mp is numeric, everything is forced to be numeric---and
the anticipated nice format of the solution is lost.

2ysolRookie= y@tD ê. DSolve@specificODEandBCs, y@tD, tD

The solution form is suppressed here with the semicolon (which was probably a good
idea). But in doing so, without looking a the graphics too carefully, one might miss the
fact that the applitudes are above machine precision.

3ysolRookie= Chop@Simplify@ysolRookieDD;
Plot@ysolRookie, 8t, 0, 20<D

1: The user probably looked in the Help Browser for something about
“precision” and found that Mathematica R© keeps track of what
the precision is on the current CPU. These system specific values
are stored as dollar-sign values, such as $MachinePrecision.

2–3: The user plots the results, but without regard to the range over
which the interesting behavior appears and misses the point.

http://pruffle.mit.edu/3.016-2008/Notebooks/Paradigms/ParadigmsForBeginners.nb
http://pruffle.mit.edu/3.016-2008/pdf/Paradigms/ParadigmsForBeginners-9-COL.pdf
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http://pruffle.mit.edu/3.016-2008/html/Paradigms/HTMLLinks/index_9.html
http://pruffle.mit.edu/3.016-2008
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Suggested Mathematica R© Paradigm 10
Work Symbolically and Delay the Introduction of Numbers: Appretice Approach

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2008.

The apprentice uses exact numbers and symbols and then analyzes solutions for particular values of the symbols.

Apprentice (add a symbolic parameter so that 
limiting behavior can be analyzed more carefully; now all 
parameters are exact (i.e., there is no numerical 
imprecision)

The differential equation and its boundary conditions do not have any inexact numbers,
just  integers  and  symbols  (it  would  be  even  better  to  use  only  symbols  and  non-
dimensionalize the equation)

1
ODEandBCs =
8Cos@Sqrt@3D tD ã D@y@tD, 8t, 2<D + n D@y@tD, tD + 3 y@tD,
y@0D ã 0, y'@0D ã 0<

Thus, the solution depends only on a single parameter, n,  which will be investigated
near zero

2yApprenticesol= Simplify@y@tD ê. DSolve@ODEandBCs, y@tD, tDD

Evaluated using a rule-replace shows that something resonant is happening.
3yApprenticesolê. n Ø 0

Using  Limit  shows  something  nice  and  physical,  in  the  limit  of  zero  viscosity  the
amplitude of the resonant solution will grow linearly with time.

4limitsol = Limit@yApprenticesol, n Ø 0D

5Plot@limitsol, 8t, 0, 10<D

2: The user decides to eliminate a few intermediate steps (hoping that
this more concise version will be easy to read at some time in the
future). The solution rules appear as an internal expression and
the user wraps the result inside a Simplify. Mathematica R©
keeps track of what the precision is on the current CPU. These
system specific values are stored as dollar-sign values, such as
$MachinePrecision.

3: The goal is to analyze the behavior of the resonant solution in the
limit of small viscosity; the user looks at a particular case, the
solutions value at η = 0. In this case, the evaluation at zero gives
an unphysical result.

4: Allowing for the possibility that the function’s limit doesn’t equal
its value, the function Limit is used to check this case.

5: Because the resulting expression has a very simple form, the user
can see the relevant bounds for plotting by inspection.

http://pruffle.mit.edu/3.016-2008/Notebooks/Paradigms/ParadigmsForBeginners.nb
http://pruffle.mit.edu/3.016-2008/pdf/Paradigms/ParadigmsForBeginners-10-COL.pdf
http://pruffle.mit.edu/3.016-2008/pdf/Paradigms/ParadigmsForBeginners-10-BW.pdf
http://pruffle.mit.edu/3.016-2008/html/Paradigms/HTMLLinks/index_10.html
http://pruffle.mit.edu/3.016-2008
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Suggested Mathematica R© Paradigm 11
Work Symbolically and Delay the Introduction of Numbers: Good Approach

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2008.

