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Lecture 17: Function Representation by Fourier Series

Reading:
Kreyszig Sections: 11.1, 11.2, 11.3 (pages478–485, 487–489, 490–495)

Periodic Functions

Periodic functions should be familiar to everyone. The keeping of time, the ebb and flow of tides, the patterns and textures
of our buildings, decorations, and vestments invoke repetition and periodicity that seem to be inseparable from the elements
of human cognition.8 Although other species utilize music for purposes that we can only imagine—we seem to derive emotion
and enjoyment from making and experience of music.

8I hope you enjoy the lyrical quality of the prose. While I wonder again if anyone is reading these notes, my wistfulness is taking a poetic turn:

They repeat themselves
What is here, will be there
It wills, willing, to be again
spring; neap, ebb and flow, wane; wax
sow; reap, warp and woof, motif; melody.
The changed changes. We remain
Perpetually, Immutably, Endlessly.
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Lecture 17 Mathematica R© Example 1

Playing with Audible Periodic Phenomena
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

Several example of creating sounds using mathematical functions are illustrated for education and amusement.
Sounds will not be available on PDF or HTML versions
Let's begin by "looking" at a familiar periodic phenomena:
We index the notes and write an indexed set of frequency (in Hertz) for 
each of the notes for one octave above middle-c. We write a function to 
create a Sound for each note.

1

c = 1; d = 2; e = 3; f = 4; g = 5; a = 6; b = 7;
freq@cD = 261.6;
freq@dD = 293.7;
freq@eD = 329.6;
freq@fD = 349.2;
freq@gD = 392.0;
freq@aD = 440.0;
freq@bD = 493.9;
purenote@note_IntegerD := purenote@noteD =

Play@Sin@2 p freq@noteD tD, 8t, 0, 1<D
We extend the function to get simultaneous notes from a List. We use 
Thread which takes f[{a,b,c}] to {f[a],f[b],f[c]}

2notes@note_ListD :=

Sound@Thread@purenote@noteDDD
Here are examples of their use.

3cnote = purenote@cD
notes@8a, c, e<D

We can play with variable amplitudes for a fixed frequency, here we can 
hear the increased, but non-singular amplitude through zero.

4
Plot@Sin@540 xD ê x, 8x, -.1, .1<,
PlotRange Ø All, Filling Ø AxisD
Play@Sin@540 xD ê x, 8x, -1, 1<D

We can vary amplitudes and frequencies. Warning, playing with this 
function can become addictive...

5
Play@
2 Sin@20 x Sin@x Exp@-x ê .2D + Sin@xD ê xDD +

Exp@H1 + Cos@xDLD Sin@x Exp@x ê 10DD
Sin@1500 xD, 8x, 0.01, 20<D

1: The seven musical notes around middle C indexed here with integers and then their frequencies (in
hertz) are defined with a freq. The function Note takes one of the seven indexed notes and creates
a wave-form for that note. The function Play takes the waveform and produces audio output. We
introduce a function, purenote , that takes an integer argument and plays the corresponding exact
note.

2: To play a sequence of notes, a list of notes must be passed to Sound. We write a function, notes
, that uses Thread to create a list of object created by applications of purenote. In other words,
Thread[function[{la,lb,lc}]] returns {function[la], function[lb], function[lc]}.

3: This is an example of the use of note and purenote .

4: This is noise generated from a function; we can modulate the amplitude and frequency. Enjoy the
fact that sin(x)/x is not singular at x = 0.

5: This is a function that I cooked up. Enjoy.
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Lecture 17 Mathematica R© Example 2

Music and Instruments
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

Having no musical talent whatsoever, I try to write a program to make music.
Let's see if we can play this:    

1twoframes = 8e, e, f, g, g, f, e, d, c, c, d, e<;
We will play it, but it probably not what was intended...

2notes@twoframesD
We create a rest of  a fixed length, and then use Riffle to insert a rest 
after each note. We use a new function, called SoundNote, with None as 
the first argument, we get no sound.

3purenote@restD = SoundNote@None, .15D;
4notes@Riffle@twoframes, restDD

SoundNote can take general strings for arguments as well, here we enter 
the musical notes from above (as characters), but one octave lower..

5TwoFramesLower = 8"E3", "E3", "F3", "G3", "G3",
"F3", "E3", "D3", "C3", "C3", "D3", "E3"<;

The default is to use a piano to make the sound; here we ask for a 
duration of 6/10 of a second.

