
MIT 3.016 Fall 2009 Lecture 17 c© W.C Carter 187

Nov. 2 2009

Lecture 17: Function Representation by Fourier Series

Reading:
Kreyszig Sections: 11.1, 11.2, 11.3 (pages478–485, 487–489, 490–495)

Periodic Functions

Periodic functions should be familiar to everyone. The keeping of time, the ebb and flow of tides, the
patterns and textures of our buildings, decorations, and vestments invoke repetition and periodicity
that seem to be inseparable from the elements of human cognition.8 Although other species utilize
music for purposes that we can only imagine—we seem to derive emotion and enjoyment from making
and experience of music.

8I hope you enjoy the lyrical quality of the prose. While I wonder again if anyone is reading these notes, my wistfulness
is taking a poetic turn:

They repeat themselves
What is here, will be there
It wills, willing, to be again
spring; neap, ebb and flow, wane; wax
sow; reap, warp and woof, motif; melody.
The changed changes. We remain
Perpetually, Immutably, Endlessly.

188 MIT 3.016 Fall 2009 c© W.C Carter Lecture 17

Lecture 17 Mathematica R© Example 1
Playing with Audible Periodic Phenomena

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2009.

Several example of creating sounds using mathematical functions are illustrated for education and amusement.

Sounds will not be available on PDF or HTML versions
Let's begin by "looking" at a familiar periodic phenomena:
We index the notes and write an indexed set of frequency (in Hertz) for
each of the notes for one octave above middle-c. We write a function to
create a Sound for each note.

1

c = 1; d = 2; e = 3; f = 4; g = 5; a = 6; b = 7;
freq@cD = 261.6;
freq@dD = 293.7;
freq@eD = 329.6;
freq@fD = 349.2;
freq@gD = 392.0;
freq@aD = 440.0;
freq@bD = 493.9;
purenote@note_IntegerD := purenote@noteD =
Play@Sin@2 p freq@noteD tD, 8t, 0, 1<D

We extend the function to get simultaneous notes from a List. We use
Thread which takes f[{a,b,c}] to {f[a],f[b],f[c]}

2notes@note_ListD :=
Sound@Thread@purenote@noteDDD
Here are examples of their use.

3cnote = purenote@cD
notes@8a, c, e<D

We can play with variable amplitudes for a fixed frequency, here we can
hear the increased, but non-singular amplitude through zero.

4
Plot@Sin@540 xDêx, 8x, -.1, .1<,
PlotRange Ø All, Filling Ø AxisD
Play@Sin@540 xDêx, 8x, -1, 1<D

We can vary amplitudes and frequencies. Warning, playing with this
function can become addictive...

5
Play@
2 Sin@20 x Sin@x Exp@-xê.2D + Sin@xDêxDD +
Exp@H1 + Cos@xDLD Sin@x Exp@xê10DD
Sin@1500 xD, 8x, 0.01, 20<D

1: The seven musical notes around middle C indexed here with integers
and then their frequencies (in hertz) are defined with a freq. The
function Note takes one of the seven indexed notes and creates a
wave-form for that note. The function Play takes the waveform
and produces audio output. We introduce a function, purenote ,
that takes an integer argument and plays the corresponding exact
note.

2: To play a sequence of notes, a list of notes must be passed to
Sound. We write a function, notes , that uses Thread to create
a list of object created by applications of purenote. In other
words, Thread[function[{la,lb,lc}]] returns {function[la],
function[lb], function[lc]}.

3: This is an example of the use of note and purenote .
4: This is noise generated from a function; we can modulate the am-

plitude and frequency. Enjoy the fact that sin(x)/x is not singular
at x = 0.

5: This is a function that I cooked up. Enjoy.

http://pruffle.mit.edu/3.016-2009/Notebooks/L17/Lecture-17.nb
http://pruffle.mit.edu/3.016-2009/pdf/L17/Lecture-17-1-COL.pdf
http://pruffle.mit.edu/3.016-2009/pdf/L17/Lecture-17-1-BW.pdf
http://pruffle.mit.edu/3.016-2009/html/Lecture-17/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2009
http://pruffle.mit.edu/3.016-2009/html/Lecture-17/HTMLLinks/index_1.html

MIT 3.016 Fall 2009 Lecture 17 c© W.C Carter 189

Lecture 17 Mathematica R© Example 2
Music and Instruments

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2009.

Having no musical talent whatsoever, I try to write a program to make music.

Let's see if we can play this:

1twoframes = 8e, e, f, g, g, f, e, d, c, c, d, e<;
We will play it, but it probably not what was intended...

2notes@twoframesD
We create a rest of a fixed length, and then use Riffle to insert a rest after
each note. We use a new function, called SoundNote, with None as the
first argument, we get no sound.

3purenote@restD = SoundNote@None, .15D;

4notes@Riffle@twoframes, restDD
SoundNote can take general strings for arguments as well, here we enter
the musical notes from above (as characters), but one octave lower..

5TwoFramesLower = 8"E3", "E3", "F3", "G3", "G3",
"F3", "E3", "D3", "C3", "C3", "D3", "E3"<;

The default is to use a piano to make the sound; here we ask for a
duration of 6/10 of a second.

6piano@note_StringD := SoundNote@note, .6D

7Sound@Thread@piano@TwoFramesLowerDDD
We can use other MIDI instruments as well; here is a bagpipe

8
bagpipe@note_StringD :=
SoundNote@note, .6, "Bagpipe"D
Sound@Thread@bagpipe@TwoFramesLowerDDD

And, now for the birds.

