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Lecture 14: Integrals along a Path

Reading:
Kreyszig Sections: 10.1, 10.2, 10.3 (pages420–425, 426–432, 433–439)

Integrals along a Curve

Consider the type of integral that everyone learns initially:

E(b)− E(a) =
∫ b

a
f(x)dx (14-1)

The equation implies that f is integrable and

dE = fdx =
dE

dx
dx (14-2)

so that the integral can be written in the following way:

E(b)− E(a) =
∫ b

a
dE (14-3)

where a and b represent “points” on some line where E is to be evaluated.

Of course, there is no reason to restrict integration to a straight line—the generalization is the integration along a curve (or
a path) ~x(t) = (x1(t), x2(t), . . . , xn(t)).

http://pruffle.mit.edu/3.016-2006/
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E(b)− E(a) =
∫ ~x(b)

~x(a)

~f(~x) · d~x =
∫ b

a
g(x(~t))dt =

∫ b

a
∇E · d~x

dt
dt =

∫ b

a
dE (14-4)

This last set of equations assumes that the gradient exists–i.e., there is some function E that has the gradient ∇E = ~f .

Path-Independence and Path-Integration

If the function being integrated along a simply-connected path (Eq. 14-4) is a gradient of some scalar potential, then the
path between two integration points does not need to be specified: the integral is independent of path. It also follows that
for closed paths, the integral of the gradient of a scalar potential is zero.5 A simply-connected path is one that does not
self-intersect or can be shrunk to a point without leaving its domain.

There are familiar examples from classical thermodynamics of simple one-component fluids that satisfy this property:∮
dU =

∮
∇ ~SU · d~S = 0

∮
dS =

∮
∇ ~SS · d~S = 0

∮
dG =

∮
∇ ~SG · d~S = 0 (14-5)∮

dP =
∮
∇ ~SP · d~S = 0

∮
dT =

∮
∇ ~ST · d~S = 0

∮
dV =

∮
∇ ~SV · d~S = 0 (14-6)

Where ~S is any other set of variables that sufficiently describe the equilibrium state of the system (i.e, U(S, V ), U(S, P ),
U(T, V ), U(T, P ) for U describing a simple one-component fluid).

The relation curl grad f = ∇×∇f = 0 provides method for testing whether some general ~F (~x) is independent of path. If

~0 = ∇× ~F (14-7)

or equivalently,

0 =
∂Fj

∂xi
− ∂Fi

∂xj
(14-8)

for all variable pairs xi, xj , then ~F (~x) is independent of path. These are the Maxwell relations of classical thermodynamics.
5In fact, there are some extra requirements on the domain (i.e., the space of all paths that are supposed to be path-independent) where such

paths are defined: the scalar potential must have continuous second partial derivatives everywhere in the domain.

http://pruffle.mit.edu/3.016-2006/
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Lecture 14 Mathematica R© Example 1

Path Dependence of Integration of Vector Function: Non-Vanishing Curl
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

The path dependence of a vector field with a non-vanishing curl (~v(~x) = xyz(̂i + k̂ + ẑ)) is demonstrated with a family of closed curves.

Integrals over a Curve, Multidimensional Integrals

1
Examples of Path-Dependent Integrals:  Vector Fields 
with Non-Vanishing Curl

Here is a vector function (xyz, xyz, xyz) for which the curl does not vanish 
anywhere, except the origin

1
Needs@"VectorAnalysis`"D;
VectorFunction = 8x y z, x y z, y x z<
CurlVectorFunction = Simplify@Curl@VectorFunction, Cartesian@x, y, zDDD

8x y z, x y z, x y z<

8x H-y + zL, y Hx - zL, H-x + yL z<
These are the conditions that the curl is zero:

2ConditionsOfZeroCurl = Table@0 == CurlVectorFunction@@iDD, 8i, 3<D

80 ã x H-y + zL, 0 ã y Hx - zL, 0 ã H-x + yL z<
There is only one point where this occurs:

3FindInstance@ConditionsOfZeroCurl, 8x, y, z<D

88x Ø 0, y Ø 0, z Ø 0<<

Let's evaluate the integral of the vector potential ( ò v
Ø

•  „ s
Ø

  ) for any  curve that wraps around a cylinder of radius R with 
an axis that coincides with the z-axis

Any curve that wraps around the cylinder can be parameritized as (x(t), y(t), z(t)) = (R cos(t), R sin(t), A P2  p (t)) where 
P2  p (t) = P2  p (t + 2p) and in particular P2  p (0) = P2  p (2p).