6piano@note_StringD := SoundNote@note, .6D
7Sound@Thread@piano@TwoFramesLowerDDD

We can use other MIDI instruments as well; here is a bagpipe

8
bagpipe@note_StringD :=

SoundNote@note, .6, "Bagpipe"D
Sound@Thread@bagpipe@TwoFramesLowerDDD

And, now for the birds.

9

avian@note_StringD :=

SoundNote@note, .2, "Bird"D
avian@restD = SoundNote@None, .4D;
Sound@
Thread@avian@Riffle@TwoFramesLower, restDDDD

1: Someone who knows how to read music told me what these notes were; so, I entered them into a list.

2: This is musical score with one-second duration notes played every 1 second. Oh, Joy.

3: This is probably not what Ludwig Van had in mind; so let’s figure out how to insert a ‘rest.’ We use
Mathematica R© ’s built-in SoundNote for .15 seconds to define a purenote for rest rest.

4: Riffle[{l1,l2,l3},x] intersperses x into the list and returns {l1,x,l2,x,l3,x}. Calling notes on
the resulting structure returns the pure notes with rests in between.

5: SoundNote will also play MIDI sounds and take string arguments for notes. We recreate a sting
version of the musical score for notes one octave below middle-c.

6: By default, SoundNote returns a MIDI piano sound. We create a function, piano , to play a single
note for a 0.6 second duration.

7: By using Thread again, we play the 12-note musical score on the piano.

8: There are other MIDI instruments; here we create the function bagpipe and play the score with a
simulated bagpipe.

9: And finally, we introduce a ‘cheep’ little function, avian , to let the birds sing their own joy.
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Lecture 17 Mathematica R© Example 3

Random Notes and Instruments
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

Just because we can, let’s see how sequences of random notes sound. We’ll add random instruments and rests too.
Let's hear what random notes sound like: SoundNote[n] will play n 
semitones above middle C.  Here we make a list of random notes and 
play them.

1
RandomNotes = Table@SoundNote@

RandomInteger@8-15, 20<D, .2D, 836<D;
Sound@RandomNotes, 10D

Here, we mix in some rests at random

2

RanRest@D := Module@8rdur = .2<,
If@RandomReal@D > 0.5, rdur = .4D;
SoundNote@None, rdurDD

RandomNotesandRests =

Table@If@RandomReal@D ¥ .33,
SoundNote@RandomInteger@8-15, 20<D, .2D,
RanRest@DD, 896<D;

Sound@RandomNotesandRests, 20D
Now, we ask for random instruments as well, with "chords" of up to 5 
instruments at each beat.

3

RandomInstruments =

Table@If@RandomReal@D > 0.5, Table@
SoundNote@
Table@RandomInteger@8-15, 20<D,
8RandomInteger@81, 5<D<D,
Round@RandomReal@81, 2<D, .2D,
RandomInteger@81, 15<DD,

8RandomInteger@81, 4<D<D, RanRest@DD,
848<D;

Sound@RandomInstruments, 20D
Finally, some random percussion events.

4

percs = 8SoundNote@"Clap", 1D,
SoundNote@"Sticks", 1D, SoundNote@"Shaker",
1D, SoundNote@"LowWoodblock", 1D,
SoundNote@"Castanets", 1D,
SoundNote@None, 1D<;

perctable = Table@RandomChoice@percsD, 850<D;
Sound@perctable, 20D

1: RandomNotes creates a 36 member random set of single pitches from 15 semi-tones below to 20
semi-tones above middle-c. We play them for ten seconds.

2: To introduce some variety into the random melody, we write a program, RanRest , which will be
used to introduce rests with lengths .2 and .4 with equal probability. A list, RandomNotesandRests
, is created with random notes which call RanRest for approximately 1/3 of the members, and from
the same random set as RandomNotes for the remainder.

3: Now, we introduce random MIDI instruments into our score: RandomInstruments is a Table of
length 48, and each member is a list of a random number, between 1 and 5, of random instruments
with random notes. These list-elements create a “chord.” Rests are introduced randomly, at about
1/2 of the beats.

4: Here we play with random percussion MIDI instruments. Dancing to this is not necessarily advised.
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A function that is periodic in a single variable can be expressed as:

f(x + λ) = f(x)
f(t + τ) = f(t)

(17-1)

The first form is a suggestion of a spatially periodic function with wavelength λ and the second form suggests a function that
is periodic in time with period τ . Of course, both forms are identical and express that the function has the same value at an
infinite number of points ( x = nλ in space or t = nτ in time where n is an integer.)