9

avian@note_StringD :=
SoundNote@note, .2, "Bird"D
avian@restD = SoundNote@None, .4D;
Sound@
Thread@avian@Riffle@TwoFramesLower, restDDDD

1: Someone who knows how to read music told me what these notes
were; so, I entered them into a list.

2: This is musical score with one-second duration notes played every
1 second. Oh, Joy.

3: This is probably not what Ludwig Van had in mind; so let’s figure
out how to insert a ‘rest.’ We use Mathematica R© ’s built-in
SoundNote for .15 seconds to define a purenote for rest rest.

4: Riffle[{l1,l2,l3},x] intersperses x into the list and returns
{l1,x,l2,x,l3,x}. Calling notes on the resulting structure re-
turns the pure notes with rests in between.

5: SoundNote will also play MIDI sounds and take string arguments
for notes. We recreate a sting version of the musical score for notes
one octave below middle-c.

6: By default, SoundNote returns a MIDI piano sound. We create a
function, piano , to play a single note for a 0.6 second duration.

7: By using Thread again, we play the 12-note musical score on the
piano.

8: There are other MIDI instruments; here we create the function
bagpipe and play the score with a simulated bagpipe.

9: And finally, we introduce a ‘cheep’ little function, avian , to let the
birds sing their own joy.

http://pruffle.mit.edu/3.016-2009/Notebooks/L17/Lecture-17.nb
http://pruffle.mit.edu/3.016-2009/pdf/L17/Lecture-17-2-COL.pdf
http://pruffle.mit.edu/3.016-2009/pdf/L17/Lecture-17-2-BW.pdf
http://pruffle.mit.edu/3.016-2009/html/Lecture-17/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2009
http://pruffle.mit.edu/3.016-2009/html/Lecture-17/HTMLLinks/index_2.html

190 MIT 3.016 Fall 2009 c© W.C Carter Lecture 17

Lecture 17 Mathematica R© Example 3
Random Notes and Instruments

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2009.

Just because we can, let’s see how sequences of random notes sound. We’ll add random instruments and rests
too.

Let's hear what random notes sound like: SoundNote[n] will play n
semitones above middle C. Here we make a list of random notes and
play them.

1
RandomNotes = Table@SoundNote@

RandomInteger@8-15, 20<D, .2D, 836<D;
Sound@RandomNotes, 10D

Here, we mix in some rests at random

2

RanRest@D := Module@8rdur = .2<,
If@RandomReal@D > 0.5, rdur = .4D;
SoundNote@None, rdurDD

RandomNotesandRests =
Table@If@RandomReal@D ¥ .33,
SoundNote@RandomInteger@8-15, 20<D, .2D,
RanRest@DD, 896<D;

Sound@RandomNotesandRests, 20D
Now, we ask for random instruments as well, with "chords" of up to 5
instruments at each beat.

3

RandomInstruments =
Table@If@RandomReal@D > 0.5, Table@

SoundNote@
Table@RandomInteger@8-15, 20<D,
8RandomInteger@81, 5<D<D,
Round@RandomReal@81, 2<D, .2D,
RandomInteger@81, 15<DD,

8RandomInteger@81, 4<D<D, RanRest@DD,
848<D;

Sound@RandomInstruments, 20D
Finally, some random percussion events.

4

percs = 8SoundNote@"Clap", 1D,
SoundNote@"Sticks", 1D, SoundNote@"Shaker",
1D, SoundNote@"LowWoodblock", 1D,
SoundNote@"Castanets", 1D,
SoundNote@None, 1D<;

perctable = Table@RandomChoice@percsD, 850<D;
Sound@perctable, 20D

1: RandomNotes creates a 36 member random set of single pitches
from 15 semi-tones below to 20 semi-tones above middle-c. We play
them for ten seconds.

2: To introduce some variety into the random melody, we write a pro-
gram, RanRest , which will be used to introduce rests with lengths
.2 and .4 with equal probability. A list, RandomNotesandRests , is
created with random notes which call RanRest for approximately
1/3 of the members, and from the same random set as Random-
Notes for the remainder.

3: Now, we introduce random MIDI instruments into our score: Ran-
domInstruments is a Table of length 48, and each member is a
list of a random number, between 1 and 5, of random instruments
with random notes. These list-elements create a “chord.” Rests are
introduced randomly, at about 1/2 of the beats.

4: Here we play with random percussion MIDI instruments. Dancing
to this is not necessarily advised.

A function that is periodic in a single variable can be expressed as:

f(x + λ) = f(x)
f(t + τ) = f(t)

(17-1)

The first form is a suggestion of a spatially periodic function with wavelength λ and the second form
suggests a function that is periodic in time with period τ . Of course, both forms are identical and
express that the function has the same value at an infinite number of points (x = nλ in space or t = nτ
in time where n is an integer.)