Therefore ds
Ø

=    (-R sin(t), R cos(t), P ' 2  p (t)) dt = (-y(t), x(t), A P ' 2  p (t))     dt
The integrand for an integral of "VectorFunction" around such a curve is (written in terms of an arbitrary P(t):

1: VectorFunction (xyz, xyz, xyz) is an example vector field that has a non-vanishing curl. The curl
is computed with Curl which is in the VectorAnalysis package. Here, the particular coordinate
system is specified with Cartesian argument to Curl.

2–3: The curl vanishes only at the origin—this is shown with FindInstance called with a list of equations
corresponding to the vanishing curl.

4: This is the integrand ~v · d~s computed as indicated in the figure, d~s = −(y(t), x(t), P ′(t))dt. P (θ)
represents any periodic function, but (x, y) = R(cos θ, sin θ) representing paths that wrap around
cylinders.

5: PathDepInt is an integral for ~v represented by VectorFunction an arbitrary path wrapping around
the cylinder.

6–9: These are examples of a computation by using a replacement for a periodic P (θ) (i.e., each of the
P (θ) begin and end at the same point, but the path between differs). The examples use P (t) = sin(t),
cos(t), and t(t− 2π). That the results differ shows that ~v is path-dependent—this is a general result
for non-vanishing curl vector functions.

9–10: These results show that, for some closed paths, the result will be path-independent (here, for
P (t) = cos(nt) the path-integral vanishes for integer n. This doesn’t imply path-independence for
all paths.

11: Our last result seems to contradict the result in 7 for which the integral was zero. However, computing

the limit resolves the contradiction.

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2008/Notebooks/L14/Lecture-14.nb
http://pruffle.mit.edu/3.016-2008/pdf/L14/Lecture-14-1-COL.pdf
http://pruffle.mit.edu/3.016-2008/pdf/L14/Lecture-14-1-BW.pdf
http://pruffle.mit.edu/3.016-2008/html/Lecture-14/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2008/html/Lecture-14/HTMLLinks/index_1.html
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Lecture 14 Mathematica R© Example 2

Examples of Path-Independence of Curl-Free Vector Fields
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

A curl-free vector field can be generated from any scalar potential, in this case ~w = ∇exyz = ~w(~x) = exyz(yzî + zxk̂ + xyẑ) will be shown
to be curl-free.

Try the path dependence with a conservative 
(curl free, or exact) Vector Function:

Start with a scalar potential

1temp = Grad@Exp@x y zD, Cartesian@x, y, zDD
Create another vector function that should have a zero curl

2
AnotherVFunction = 9‰x y z y z, ‰x y z x z, ‰x y z x y=
Simplify@
Curl@AnotherVFunction, Cartesian@x, y, zDDD

3
anothervf =

AnotherVFunction.8-y, x, D@P@tD, tD< ê.
8x Ø Radius Cos@tD, y Ø Radius Sin@tD,
z Ø P@tD< êê Simplify

The integral depends doesn't on the choice of P(t)

4PathDepInt = Integrate@anothervf, tD

‰Radius
2 Cos@tD P@tD Sin@tD

5HPathDepInt ê. t Ø 2 PiL - HPathDepInt ê. t Ø 0L

0

1: To ensure that we will have a zero-curl, a vector field is generated from a gradient of a scalar potential.
The curl vanishes because ∇×∇f = 0.

2: This is a demonstration that the curl does indeed vanish.

3: Here is the integrand for
H

~v ·d~s for the family of paths that wrap around a cylinder for the particular
case of this conservative fields.

4: This is the general result for the family of curves indicated by P (θ).

5: This demonstrates that the path integral closes for any periodic P (θ)—which is the same as the

condition that the curve is closed.

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2008/Notebooks/L14/Lecture-14.nb
http://pruffle.mit.edu/3.016-2008/pdf/L14/Lecture-14-2-COL.pdf
http://pruffle.mit.edu/3.016-2008/pdf/L14/Lecture-14-2-BW.pdf
http://pruffle.mit.edu/3.016-2008/html/Lecture-14/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2008/html/Lecture-14/HTMLLinks/index_2.html
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Lecture 14 Mathematica R© Example 3

Examples of Path-Independence of Curl-Free Vector Fields on a Restricted Subspace
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

If a path-integral is path-dependent for an arbitrary three path, it is possible that path-independence can occur over closed paths
restricted to some surface where the curl vanishes. To find a function that is curl-free on a restricted subspace (for example, the vector
function ~v(~x) = (x2 + y2 −R2)ẑ vanishes on the surface of a cylinder) one needs to find a ~m such that ∇× ~m = ~v (for this case

„ For a last example, suppose the curl vanishes on the 
cylindrical surface defined above:

Suppose we can find a function that has a non-
vanishing curl on this surface

We want to find a function which is generally non-curl free, but for which 
the curl vanishes on a surface. Let's pick the cylinder as our surface.