Specification of a periodic function, f(x), within one period x ∈ (xo, xo + λ) defines the function everywhere. The most
familiar periodic functions are the trigonometric functions:

sin(x) = sin(x + 2π) and cos(x) = cos(x + 2π) (17-2)

However, any function can be turned into a periodic function.

http://pruffle.mit.edu/3.016-2006/
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Lecture 17 Mathematica R© Example 4

Using Mod to Create Periodic Functions
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

Periodic functions are often associated with the “modulus” operation. Mod[x, λ] is the remainder of the result of recursively dividing x

by λ until the result lies in the domain 0 ≤ Mod[x, λ] < λ). Another way to think of modulus is to find the “point” where are periodic
function should be evaluated if its primary domain is x ∈ (0, λ).

Mod is a very useful function that can be used to force objects to be 
periodic.  Mod[x,l] return that part of x that lies within 0 and l.  Or, in 
other words if we map the real line x to a circle with circumference l, then 
Mod[x,l] returns were x is mapped onto the circle.

1

modmatdemo@n_Integer, l_IntegerD :=

Table@8i, Mod@i, lD<, 8i, 1, n<D êê
MatrixForm;

modcircledemo@n_Integer, l_IntegerD :=

Module@8xpos, angle, cpos<,
Graphics@
Table@xpos = 3 Quotient@i - 1, lD;
angle = 2 Pi Mod@i, lD ê l;
cpos = 8Cos@angleD, Sin@angleD<;
8Circle@8xpos, 0<D,
Text@i,
Flatten@88xpos, 0< + 1.2 * cpos<DD,
Text@Mod@i, lD, Flatten@88xpos, 0< +

0.8 * cpos<DD<, 8i, 1, n<DDD;

2
GraphicsColumn@
8modmatdemo@13, 5D, modcircledemo@26, 5D<,
ImageSize Ø FullD
Boomerang uses Mod to force a function, f, with a single argument, x, to 
be periodic with wavelength l

3Boomerang@f_ , x_ , l_ D := f@Mod@x, lDD
4AFunction@x_ D := HH3 - xL^3L ê 27

The following step uses Boomerang to produce a periodic repetition of 
AFunction over the range 0 < x < 6:

5Plot@Boomerang@AFunction, x, 6D,
8x, -12, 12<, PlotRange Ø AllD

1: We create two visualization methods to show how Mod works: modmatdemo creates a matrix with
two columns (i, Mod[i,λ]); modcircledemo wraps the the counting numbers and their moduli
around a Graphics- Circle with a λ sectors, after each circle becomes filled a new circle is created
for subsequent filling. modcircledemo should show how Mod is related to mapping to a periodic
domain.

2: We show both visualization demonstrations in a GraphicsColumn.

3: Boomerang uses Mod on the argument of any function f of a single argument to map the argument
into the domain (0, λ). Therefore, calling Boomerang on any function will create a infinitely periodic
repetition of the function in the domain (0, λ).

4: AFunction is created as an example to pass to Boomerang

5: Plot called on the periodic extension of wavelength λ = 6 of AFunction . This illustrates how

Boomerang uses Mod to create a periodic function with a specified period.
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Odd and Even Functions

The trigonometric functions have the additional properties of being an odd function about the point x = 0: fodd : fodd(x) =
−fodd(−x) in the case of the sine, and an even function in the case of the cosine: feven : feven(x) = feven(−x).

This can generalized to say that a function is even or odd about a point λ/2: foddλ
2

: foddλ
2
(λ/2 + x) = −foddλ

2
(λ/2− x) and

fevenλ
2

: fevenλ
2
(λ/2 + x) = fevenλ

2
(λ/2− x).

Any function can be decomposed into an odd and even sum:

g(x) = geven + godd (17-3)

The sine and cosine functions can be considered the odd and even parts of the generalized trigonometric function:

eix = cos(x) + ı sin(x) (17-4)

with period 2π.