Symbols are used instead of numbers. Physical assumptions are encoded so that simplifying procedures will
give the nicer results that apply in the more specific physical situation. Some effort is invested into getting the
solution into a nice readable form and this produces informative results. The rules for resonance appear and the
distinction between two different kinds of physical limits arise naturally.

Good (general equation, introduce physical assumptions, 
symbolic limits)

Only symbols are used and physics assumptions are encoded as rules. Everything is
symbolic and exact; the assumptions are documenting.

1
dhoAssumptions= m > 0 && k > 0 && n ¥ 0 && t > 0
GeneralODEandBCs=
8Cos@w tD ã m D@y@tD, 8t, 2<D + n D@y@tD, tD + k y@tD,
y@0D ã 0, y'@0D ã 0<

DSolve's  result is wrapped inside a FullSimplify with Assumptions.

2
ysolGood=
FullSimplify@y@tD ê. DSolve@GeneralODEandBCs, y@tD, tD, ,
AssumptionsØ dhoAssumptionsD

Zero viscosity is checked by direct evaluation, Simplify leaves an exponential form.

3zeroViscosity1=
Simplify@ysolGoodê. n Ø 0, AssumptionsØ dhoAssumptionsD

Making the solution uniformly trignometric helps interpretation

4zeroViscosity2= Simplify@
ExpToTrig@ysolGoodê. n Ø 0D, AssumptionsØ dhoAssumptionsD

The limit is checked to see if it matches the value at n=0

5zeroViscosity3= Simplify@ExpToTrig@Limit@ysolGood, n Ø 0DD,
AssumptionsØ dhoAssumptionsD

Here direct evaluation is not illustrative of resonant behavior
6zeroViscosity2ê. w Ø SqrtAk ë mE

The limit gives a nice physical interpretation in full symbolic form.
7LimitAzeroViscosity2, w Ø SqrtAk ë mEE

Instead  of  looking  of  the  zero  viscosity  case  in  the  limit  of  resonance,  the  user
investigates the resonant case in the limit of zero viscosity.

8
ysolResonant=

FullSimplifyAExpToTrigALimitAysolGood, w Ø SqrtAk ë mEEE,
AssumptionsØ dhoAssumptionsE

The limit indicates that the solution could be going to ± ¶
9viscLimit= Limit@ysolResonant, n Ø 0D

1: Only symbols are used for the parameters in the equation to be
solved. However, the user knows something about the values for
the physical system that is being modeled.

2: The form of the solution is obtained by simplifying with assump-
tions. However, the resulting form will not be as simple as hoped.

3: Without trying to finesse the solution into a nicer form first, the
user evaluates at zero-viscosity. The result will indicate that the
conditions for resonance are appearing, but will need more careful
inspection—perhaps the numerator and denominator both go to
zero.

4: The user enforces that all oscillatory terms appear as trigonometric
functions and then looks at the value at zero viscosity. The result
is more informative and makes it clearer that the limit needs more
careful attention.

5: Here, the user finds that the value of the expression and its limit
have the same value.

6: So, the user takes the zero-viscosity case and evaluates its value at
resonance. The result will not help understand the physics of the
problem—the user suspects that the numerator and denominator
both go to zero.

7: The limit is checked and gives the nice physical result that the
amplitude grows linearly with time as the system approaches the
resonance condition at zero viscosity.

8–9: The other way of looking at the limit—working at resonance and
letting viscosity go to zero—yields a different result. The solution
will diverge to ±∞ depending on the sign of sin(t).

http://pruffle.mit.edu/3.016-2008/Notebooks/Paradigms/ParadigmsForBeginners.nb
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Restrict Patterns where Appropriate, Especially Numerical Patterns for Numerical Functions

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2008.

When a function is expected to be used for a limited type of arguments, build in the type of argument by
restricting a pattern. When a function only makes sense for numerical arguments, define the function for only
numerical arguments.