Specification of a periodic function, f(x), within one period x ∈ (xo, xo + λ) defines the function
everywhere. The most familiar periodic functions are the trigonometric functions:

sin(x) = sin(x + 2π) and cos(x) = cos(x + 2π) (17-2)

http://pruffle.mit.edu/3.016-2009/Notebooks/L17/Lecture-17.nb
http://pruffle.mit.edu/3.016-2009/pdf/L17/Lecture-17-3-COL.pdf
http://pruffle.mit.edu/3.016-2009/pdf/L17/Lecture-17-3-BW.pdf
http://pruffle.mit.edu/3.016-2009/html/Lecture-17/HTMLLinks/index_3.html
http://pruffle.mit.edu/3.016-2009
http://pruffle.mit.edu/3.016-2009/html/Lecture-17/HTMLLinks/index_3.html

MIT 3.016 Fall 2009 Lecture 17 c© W.C Carter 191

However, any function can be turned into a periodic function.

Lecture 17 Mathematica R© Example 4
Using Mod to Create Periodic Functions

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2009.

Periodic functions are often associated with the “modulus” operation. Mod[x, λ] is the remainder of the result
of recursively dividing x by λ until the result lies in the domain 0 ≤ Mod[x, λ] < λ). Another way to think of
modulus is to find the “point” where are periodic function should be evaluated if its primary domain is x ∈ (0, λ).

Mod is a very useful function that can be used to force objects to be
periodic. Mod[x,l] return that part of x that lies within 0 and l. Or, in
other words if we map the real line x to a circle with circumference l, then
Mod[x,l] returns were x is mapped onto the circle.

1

modmatdemo@n_Integer, l_IntegerD :=
Table@8i, Mod@i, lD<, 8i, 1, n<D êê
MatrixForm;

modcircledemo@n_Integer, l_IntegerD :=
Module@8xpos, angle, cpos<,
Graphics@
Table@xpos = 3 Quotient@i - 1, lD;
angle = 2 Pi Mod@i, lDêl;
cpos = 8Cos@angleD, Sin@angleD<;
8Circle@8xpos, 0<D,
Text@i,
Flatten@88xpos, 0< + 1.2*cpos<DD,
Text@Mod@i, lD, Flatten@88xpos, 0< +

0.8*cpos<DD<, 8i, 1, n<DDD;

2
GraphicsColumn@
8modmatdemo@13, 5D, modcircledemo@26, 5D<,
ImageSize Ø FullD
Boomerang uses Mod to force a function, f, with a single argument, x, to
be periodic with wavelength l

3Boomerang@f_ , x_ , l_ D := f@Mod@x, lDD

4AFunction@x_ D := HH3 - xL^3Lê27
The following step uses Boomerang to produce a periodic repetition of
AFunction over the range 0 < x < 6:

5Plot@Boomerang@AFunction, x, 6D,
8x, -12, 12<, PlotRange Ø AllD

1: We create two visualization methods to show how Mod works:
modmatdemo creates a matrix with two columns (i, Mod[i,λ]);
modcircledemo wraps the the counting numbers and their mod-
uli around a Graphics- Circle with a λ sectors, after each circle
becomes filled a new circle is created for subsequent filling. modcir-
cledemo should show how Mod is related to mapping to a periodic
domain.

2: We show both visualization demonstrations in a GraphicsColumn.
3: Boomerang uses Mod on the argument of any function f of a single

argument to map the argument into the domain (0, λ). Therefore,
calling Boomerang on any function will create a infinitely periodic
repetition of the function in the domain (0, λ).

4: AFunction is created as an example to pass to Boomerang
5: Plot called on the periodic extension of wavelength λ = 6 of AFunc-

tion . This illustrates how Boomerang uses Mod to create a periodic
function with a specified period.

Odd and Even Functions

The trigonometric functions have the additional properties of being an odd function about the point
x = 0: fodd : fodd(x) = −fodd(−x) in the case of the sine, and an even function in the case of the
cosine: feven : feven(x) = feven(−x).

This can generalized to say that a function is even or odd about a point λ/2: foddλ
2

: foddλ
2
(λ/2+x) =

−foddλ
2
(λ/2− x) and fevenλ

2
: fevenλ

2
(λ/2 + x) = fevenλ

2
(λ/2− x).

Any function can be decomposed into an odd and even sum:

g(x) = geven + godd (17-3)

http://pruffle.mit.edu/3.016-2009/Notebooks/L17/Lecture-17.nb
http://pruffle.mit.edu/3.016-2009/pdf/L17/Lecture-17-4-COL.pdf
http://pruffle.mit.edu/3.016-2009/pdf/L17/Lecture-17-4-BW.pdf
http://pruffle.mit.edu/3.016-2009/html/Lecture-17/HTMLLinks/index_4.html
http://pruffle.mit.edu/3.016-2009
http://pruffle.mit.edu/3.016-2009/html/Lecture-17/HTMLLinks/index_4.html

192 MIT 3.016 Fall 2009 c© W.C Carter Lecture 17

The sine and cosine functions can be considered the odd and even parts of the generalized trigono-
metric function:

eix = cos(x) + ı sin(x) (17-4)

with period 2π.

Representing a particular function with a sum of other functions

A Taylor expansion approximates the behavior of a suitably defined function, f(x) in the neighborhood
of a point, xo, with a bunch of functions, pi(x), defined by the set of powers:

pi ≡ ~p = (x0, x1, . . . , xj , . . .) (17-5)

The polynomial that approximates the function is given by:

f(x) = ~A · ~p (17-6)

where the vector of coefficients is defined by:

Ai ≡ ~A = (
1
0!

f(xo),
1
1!

df

dx

∣∣∣∣
xo

, . . . ,
1
j!

djf

dxj

∣∣∣∣
xo

, . . .) (17-7)

The idea of a vector of infinite length has not been formally introduced, but the idea that as the
number of terms in the sum in Eq. 17-6 gets larger and larger, the approximation should converge to
the function. In the limit of an infinite number of terms in the sum (or the vectors of infinite length)
the series expansion will converge to f(x) if it satisfies some technical continuity constraints.