Representing a particular function with a sum of other functions

A Taylor expansion approximates the behavior of a suitably defined function, f(x) in the neighborhood of a point, xo, with
a bunch of functions, pi(x), defined by the set of powers:

pi ≡ ~p = (x0, x1, . . . , xj , . . .) (17-5)

The polynomial that approximates the function is given by:

f(x) = ~A · ~p (17-6)

where the vector of coefficients is defined by:

Ai ≡ ~A = (
1
0!

f(xo),
1
1!

df

dx

∣∣∣∣
xo

, . . . ,
1
j!

djf

dxj

∣∣∣∣
xo

, . . .) (17-7)

http://pruffle.mit.edu/3.016-2006/
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The idea of a vector of infinite length has not been formally introduced, but the idea that as the number of terms in the sum
in Eq. 17-6 gets larger and larger, the approximation should converge to the function. In the limit of an infinite number of
terms in the sum (or the vectors of infinite length) the series expansion will converge to f(x) if it satisfies some technical
continuity constraints.

However, for periodic functions, the domain over which the approximation is required is only one period of the periodic
function—the rest of the function is taken care of by the definition of periodicity in the function.

Because the function is periodic, it makes sense to use functions that have the same period to approximate it. The simplest
periodic functions are the trigonometric functions. If the period is λ, any other periodic function with periods λ/2, λ/3, λ/N ,
will also have period λ. Using these ”sub-periodic” trigonometric functions is the idea behind Fourier Series.

Fourier Series

The functions cos(2πx/λ) and sin(2πx/λ) each have period λ. That is, they each take on the same value at x and x + λ.

There are an infinite number of other simple trigonometric functions that are periodic in λ; they are cos[2πx/(λ/2))] and
sin[2πx/(λ/2))] and which cycle two times within each λ, cos[2πx/(λ/3))] and sin[2πx/(λ/3))] and which cycle three times
within each λ, and, in general, cos[2πx/(λ/n))] and sin[2πx/(λ/n))] and which cycle n times within each λ.

The constant function, a0(x) = const, also satisfies the periodicity requirement.

The superposition of multiples of any number of periodic function must also be a periodic function, therefore any function
f(x) that satisfies:

f(x) = E0 +
∞∑

n=1

En cos
(

2πn

λ
x

)
+
∞∑

n=1

On sin
(

2πn

λ
x

)

= Ek0 +
∞∑

n=1

Ekn cos(knx) +
∞∑

n=1

Okn sin(knx)

(17-8)

where the ki are the wave-numbers or reciprocal wavelengths defined by kj ≡ 2πj/λ. The k’s represent inverse wavelengths—
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large values of k represent short-period or high-frequency terms.

If any periodic function f(x) could be represented by the series in in Eq. 17-8 by a suitable choice of coefficients, then an
alternative representation of the periodic function could be obtained in terms of the simple trigonometric functions and their
amplitudes.

The “inverse question” remains: “How are the amplitudes Ekn (the even trigonometric terms) and Okn (the odd trigonometric
terms) determined for a given f(x)?”

The method follows from what appears to be a “trick.” The following three integrals have simple forms for integers M and
N : ∫ x0+λ

x0

sin
(

2πM

λ
x

)
sin
(

2πN

λ
x

)
dx =

{
λ
2 if M = N
0 if M 6= N∫ x0+λ

x0

cos
(

2πM

λ
x

)
cos
(

2πN

λ
x

)
dx =

{
λ
2 if M = N
0 if M 6= N∫ x0+λ

x0

cos
(

2πM

λ
x

)
sin
(

2πN

λ
x

)
dx = 0 for any integers M,N

(17-9)

The following shows a demonstration of this orthogonality relation for the trigonometric functions.
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Lecture 17 Mathematica R© Example 5

Orthogonality of Trigonometric Functions
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

This is a Demonstration that the relations in Eq. 17-9 are true.

1

fassume = 8Minteger e Integers,
Ninteger œ Integers, xo œ Reals, l > 0<

coscos = Integrate@
Cos@2 p Minteger x ê lD Cos@2 p Ninteger x ê lD ,
8x, xo, xo + l<, Assumptions Ø fassumeD
Demonstrating Ÿxo

xo+lcosH2  mpx êlL cosH2  npx êlL „ x=0 for m ≠ n 

2
Table@
888mrand, nrand< = RandomInteger@81, 50<, 2D<,
Simplify@coscos ê. 8Minteger Ø mrand ,

Ninteger Ø nrand<D<, 820<D
when  n=m give indeterminate values, for these we should use a Limit.