1VanishOnCylinder = x^2 + y^2 - Radius^2

If  a function can be found, that has the following curl, then we will have 
constructed such a function,

2CurlOfOneStooge = 80, 0, VanishOnCylinder<
It is easy to see that this is the curl of Stooge, where we construct Stooge 
by integrating.

3
Stooge =

8-1 ê 2 Integrate@VanishOnCylinder, yD,
1 ê 2 Integrate@VanishOnCylinder, xD, 0<
In fact, we could add to Stooge, any vector function that has vanishing 
curl--there are an infinite number of these

4Simplify@Curl@Stooge, Cartesian@x, y, zDDD
Its integral doesn't care which path around the cylinder it takes, the 
integrand doesn't depend on P(t)

5
WhyIOughta = Stooge.8-y, x, D@P@tD, tD< ê.

8x Ø Radius Cos@tD,
y Ø Radius Sin@tD, z Ø P@tD< êê Expand

This is the value for *any* path on the cylinder that is closed.

6Integrate@WhyIOughta, 8t, 0, 2 Pi<D

-
p Radius4

2

1–3: This demonstrates a method to find a vector field for which the curl that vanishes on a on a surface.
This is an example for the cylinder surface. The zero constraint, VanishOnCylinder , is used to
produce a vector field that will represent the curl, CurlOfOneStooge . The formula for the curl is
integrated to find the vector function, Stooge , that has the specified curl.

4: This demonstrates that the curl is what we designed it to be.

5–6: This demonstrates that the integral of Stooge is path-independent on the cylinder and its value is
−πR4/2.

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2008/Notebooks/L14/Lecture-14.nb
http://pruffle.mit.edu/3.016-2008/pdf/L14/Lecture-14-3-COL.pdf
http://pruffle.mit.edu/3.016-2008/pdf/L14/Lecture-14-3-BW.pdf
http://pruffle.mit.edu/3.016-2008/html/Lecture-14/HTMLLinks/index_3.html
http://pruffle.mit.edu/3.016-2008/html/Lecture-14/HTMLLinks/index_3.html
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Multidimensional Integrals

Perhaps the most straightforward of the higher-dimensional integrations (e.g., vector function along a curve, vector function
on a surface) is a scalar function over a domain such as, a rectangular block in two dimensions, or a block in three dimensions.
In each case, the integration over a dimension is uncoupled from the others and the problem reduces to pedestrian integration
along a coordinate axis.

Sometimes difficulty arises when the domain of integration is not so easily described; in these cases, the limits of integration
become functions of another integration variable. While specifying the limits of integration requires a bit of attention, the
only thing that makes these cases difficult is that the integrals become tedious and lengthy. Mathematica R© removes some
of this burden.

A short review of various ways in which a function’s variable can appear in an integral follows:

http://pruffle.mit.edu/3.016-2006/
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The Integral Its Derivative

Function
of
limits

p(x) =
∫ β(x)

α(x)
f(ξ)dξ

dp

dx
= f(β(x))

dβ

dx
− f(α(x))

dα

dx

Function
of

integrand

q(x) =
∫ b

a
g(ξ, x)dξ

dq

dx
=
∫ b

a

∂g(ξ, x)
∂x

dξ

Function
of
both

r(x) =
∫ β(x)

α(x)
g(ξ, x)dξ

dr

dx
= f(β(x))

dβ

dx
− f(α(x))

dα

dx

+
∫ β(x)

α(x)

∂g(ξ, x)
∂x

dξ

Using Jacobians to Change Variables in Thermodynamic Calculations

Changing of variables is a topic in multivariable calculus that often causes difficulty in classical thermodynamics.

This is an extract of my notes on thermodynamics: http://pruffle.mit.edu/3.00/

Alternative forms of differential relations can be derived by changing variables.

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.00/
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To change variables, a useful scheme using Jacobians can be employed:

∂(u, v)
∂(x, y)

≡ det

∣∣∣∣∣ ∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

∣∣∣∣∣
=

∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x

=
(

∂u

∂x

)
y

(
∂v

∂y

)
x

−
(

∂u

∂y

)
x

(
∂v

∂x

)
y

=
∂u(x, y)

∂x

∂v(x, y)
∂y

− ∂u(x, y)
∂y

∂v(x, y)
∂x

(14-9)

∂(u, v)
∂(x, y)

= −∂(v, u)
∂(x, y)

=
∂(v, u)
∂(y, x)

∂(u, v)
∂(x, v)

=
(

∂u

∂x

)
v

∂(u, v)
∂(x, y)

=
∂(u, v)
∂(r, s)

∂(r, s)
∂(x, y)

(14-10)

For example, the heat capacity at constant volume is:

CV = T

(
∂S

∂T

)
V

= T
∂(S, V )
∂(T, V )

= T
∂(S, V )
∂(T, P )

∂(T, P )
∂(T, V )