However, for periodic functions, the domain over which the approximation is required is only one
period of the periodic function—the rest of the function is taken care of by the definition of periodicity
in the function.

Because the function is periodic, it makes sense to use functions that have the same period to
approximate it. The simplest periodic functions are the trigonometric functions. If the period is λ, any
other periodic function with periods λ/2, λ/3, λ/N , will also have period λ. Using these ”sub-periodic”
trigonometric functions is the idea behind Fourier Series.

MIT 3.016 Fall 2009 Lecture 17 c© W.C Carter 193

Fourier Series

The functions cos(2πx/λ) and sin(2πx/λ) each have period λ. That is, they each take on the same
value at x and x + λ.

There are an infinite number of other simple trigonometric functions that are periodic in λ; they
are cos[2πx/(λ/2))] and sin[2πx/(λ/2))] and which cycle two times within each λ, cos[2πx/(λ/3))]
and sin[2πx/(λ/3))] and which cycle three times within each λ, and, in general, cos[2πx/(λ/n))] and
sin[2πx/(λ/n))] and which cycle n times within each λ.

The constant function, a0(x) = const, also satisfies the periodicity requirement.
The superposition of multiples of any number of periodic function must also be a periodic function,

therefore any function f(x) that satisfies:

f(x) = E0 +
∞∑

n=1

En cos
(

2πn

λ
x

)
+
∞∑

n=1

On sin
(

2πn

λ
x

)

= Ek0 +
∞∑

n=1

Ekn cos(knx) +
∞∑

n=1

Okn sin(knx)

(17-8)

where the ki are the wave-numbers or reciprocal wavelengths defined by kj ≡ 2πj/λ. The k’s represent
inverse wavelengths—large values of k represent short-period or high-frequency terms.

If any periodic function f(x) could be represented by the series in in Eq. 17-8 by a suitable choice
of coefficients, then an alternative representation of the periodic function could be obtained in terms
of the simple trigonometric functions and their amplitudes.

The “inverse question” remains: “How are the amplitudes Ekn (the even trigonometric terms) and
Okn (the odd trigonometric terms) determined for a given f(x)?”

The method follows from what appears to be a “trick.” The following three integrals have simple
forms for integers M and N :∫ x0+λ

x0

sin
(

2πM

λ
x

)
sin
(

2πN

λ
x

)
dx =

{
λ
2 if M = N
0 if M 6= N∫ x0+λ

x0

cos
(

2πM

λ
x

)
cos
(

2πN

λ
x

)
dx =

{
λ
2 if M = N
0 if M 6= N∫ x0+λ

x0

cos
(

2πM

λ
x

)
sin
(

2πN

λ
x

)
dx = 0 for any integers M,N

(17-9)

The following shows a demonstration of this orthogonality relation for the trigonometric functions.

194 MIT 3.016 Fall 2009 c© W.C Carter Lecture 17

Lecture 17 Mathematica R© Example 5
Orthogonality of Trigonometric Functions

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2009.

This is a Demonstration that the relations in Eq. 17-9 are true.

1

fassume = 8Minteger e Integers,
Ninteger œ Integers, xo œ Reals, l > 0<

coscos = Integrate@
Cos@2 p Minteger xêlD Cos@2 p Ninteger xêlD ,
8x, xo, xo + l<, Assumptions Ø fassumeD

Demonstrating Ÿxo
xo+lcosH2 mpx êlL cosH2 npx êlL „ x=0 for m ≠ n

2
Table@
888mrand, nrand< = RandomInteger@81, 50<, 2D<,
Simplify@coscos ê. 8Minteger Ø mrand ,

Ninteger Ø nrand<D<, 820<D
when n=m give indeterminate values, for these we should use a Limit.

3Limit@coscos, Minteger Ø Ninteger,
Assumptions Ø fassumeD

4
cossin = Integrate@
Cos@2 p Minteger xêlD Sin@2 p Ninteger xêlD ,
8x, xo, xo + l<, Assumptions Ø fassumeD

5
Table@
888mrand, nrand< = RandomInteger@81, 50<, 2D<,
Simplify@cossin ê. 8Minteger Ø mrand ,

Ninteger Ø nrand<D<, 820<D

6Limit@cossin, Minteger Ø Ninteger,
Assumptions Ø fassumeD

7
sinsin = Integrate@
Sin@2 p Minteger xêlD Sin@2 p Ninteger xêlD ,
8x, xo, xo + l<, Assumptions Ø fassumeD

8
Table@
888mrand, nrand< = RandomInteger@81, 50<, 2D<,
Simplify@sinsin ê. 8Minteger Ø mrand ,

Ninteger Ø nrand<D<, 820<D

9Limit@sinsin, Minteger Ø Ninteger,
Assumptions Ø fassumeD

1: Using Integrate for cos(2πMx/λ) cos(2πNx/λ) over a definite
interval of a single wavelength, does not produce a result that ob-
viously vanishes for M 6= N .

2: However, random replacement of the symbolic integers with integers
results in a zero. So, one the orthogonality relation is plausible.