3Limit@coscos, Minteger Ø Ninteger,
Assumptions Ø fassumeD

4
cossin = Integrate@
Cos@2 p Minteger x ê lD Sin@2 p Ninteger x ê lD ,
8x, xo, xo + l<, Assumptions Ø fassumeD

5
Table@
888mrand, nrand< = RandomInteger@81, 50<, 2D<,
Simplify@cossin ê. 8Minteger Ø mrand ,

Ninteger Ø nrand<D<, 820<D

6Limit@cossin, Minteger Ø Ninteger,
Assumptions Ø fassumeD

7
sinsin = Integrate@
Sin@2 p Minteger x ê lD Sin@2 p Ninteger x ê lD ,
8x, xo, xo + l<, Assumptions Ø fassumeD

8
Table@
888mrand, nrand< = RandomInteger@81, 50<, 2D<,
Simplify@sinsin ê. 8Minteger Ø mrand ,

Ninteger Ø nrand<D<, 820<D

9Limit@sinsin, Minteger Ø Ninteger,
Assumptions Ø fassumeD

1: Using Integrate for cos(2πMx/λ) cos(2πNx/λ) over a definite interval of a single wavelength, does
not produce a result that obviously vanishes for M 6= N .

2: However, random replacement of the symbolic integers with integers results in a zero. So, one the
orthogonality relation is plausible.

3: Using Assuming and Limit, one can show that the relation ship vanishes for N = M . Although, it
is a bit odd to be use continuous limits with integers.

4–6: This shows the same process for
R

cos(2πMx/λ) sin(2πNx/λ)dx, which always returns zeroes.

7–9: And,
R

sin(2πMx/λ) sin(2πNx/λ)dx returns zeroes unless M = N .
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Using this orthogonality trick, any amplitude can be determined by multiplying both sides of Eq. 17-8 by its conjugate
trigonometric function and integrating over the domain. (Here we pick the domain to start at zero, x ∈ (0, λ), but any other
starting point would work fine.)

cos(kMx)f(x) = cos(kMx)

(
Ek0 +

∞∑
n=1

Ekn cos(knx) +
∞∑

n=1

Okn sin(knx)

)
∫ λ

0
cos(kMx)f(x)dx =

∫ λ

0
cos(kMx)

(
Ek0 +

∞∑
n=1

Ekn cos(knx) +
∞∑

n=1

Okn sin(knx)

)
dx

∫ λ

0
cos(kMx)f(x)dx =

λ

2
EkM

(17-10)

This provides a formula to calculate the even coefficients (amplitudes) and multiplying by a sin function provides a way to
calculate the odd coefficients (amplitudes) for f(x) periodic in the fundamental domain x ∈ (0, λ).

Ek0 =
1
λ

∫ λ

0
f(x)dx

EkN
=

2
λ

∫ λ

0
f(x) cos(kNx)dx kN ≡ 2πN

λ

OkN
=

2
λ

∫ λ

0
f(x) sin(kNx)dx kN ≡ 2πN

λ

(17-11)

The constant term has an extra factor of two because
∫ λ
0 Ek0dx = λEk0 instead of the λ/2 found in Eq. 17-9.

Other forms of the Fourier coefficients

Sometimes the primary domain is defined with a different starting point and different symbols, for instance Kreyszig uses
a centered domain by using −L as the starting point and 2L as the period, and in these cases the forms for the Fourier
coefficients look a bit different. One needs to look at the domain in order to determine which form of the formulas to use.

http://pruffle.mit.edu/3.016-2006/
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Extra Information and Notes
Potentially interesting but currently unnecessary

The “trick” of multiplying both sides of Eq. 17-8 by a function and integrating comes from
the fact that the trigonometric functions form an orthogonal basis for functions with inner
product defined by

f(x) · g(x) =
∫ λ

0
f(x)g(x)dx

Considering the trigonometric functions as components of a vector:

~e0(x) =(1, 0, 0, . . . , )
~e1(x) =(0, cos(k1x), 0, . . . , )
~e2(x) =(0, 0, sin(k1x), . . . , )

. . . =
...

~en(x) =(. . . . . . , sin(knx), . . . , )

then these “basis vectors” satisfy ~ei · ~ej = (λ/2)δij, where δij = 0 unless i = j. The trick is
just that, for an arbitrary function represented by the basis vectors, ~P (x) · ~ej(x) = (λ/2)Pj.
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Lecture 17 Mathematica R© Example 6

Calculating Fourier Series Amplitudes
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

Functions are developed which compute the even (cosine) amplitudes and odd (sine) amplitudes for an input function of one variable.
These functions are extended to produce the first N terms of a Fourier series.