Restrict Patterns in Function Definitions where Appropriate

1sinSquared@theArg_D := Sin@theArgD^2

2Plot@8Exp@sinSquared@xDD,
Exp@sinSquared@Sqrt@-1D xDD<, 8x, 0, 2 p<D

3sinSquared@theArg_ComplexD := Re@Sin@theArgDD^2

4Plot@8Exp@sinSquared@xDD,
Exp@sinSquared@Sqrt@-1D xDD<, 8x, 0, 2 p<D

If a Function Makes Sense only when it Receives 
Numerical Arguments, Use its Definition to Restrict to 
Numerical Argments

5yofa@a_D := y ê. FindRoot@ y^3 + 1 ã a, 8y, a<D

6Plot@yofa@zD, 8z, 0, 5<,
PlotLabelØ "When is the integral of this equal to one?"D

Poor practice (no restriction on function definitions)

7intfunc@b_D := NIntegrate@yofa@zD, 8z, 0, b<D

intfunc can be plotted, but Mathematica will return some warnings like FindRoot::"srect"
and ReplaceAll::"reps"

8Plot@intfunc@yD, 8y, 0, 4<D

Finding the root will fail.
9FindRoot@intfunc@yD ã 1, 8y, 10<D

Better practice (restriction on function definitions)

10Clear@intfuncD;
intfunc@b_?NumericQD := NIntegrate@yofa@zD, 8z, 0, b<D

No errors in plotting and much faster
11Plot@intfunc@yD, 8y, 0, 4<D

Numerical root finding works. However, there may be warnings from NIntegrate about
numerical resolution.

12FindRoot@intfunc@yD ã 1, 8y, 10<D

1: Here there is no restriction on the pattern, the function will work
the same for any argument.

2: The behavior may not be what was intended for complex arguments.
3: Here, the function is defined to behave differently if the argument

is complex (i.e., using the restriction Complex).
4: The plot shows that the real part stays at +1.
5: The 5–12 parts of the code will demonstrate how a numerical pro-

cess (here root-finding) will fail if functions are not defined for nu-
merical arguments. The example is a numerical function that finds
a y where y3 + 1− a is zero as a function of a.

6: This function will work because Plot only supplies numerical ar-
guments; yofa would throw an error if it received an undefined
symbol; but Plot is not supplying any of those. In the following,
two numerical functions are called in sequence to find where the
integral of these values is 1.

7: This is poor practice and will lead to an error. NIntegrate will
only make sense if the integrand evaluates to a number, but here
no restriction to numerical arguments is made.

8: This result can be plotted properly, although Plot will issue some
warnings.

9: However, a subsequent numerical operation on the function, like
FindRoot, will fail.

10–12: If the pattern in the function is restricted to numerical arguments,
then plotting will be faster and will issue no warnings. Subsequent
numerical operations work fine (although in this case, NIntegrate
will issue some warnings about convergence.

http://pruffle.mit.edu/3.016-2008/Notebooks/Paradigms/ParadigmsForBeginners.nb
http://pruffle.mit.edu/3.016-2008/pdf/Paradigms/ParadigmsForBeginners-12-COL.pdf
http://pruffle.mit.edu/3.016-2008/pdf/Paradigms/ParadigmsForBeginners-12-BW.pdf
http://pruffle.mit.edu/3.016-2008/html/Paradigms/HTMLLinks/index_12.html
http://pruffle.mit.edu/3.016-2008
http://pruffle.mit.edu/3.016-2008/html/Paradigms/HTMLLinks/index_12.html

	Paradigm Example: 1
	Paradigm Example: 2
	Paradigm Example: 3
	Paradigm Example: 4
	Paradigm Example: 5
	Paradigm Example: 6
	Paradigm Example: 7
	Paradigm Example: 8
	Paradigm Example: 9
	Paradigm Example: 10
	Paradigm Example: 11
	Paradigm Example: 12