3: Using Assuming and Limit, one can show that the relation ship
vanishes for N = M . Although, it is a bit odd to be use continuous
limits with integers.

4–6: This shows the same process for
∫

cos(2πMx/λ) sin(2πNx/λ)dx,
which always returns zeroes.

7–9: And,
∫

sin(2πMx/λ) sin(2πNx/λ)dx returns zeroes unless M = N .

Using this orthogonality trick, any amplitude can be determined by multiplying both sides of Eq. 17-
8 by its conjugate trigonometric function and integrating over the domain. (Here we pick the domain
to start at zero, x ∈ (0, λ), but any other starting point would work fine.)

cos(kMx)f(x) = cos(kMx)

(
Ek0 +

∞∑
n=1

Ekn cos(knx) +
∞∑

n=1

Okn sin(knx)

)
∫ λ

0
cos(kMx)f(x)dx =

∫ λ

0
cos(kMx)

(
Ek0 +

∞∑
n=1

Ekn cos(knx) +
∞∑

n=1

Okn sin(knx)

)
dx

∫ λ

0
cos(kMx)f(x)dx =

λ

2
EkM

(17-10)

This provides a formula to calculate the even coefficients (amplitudes) and multiplying by a sin function
provides a way to calculate the odd coefficients (amplitudes) for f(x) periodic in the fundamental

http://pruffle.mit.edu/3.016-2009/Notebooks/L17/Lecture-17.nb
http://pruffle.mit.edu/3.016-2009/pdf/L17/Lecture-17-5-COL.pdf
http://pruffle.mit.edu/3.016-2009/pdf/L17/Lecture-17-5-BW.pdf
http://pruffle.mit.edu/3.016-2009/html/Lecture-17/HTMLLinks/index_5.html
http://pruffle.mit.edu/3.016-2009
http://pruffle.mit.edu/3.016-2009/html/Lecture-17/HTMLLinks/index_5.html

MIT 3.016 Fall 2009 Lecture 17 c© W.C Carter 195

domain x ∈ (0, λ).

Ek0 =
1
λ

∫ λ

0
f(x)dx

EkN
=

2
λ

∫ λ

0
f(x) cos(kNx)dx kN ≡ 2πN

λ

OkN
=

2
λ

∫ λ

0
f(x) sin(kNx)dx kN ≡ 2πN

λ

(17-11)

The constant term has an extra factor of two because
∫ λ
0 Ek0dx = λEk0 instead of the λ/2 found in

Eq. 17-9.

Other forms of the Fourier coefficients

Sometimes the primary domain is defined with a different starting point and different symbols, for
instance Kreyszig uses a centered domain by using −L as the starting point and 2L as the period,
and in these cases the forms for the Fourier coefficients look a bit different. One needs to look at the
domain in order to determine which form of the formulas to use.

Extra Information and Notes
Potentially interesting but currently unnecessary

The “trick” of multiplying both sides of Eq. 17-8 by a function and integrating comes from
the fact that the trigonometric functions form an orthogonal basis for functions with inner
product defined by

f(x) · g(x) =
∫ λ

0
f(x)g(x)dx

Considering the trigonometric functions as components of a vector:

~e0(x) =(1, 0, 0, . . . ,)
~e1(x) =(0, cos(k1x), 0, . . . ,)
~e2(x) =(0, 0, sin(k1x), . . . ,)

. . . =
...

~en(x) =(. , sin(knx), . . . ,)

then these “basis vectors” satisfy ~ei · ~ej = (λ/2)δij, where δij = 0 unless i = j. The trick is
just that, for an arbitrary function represented by the basis vectors, ~P (x) · ~ej(x) = (λ/2)Pj.

196 MIT 3.016 Fall 2009 c© W.C Carter Lecture 17

Lecture 17 Mathematica R© Example 6
Calculating Fourier Series Amplitudes

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2009.

Functions are developed which compute the even (cosine) amplitudes and odd (sine) amplitudes for an input
function of one variable. These functions are extended to produce the first N terms of a Fourier series.

First we will "do it the hard way" and write short programs that evaluate
Fourier coefficients; then we will demonstrate how to make use of built-in
functions in Mathematica's FourierTransform package…
Define functions based on the formulas derived for the fourier amplitudes

The constant term:

1
EvenTerms@0, function_ , l_D :=

1

l
 ‡
0

l

function@dumD „dum

A function that defines each even amplitude individually (this is not very
efficient, it would be better to evaluate the integral once and use that
result)

2

EvenTerms@SP_Integer, function_ , l_D :=
EvenTerms@SP, function , wavelengthD =

2

l
 ‡
0

l

function@dumD CosB2 SP p dum

l
F „dum

Define the zeroth odd term as zero for symmetry with the even terms:

3OddTerms@0, function_ , l_D := 0

4

OddTerms@SP_Integer, function_ , l_D :=
OddTerms@SP, function , lD =

2

l
 ‡
0

l

function@dumD SinB2 SP p dum

l
F „dum

A function to create a vector of amplitudes for the odd terms and one for
the even terms

5
OddAmplitudeVector@
NTerms_Integer, function_, l_D :=
Table@OddTerms@i, function, lD,
8i, 0, NTerms<D

6
EvenAmplitudeVector@
NTerms_Integer, function_, l_D :=
Table@EvenTerms@i, function, lD,
8i, 0, NTerms<D

1–2: EvenTerms computes symbolic representations of the even (cosine)
coefficients using the formulas in Eq. 17-11. The N = 0 term is
computed with a supplemental definition because of its extra factor
of 2. The domain is chosen so that it begins at x = 0 and ends at
x = λ.