First we will "do it the hard way" and write short programs that evaluate 
Fourier coefficients; then we will demonstrate how to make use of built-in 
functions in Mathematica's FourierTransform package…
Define functions based on the formulas derived for the fourier amplitudes
The constant term:

1
EvenTerms@0, function_ , l_D :=

1

l
 ‡

0

l

function@dumD „dum

A function that defines each even amplitude individually (this is not very 
efficient, it would be better to evaluate the integral once and use that 
result)

2
EvenTerms@SP_Integer, function_ , l_D :=

EvenTerms@SP, function , wavelengthD =

2

l
 ‡

0

l

function@dumD CosB2 SP p dum

l
F „dum

Define the zeroth odd term as zero for symmetry with the even terms:

3OddTerms@0, function_ , l_D := 0

4
OddTerms@SP_Integer, function_ , l_D :=

OddTerms@SP, function , lD =

2

l
 ‡

0

l

function@dumD SinB2 SP p dum

l
F „dum

A function to create a vector of amplitudes for the odd terms and one for 
the even terms

5
OddAmplitudeVector@
NTerms_Integer, function_, l_D :=

Table@OddTerms@i, function, lD,
8i, 0, NTerms<D

6
EvenAmplitudeVector@
NTerms_Integer, function_, l_D :=

Table@EvenTerms@i, function, lD,
8i, 0, NTerms<D

1–2: EvenTerms computes symbolic representations of the even (cosine) coefficients using the formulas
in Eq. 17-11. The N = 0 term is computed with a supplemental definition because of its extra factor
of 2. The domain is chosen so that it begins at x = 0 and ends at x = λ.

3–4: OddTerms performs a similar computation for the sine-coefficients; the N = 0 amplitude is set to
zero explicitly. It will become convenient to include the zeroth-order coefficient for the odd (sine)
series which vanishes by definition. The functions work by doing an integral for each term—this
is not very efficient. It would be more efficient to calculate the integral symbolically once and then
evaluate it once for each term.

5–6: OddAmplitudeVector and EvenAmplitudeVectors create amplitude vectors for the cosine and sine
terms with specified lengths and domains.

5: This function, f(x) = x(1 − x)2(2 − x), will be used for particular examples of Fourier series, note

that it is an even function over 0 < x < 2.
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Lecture 17 Mathematica R© Example 7

Approximations to Functions with Truncated Fourier Series
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

Example of using Eq. 17-11 to calculate a Fourier Series for a particular function.
1myfunction@x_ D := Hx * H2 - xL * H1 - xL^2L

2OriginalPlot = Plot@myfunction@xD, 8x, 0, 2<,
PlotStyle Ø 8Hue@.66D, Thickness@0.015D<D

3EvenAmplitudeVector@6, myfunction, 2D
4OddAmplitudeVector@6, myfunction, 2D

5OddBasisVector@NTerms_Integer, var_, l_D :=

Table@Sin@2 p i var ê lD, 8i, 0, NTerms<D
6OddBasisVector@6, x, 2D

7EvenBasisVector@NTerms_Integer, var_, l_D :=

Table@Cos@2 p i var ê lD, 8i, 0, NTerms<D
8EvenBasisVector@6, x, 2D

9

FourierTruncSeries@n_, function_, var_ ,
l_D := EvenAmplitudeVector@n, function, lD.
EvenBasisVector@n, var, lD +

OddAmplitudeVector@n, function, lD.
OddBasisVector@n, var, lD

10FourierTruncSeries@6, myfunction, x, 2D

11
FPlot@n_IntegerD := FPlot@nD = Plot@Evaluate@

FourierTruncSeries@n, myfunction, x, 2DD,
8x, -2, 4<, PlotStyle Ø

8Thick, ColorData@n, "ColorList"D<D

12Show@OriginalPlot, FPlot@3D, FPlot@6D,
PlotRange Ø 88-0.5, 2.5<, 8-0.1, 0.26<<D

-0.5 0.5 1.0 1.5 2.0 2.5
-0.10
-0.05

0.05
0.10
0.15
0.20
0.25

1: We introduce and example function x(2− x)(1− x2) that vanishes at x = 0, 1, 2 that will be used to
produce a periodic function with λ = 2item We store the example function’s graphical representation
in OriginalPlot. Note that there will be a sharp discontinuity in the derivative at the edges of the
periodic domain.

3–4: The Fourier coefficients, truncated at six terms, are computed with the functions that we defined
above, OddAmplitudeVector and EvenAmplitudeVector . Note that because of the even symmetry
of the function about the middle, all of the odd coefficients vanish.

5–8: OddBasisVector and EvenBasisVector , create vectors of basis functions of specified lengths and
periodic domains.

9–10: The Fourier series up to a certain order can be defined as the sum of two inner (dot) products:
the inner product of the odd coefficient vector and the sine basis vector, and the inner product of
the even coefficient vector and the cosine basis vector.

11–12: This will illustrate the approximation for a truncated (N = 6) Fourier series. FPlot takes an

integer truncation-argument and generates a plot for that truncation, but only for myfunction. It

might be useful to extend this example so that it takes a function as an argument, but it makes more

sense to leave this example and use Mathematica R© ’s built-in Fourier series methods.
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Lecture 17 Mathematica R© Example 8

Demonstration the used of functions defined in the FourierSeries-package
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

Fourier series expansions are a common and useful mathematical tool, and it is not surprising that Mathematica R© would have a
package to do this and replace the inefficient functions defined in the previous example.

1Needs@"FourierSeries`"D

2AFunction@x_D :=
Hx - 3L^3

27

3Plot@AFunction@xD, 8x, 0, 6<D
Mathematica's Fourier Series functions are defined for function that are 
periodic in the domain x œ (-1/2,1/2).  So we need to map the periodic 
functions to this domain

4ReduceHalfHalf@f_ , x_ , l_ D :=

f@Hx + 1 ê 2L * l D

5ReducedFunction =

ReduceHalfHalf@AFunction, x, 6D êê Simplify

8 x3

6
ExactPlot = Plot@ReducedFunction,

8x, -1 ê 2, 1 ê 2<, PlotRange Ø All, PlotStyle Ø

8Red, Opacity@0.5D, Thickness@0.01D<D
7FourierCosCoefficient@ReducedFunction, x, nD
8FourierSinCoefficient@ReducedFunction, x, nD

2 H-1Ln I6 - n2 p2M
n3 p3

9FourierTrigSeries@ReducedFunction, x, 5D

2 I-6 + p2M Sin@2 p xD
p3

+

I3 - 2 p2M Sin@4 p xD
2 p3

+
2 I-2 + 3 p2M Sin@6 p xD

9 p3
+

I3 - 8 p2M Sin@8 p xD
16 p3

+
2 I-6 + 25 p2M Sin@10 p xD

125 p3

1: The functions in FourierSeries to operate on the unit period located at x ∈ (−1/2, 1/2) by
default. Therefore, the domains of functions of interest can be mapped onto this domain by a change
of variables.

2–3: We introduce another function that will be approximated by a Fourier series. This function will be
made periodic with λ = 6 in the untransformed variables.

4–6: ReduceHalfHalf is an example of a function design to do the required mapping. First the length
of original domain is mapped to unity by dividing through by λ and then the origin is shifted by
mapping the x (that the Mathematica R© functions will see) to (−1/2, 1/2) with the transformation
x → x + 1

2
. ReducedFunction shows an example on the function defined above.

8–9: Particular amplitudes of the properly remapped function can be obtained with the functions
FourierCosCoefficient and FourierSinCoefficient. In this example, a symbolic n is entered
and a symbolic representation of the nth amplitude is returned. Because the function is odd about
the middle, all of the cosine-coefficients are zero.

9: A truncated Fourier series can be obtained symbolically to any order with FourierTrigSeries.
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Lecture 17 Mathematica R© Example 9

Recursive Calculation of a Truncated Fourier Series
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

In this example, we build up a set of recursive function that will be utilized for efficient computation of a truncated Fourier series. These
functions will be used in a subsequent visualization example.