3–4: OddTerms performs a similar computation for the sine-coefficients;
the N = 0 amplitude is set to zero explicitly. It will become con-
venient to include the zeroth-order coefficient for the odd (sine)
series which vanishes by definition. The functions work by doing
an integral for each term—this is not very efficient. It would be
more efficient to calculate the integral symbolically once and then
evaluate it once for each term.

5–6: OddAmplitudeVector and EvenAmplitudeVectors create amplitude
vectors for the cosine and sine terms with specified lengths and
domains.

5: This function, f(x) = x(1 − x)2(2 − x), will be used for particular
examples of Fourier series, note that it is an even function over
0 < x < 2.

http://pruffle.mit.edu/3.016-2009/Notebooks/L17/Lecture-17.nb
http://pruffle.mit.edu/3.016-2009/pdf/L17/Lecture-17-6-COL.pdf
http://pruffle.mit.edu/3.016-2009/pdf/L17/Lecture-17-6-BW.pdf
http://pruffle.mit.edu/3.016-2009/html/Lecture-17/HTMLLinks/index_6.html
http://pruffle.mit.edu/3.016-2009
http://pruffle.mit.edu/3.016-2009/html/Lecture-17/HTMLLinks/index_6.html

MIT 3.016 Fall 2009 Lecture 17 c© W.C Carter 197

Lecture 17 Mathematica R© Example 7
Approximations to Functions with Truncated Fourier Series

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2009.

Example of using Eq. 17-11 to calculate a Fourier Series for a particular function.

1myfunction@x_ D := Hx*H2 - xL*H1 - xL^2L

2OriginalPlot = Plot@myfunction@xD, 8x, 0, 2<,
PlotStyle Ø 8Hue@.66D, Thickness@0.015D<D

3EvenAmplitudeVector@6, myfunction, 2D

4OddAmplitudeVector@6, myfunction, 2D

5OddBasisVector@NTerms_Integer, var_, l_D :=
Table@Sin@2 p i varêlD, 8i, 0, NTerms<D

6OddBasisVector@6, x, 2D

7EvenBasisVector@NTerms_Integer, var_, l_D :=
Table@Cos@2 p i varêlD, 8i, 0, NTerms<D

8EvenBasisVector@6, x, 2D

9

FourierTruncSeries@n_, function_, var_ ,
l_D := EvenAmplitudeVector@n, function, lD.
EvenBasisVector@n, var, lD +
OddAmplitudeVector@n, function, lD.
OddBasisVector@n, var, lD

10FourierTruncSeries@6, myfunction, x, 2D

11
FPlot@n_IntegerD := FPlot@nD = Plot@Evaluate@

FourierTruncSeries@n, myfunction, x, 2DD,
8x, -2, 4<, PlotStyle Ø
8Thick, ColorData@n, "ColorList"D<D

12Show@OriginalPlot, FPlot@3D, FPlot@6D,
PlotRange Ø 88-0.5, 2.5<, 8-0.1, 0.26<<D

-0.5 0.5 1.0 1.5 2.0 2.5
-0.10
-0.05

0.05
0.10
0.15
0.20
0.25

1: We introduce and example function x(2− x)(1− x2) that vanishes
at x = 0, 1, 2 that will be used to produce a periodic function with
λ = 2item We store the example function’s graphical representation
in OriginalPlot. Note that there will be a sharp discontinuity in
the derivative at the edges of the periodic domain.

3–4: The Fourier coefficients, truncated at six terms, are computed with
the functions that we defined above, OddAmplitudeVector and Eve-
nAmplitudeVector . Note that because of the even symmetry of the
function about the middle, all of the odd coefficients vanish.

5–8: OddBasisVector and EvenBasisVector , create vectors of basis
functions of specified lengths and periodic domains.

9–10: The Fourier series up to a certain order can be defined as the sum
of two inner (dot) products: the inner product of the odd coefficient
vector and the sine basis vector, and the inner product of the even
coefficient vector and the cosine basis vector.

11–12: This will illustrate the approximation for a truncated (N = 6)
Fourier series. FPlot takes an integer truncation-argument and
generates a plot for that truncation, but only for myfunction. It
might be useful to extend this example so that it takes a function
as an argument, but it makes more sense to leave this example and
use Mathematica R© ’s built-in Fourier series methods.

http://pruffle.mit.edu/3.016-2009/Notebooks/L17/Lecture-17.nb
http://pruffle.mit.edu/3.016-2009/pdf/L17/Lecture-17-7-COL.pdf
http://pruffle.mit.edu/3.016-2009/pdf/L17/Lecture-17-7-BW.pdf
http://pruffle.mit.edu/3.016-2009/html/Lecture-17/HTMLLinks/index_7.html
http://pruffle.mit.edu/3.016-2009
http://pruffle.mit.edu/3.016-2009/html/Lecture-17/HTMLLinks/index_7.html

198 MIT 3.016 Fall 2009 c© W.C Carter Lecture 17

Lecture 17 Mathematica R© Example 8
Demonstration the used of functions defined in the FourierSeries-package

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2009.