1

ManipulateTruncatedFourierSeries@function_,
8truncationstart_, truncationend_,
truncjump_<D := Manipulate@Plot@Evaluate@
FourierTrigSeries@function, x, itruncDD,

8x, -1, 1<, PlotRange Ø 8-2, 2<D,
8itrunc, 8truncationstart,
truncationend, truncjump<<D;

The function above will work, but it is horribly inefficient!  Because it asks 
FourierTrigSeries to calculate one more term each time, it is doing some 
redundant work.  We can fix this up by having
 it calculate one new term and adding to the sum calculated previously. 
Here it is:

2

costerm@function_, x_, n_IntegerD :=

Simplify@FourierCosCoefficient@
function, x, nDD Cos@2 p n xD

sinterm@function_, x_, n_IntegerD :=

Simplify@FourierSinCoefficient@
function, x, nDD Sin@2 p n xD

TruncatedFourierSeries@function_, x_, 0D :=

TruncatedFourierSeries@function, x, 0D =

costerm@function, x, 0D +

sinterm@function, x, 0D

TruncatedFourierSeries@
function_, x_, n_IntegerD :=

TruncatedFourierSeries@function, x, nD =

TruncatedFourierSeries@function, x, n - 1D +

costerm@function, x, nD +

sinterm@function, x, nD

1: ManipulateTruncatedFourierSeries is a simple example of visualization function for the truncated
Fourier series. It uses the Manipulate function with three arguments in the iterator for the initial
truncation truncationstart, final truncation, and the number to skip in between.

2: However, because the entire series is recomputed for each frame, the function above is not very

efficient. In this second version, only two arguments are supplied to the iterator. At each function

call, the two N th Fourier terms are added to those computed in the (N − 1)th and then stored in

memory. The recursion stops at the defined N = 0 term.
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Lecture 17 Mathematica R© Example 10

Visualizing Convergence of the Fourier Series: Gibbs Phenomenon
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

Functions that produce visualizations with Manipulate (each frame representing a different order of truncation of the Fourier series)
are developed. This example illustrates Gibbs phenomenon where the approximating function oscillates wildly near discontinuities in the
original function. In the Manipulate function, we use the option Initialization so that all evaluations during graphical output will
be rapid.

The following will demonstrate how convergence is difficult where the 
function changes rapidly---this is known as Gibbs' Phenomenon

1

Manipulate@GraphicsRow@
8plt = Show@Plot@theapprx@truncationD,

8x, -0.4999, 0.4999<,
PlotRange Ø 88-0.55, 0.55<, 8-1.4, 1.4<<,
PlotStyle Ø 8Thick, ColorData@1,

truncationD<D, ExactPlotD, Show@plt,
PlotRange Ø 880.4, 0.5<, 80.5, 1.2<<D<,

ImageSize Ø FullD,
88truncation, 100<,
1, 100, 1<,
Initialization Ø HTable@

theapprx@iD = TruncatedFourierSeries@
ReducedFunction, x, iD, 8i, 1, 100<D;LD

truncation
1: Because ReducedFunction has a discontinuity (its end-value and its initial-value differ), this vi-

sualization will show Gibbs phenomena near the edges of the domain. The approximation is fine

everywhere except in the neighborhood of the discontinuity. At the discontinuity, the oscillations

about the exact value do not dampen out with increased truncation N , but the domain where the

oscillations are ill-behaved shrinks with increased N .
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Complex Form of the Fourier Series

The behavior of the Fourier coefficients for both the odd (sine) and for the even (cosine) terms was illustrated above. Functions
that are even about the center of the fundamental domain (reflection symmetry) will have only even terms—all the sine terms
will vanish. Functions that are odd about the center of the fundamental domain (reflections across the center of the domain
and then across the x-axis.) will have only odd terms—all the cosine terms will vanish.

Functions with no odd or even symmetry will have both types of terms (odd and even) in its expansion. This is a restatement
of the fact that any function can be decomposed into odd and even parts (see Eq. 17-3).

This suggests a short-hand in Eq. 17-4 can be used that combines both odd and even series into one single form. However,
because the odd terms will all be multiplied by the imaginary number ı, the coefficients will generally be complex. Also
because cos(nx) = (exp(inx) + exp(−inx))/2, writing the sum in terms of exponential functions only will require that the
sum must be over both positive and negative integers.

For a periodic domain x ∈ (0, λ), f(x) = f(x + λ), the complex form of the fourier series is given by:

f(x) =
∞∑

n=−∞
Ckneıknx where kn ≡

2πn

λ

Ckn =
1
λ

∫ λ

0
f(x)e−ıknxdx

(17-12)

Because of the orthogonality of the basis functions exp(ıknx), the domain can be moved to any wavelength, the following is
also true:

f(x) =
∞∑

n=−∞
Ckneıknx where kn ≡

2πn

λ

Ckn =
1
λ

∫ λ/2

−λ/2
f(x)e−ıknxdx

(17-13)

although the coefficients may have a different form.
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