Fourier series expansions are a common and useful mathematical tool, and it is not surprising that
Mathematica R© would have a package to do this and replace the inefficient functions defined in the pre-
vious example.

1Needs@"FourierSeries`"D

2AFunction@x_D :=
Hx - 3L^3

27

3Plot@AFunction@xD, 8x, 0, 6<D
Mathematica's Fourier Series functions are defined for function that are
periodic in the domain x œ (-1/2,1/2). So we need to map the periodic
functions to this domain

4ReduceHalfHalf@f_ , x_ , l_ D :=
f@Hx + 1ê2L*l D

5ReducedFunction =
ReduceHalfHalf@AFunction, x, 6D êê Simplify

8 x3

6
ExactPlot = Plot@ReducedFunction,

8x, -1ê2, 1ê2<, PlotRange Ø All, PlotStyle Ø
8Red, Opacity@0.5D, Thickness@0.01D<D

7FourierCosCoefficient@ReducedFunction, x, nD

8FourierSinCoefficient@ReducedFunction, x, nD

2 H-1Ln I6 - n2 p2M
n3 p3

9FourierTrigSeries@ReducedFunction, x, 5D

2 I-6 + p2M Sin@2 p xD
p3

+

I3 - 2 p2M Sin@4 p xD
2 p3

+
2 I-2 + 3 p2M Sin@6 p xD

9 p3
+

I3 - 8 p2M Sin@8 p xD
16 p3

+
2 I-6 + 25 p2M Sin@10 p xD

125 p3

1: The functions in FourierSeries to operate on the unit period
located at x ∈ (−1/2, 1/2) by default. Therefore, the domains of
functions of interest can be mapped onto this domain by a change
of variables.

2–3: We introduce another function that will be approximated by a
Fourier series. This function will be made periodic with λ = 6
in the untransformed variables.

4–6: ReduceHalfHalf is an example of a function design to do the re-
quired mapping. First the length of original domain is mapped to
unity by dividing through by λ and then the origin is shifted by
mapping the x (that the Mathematica R© functions will see) to
(−1/2, 1/2) with the transformation x → x + 1

2 . ReducedFunction
shows an example on the function defined above.

8–9: Particular amplitudes of the properly remapped function can
be obtained with the functions FourierCosCoefficient and
FourierSinCoefficient. In this example, a symbolic n is entered
and a symbolic representation of the nth amplitude is returned.
Because the function is odd about the middle, all of the cosine-
coefficients are zero.

9: A truncated Fourier series can be obtained symbolically to any order
with FourierTrigSeries.

http://pruffle.mit.edu/3.016-2009/Notebooks/L17/Lecture-17.nb
http://pruffle.mit.edu/3.016-2009/pdf/L17/Lecture-17-8-COL.pdf
http://pruffle.mit.edu/3.016-2009/pdf/L17/Lecture-17-8-BW.pdf
http://pruffle.mit.edu/3.016-2009/html/Lecture-17/HTMLLinks/index_8.html
http://pruffle.mit.edu/3.016-2009
http://pruffle.mit.edu/3.016-2009/html/Lecture-17/HTMLLinks/index_8.html

MIT 3.016 Fall 2009 Lecture 17 c© W.C Carter 199

Lecture 17 Mathematica R© Example 9
Recursive Calculation of a Truncated Fourier Series

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2009.

In this example, we build up a set of recursive function that will be utilized for efficient computation of a
truncated Fourier series. These functions will be used in a subsequent visualization example.

1

ManipulateTruncatedFourierSeries@function_,
8truncationstart_, truncationend_,
truncjump_<D := Manipulate@Plot@Evaluate@
FourierTrigSeries@function, x, itruncDD,

8x, -1, 1<, PlotRange Ø 8-2, 2<D,
8itrunc, 8truncationstart,
truncationend, truncjump<<D;

The function above will work, but it is horribly inefficient! Because it asks
FourierTrigSeries to calculate one more term each time, it is doing some
redundant work. We can fix this up by having
 it calculate one new term and adding to the sum calculated previously.
Here it is:

2

costerm@function_, x_, n_IntegerD :=
Simplify@FourierCosCoefficient@

function, x, nDD Cos@2 p n xD
sinterm@function_, x_, n_IntegerD :=
Simplify@FourierSinCoefficient@

function, x, nDD Sin@2 p n xD

TruncatedFourierSeries@function_, x_, 0D :=
TruncatedFourierSeries@function, x, 0D =
costerm@function, x, 0D +
sinterm@function, x, 0D

TruncatedFourierSeries@
function_, x_, n_IntegerD :=
TruncatedFourierSeries@function, x, nD =
TruncatedFourierSeries@function, x, n - 1D +
costerm@function, x, nD +
sinterm@function, x, nD

1: ManipulateTruncatedFourierSeries is a simple example of visu-
alization function for the truncated Fourier series. It uses the
Manipulate function with three arguments in the iterator for the
initial truncation truncationstart, final truncation, and the num-
ber to skip in between.

2: However, because the entire series is recomputed for each frame,
the function above is not very efficient. In this second version, only
two arguments are supplied to the iterator. At each function call,
the two N th Fourier terms are added to those computed in the
(N − 1)th and then stored in memory. The recursion stops at the
defined N = 0 term.

http://pruffle.mit.edu/3.016-2009/Notebooks/L17/Lecture-17.nb
http://pruffle.mit.edu/3.016-2009/pdf/L17/Lecture-17-9-COL.pdf
http://pruffle.mit.edu/3.016-2009/pdf/L17/Lecture-17-9-BW.pdf
http://pruffle.mit.edu/3.016-2009/html/Lecture-17/HTMLLinks/index_9.html
http://pruffle.mit.edu/3.016-2009
http://pruffle.mit.edu/3.016-2009/html/Lecture-17/HTMLLinks/index_9.html

200 MIT 3.016 Fall 2009 c© W.C Carter Lecture 17

Lecture 17 Mathematica R© Example 10
Visualizing Convergence of the Fourier Series: Gibbs Phenomenon

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2009.

Functions that produce visualizations with Manipulate (each frame representing a different order of truncation of
the Fourier series) are developed. This example illustrates Gibbs phenomenon where the approximating function
oscillates wildly near discontinuities in the original function. In the Manipulate function, we use the option
Initialization so that all evaluations during graphical output will be rapid.

The following will demonstrate how convergence is difficult where the
function changes rapidly---this is known as Gibbs' Phenomenon

1

Manipulate@GraphicsRow@
8plt = Show@Plot@theapprx@truncationD,

8x, -0.4999, 0.4999<,
PlotRange Ø 88-0.55, 0.55<, 8-1.4, 1.4<<,
PlotStyle Ø 8Thick, ColorData@1,

truncationD<D, ExactPlotD, Show@plt,
PlotRange Ø 880.4, 0.5<, 80.5, 1.2<<D<,

ImageSize Ø FullD,
88truncation, 100<,
1, 100, 1<,
Initialization Ø
HTable@ theapprx@iD = TruncatedFourierSeries@

ReducedFunction, x, iD, 8i, 1, 100<D;LD

truncation

1: Because ReducedFunction has a discontinuity (its end-value and its
initial-value differ), this visualization will show Gibbs phenomena
near the edges of the domain. The approximation is fine everywhere
except in the neighborhood of the discontinuity. At the discontinu-
ity, the oscillations about the exact value do not dampen out with
increased truncation N , but the domain where the oscillations are
ill-behaved shrinks with increased N .

Complex Form of the Fourier Series

The behavior of the Fourier coefficients for both the odd (sine) and for the even (cosine) terms was
illustrated above. Functions that are even about the center of the fundamental domain (reflection
symmetry) will have only even terms—all the sine terms will vanish. Functions that are odd about
the center of the fundamental domain (reflections across the center of the domain and then across the
x-axis.) will have only odd terms—all the cosine terms will vanish.

Functions with no odd or even symmetry will have both types of terms (odd and even) in its
expansion. This is a restatement of the fact that any function can be decomposed into odd and even

http://pruffle.mit.edu/3.016-2009/Notebooks/L17/Lecture-17.nb
http://pruffle.mit.edu/3.016-2009/pdf/L17/Lecture-17-10-COL.pdf
http://pruffle.mit.edu/3.016-2009/pdf/L17/Lecture-17-10-BW.pdf
http://pruffle.mit.edu/3.016-2009/html/Lecture-17/HTMLLinks/index_10.html
http://pruffle.mit.edu/3.016-2009
http://pruffle.mit.edu/3.016-2009/html/Lecture-17/HTMLLinks/index_10.html

MIT 3.016 Fall 2009 Lecture 17 c© W.C Carter 201

parts (see Eq. 17-3).
This suggests a short-hand in Eq. 17-4 can be used that combines both odd and even series into

one single form. However, because the odd terms will all be multiplied by the imaginary number ı, the
coefficients will generally be complex. Also because cos(nx) = (exp(inx) + exp(−inx))/2, writing the
sum in terms of exponential functions only will require that the sum must be over both positive and
negative integers.

For a periodic domain x ∈ (0, λ), f(x) = f(x + λ), the complex form of the fourier series is given
by:

f(x) =
∞∑

n=−∞
Ckneıknx where kn ≡

2πn

λ

Ckn =
1
λ

∫ λ

0
f(x)e−ıknxdx

(17-12)

Because of the orthogonality of the basis functions exp(ıknx), the domain can be moved to any
wavelength, the following is also true:

f(x) =
∞∑

n=−∞
Ckneıknx where kn ≡

2πn

λ

Ckn =
1
λ

∫ λ/2

−λ/2
f(x)e−ıknxdx

(17-13)

although the coefficients may have a different form.

	Lecture 17: Function Representation by Fourier Series
	Lecture 17: Periodic Functions
	Example 17-1: Playing with Audible Periodic Phenomena
	Example 17-2: Music and Instruments
	Example 17-3: Random Notes and Instruments
	Example 17-4: Using Mod to Create Periodic Functions

	Lecture 17: Odd and Even Functions
	Lecture 17: Representing a particular function with a sum of other functions
	Lecture 17: Fourier Series
	Example 17-5: Orthogonality of Trigonometric Functions

	Lecture 17: Other forms of the Fourier coefficients
	Example 17-6: Calculating Fourier Series Amplitudes
	Example 17-7: Approximations to Functions with Truncated Fourier Series
	Example 17-8: Demonstration the used of functions defined in the FourierSeries-package
	Example 17-9: Recursive Calculation of a Truncated Fourier Series
	Example 17-10: Visualizing Convergence of the Fourier Series: Gibbs Phenomenon

	Lecture 17: Complex Form of the Fourier Series