= T

[(
∂S

∂T

)
P

(
∂V

∂P

)
T

−
(

∂S

∂P

)
T

(
∂V

∂T

)
P

](
∂P

∂V

)
T

= T
CP

T
− T

(
∂P

∂V

)
T

(
∂V

∂T

)
P

(
∂S

∂P

)
T

(14-11)

http://pruffle.mit.edu/3.016-2006/
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Using the Maxwell relation,
(

∂S
∂P

)
T

= −
(

∂V
∂T

)
P
,

CP − CV = −T
[
(

∂P
∂T

)
V

]2(
∂P
∂V

)
T

(14-12)

which demonstrates that CP > CV because, for any stable substance, the volume is a decreasing function of pressure at
constant temperature.

14-0.0.1. Example of a Multiple Integral: Electrostatic Potential above a Charged Region

This will be an example calculation of the spatially-dependent energy of a unit point charge in the vicinity of a charged planar
region having the shape of an equilateral triangle. The calculation superimposes the charges from each infinitesimal area by
integrating a 1/r potential from each point in space to each infinitesimal patch in the equilateral triangle The energy of a
point charge |e| due to a surface patch on the plane z = 0 of size dξdη with surface charge density σ(x, y) is:

dE(x, y, z, ξ, η) =
|e|σ(ξ, η)dξdη

~r(x, y, z, ξ, η)
(14-13)

for a patch with uniform charge,

dE(x, y, z, ξ, η) =
|e|σdξdη√

(x− ξ)2 + (y − η)2 + z2
(14-14)

For an equilateral triangle with sides of length one and center at the origin, the vertices can be located at (0,
√

3/2) and
(±1/2,−

√
3/6).

The integration becomes

E(x, y, z) ∝
∫ √

3/2

−
√

3/6

(∫ √
3/2−η

η−
√

3/2

dξ√
(x− ξ)2 + (y − η)2 + z2

)
dη (14-15)

http://pruffle.mit.edu/3.016-2006/
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Lecture 14 Mathematica R© Example 4

Integrals over Variable Domains
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

This will demonstrate how Mathematica R© handles multiple integrals; in particular, when the domains depend on the integration
variables. The goal is to find a function that will give the potential in the vicinity of a triangular patch with uniform charge density.

We will attempt to model the energy of ion just above one half of a 
triangular capacitor.  Suppose there is a uniformly charged surface  (sª
charge/area=1) occupying an equilaterial triangle in the z=0 plane:

    
    what is the energy (voltage) of a unit positive charge located at (x,y,z)
The electrical potential goes like 1

r
, therefore the potential of a unit 

charge located at (x,y,z) from a small surface patch at (x,h,0) is
 s dx dh

r = dx dh

Hx-x L2 +Hy -hL2 +z2

Therefore it remains to integrate this function over the domain hœ(0, 3
2 ) 

and xœ ( h

3
- 1

2 ) , ( 1
2
-

h

3
))  

Ÿ0

3
2 Ÿ h

3
-

1
2

1
2

-
h

3 dx dh

Hx-x L2 +Hy -hL2 +z2

 „ x  „ h

1
Integrate@f@x, yD, y, xD
Integrate@f@x, yD, 8y, Yi, Yf<, 8x, Xi, Xf<D
Integrate@f@x, yD,
8y, Yi, Yf<, 8x, Xi@yD, Xf@yD<D
For example,consider the difference in the following two cases:
First, we integrate over x and y using the two iterators in Integrate with 
the order {y,0,1}, {x,0,y}. Tnen explicitely using two separate steps

2
Integrate@Exp@3 xD, 8y, 0, 1<, 8x, 0, y<D
interx = Integrate@Exp@3 xD, 8x, 0, y<D
Integrate@interx, 8y, 0, 1<D

Compared to 
integrate over x and y using the two iterators in Integrate with the order 
{x,0,y},{y,0,1}. Tnen explicitely using two separate steps

3
Integrate@Exp@3 xD, 8x, 0, y<, 8y, 0, 1<D
intery = HIntegrate@Exp@3 xD, 8y, 0, 1<DL
Integrate@intery, 8x, 0, y<D

1: These examples demonstrate that Mathematica R© integrates over the last iterator which appears
in the argument-list of Integrate first: LIFI-FILI (last iterator, first integrated; first iterator, last
integrated).

2–3: Here we demonstrate the order of integration explicitly, by first integrating with two iterators, and

then integrating in two step-sequence. The methods are equivalent.

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2008/Notebooks/L14/Lecture-14.nb
http://pruffle.mit.edu/3.016-2008/pdf/L14/Lecture-14-4-COL.pdf
http://pruffle.mit.edu/3.016-2008/pdf/L14/Lecture-14-4-BW.pdf
http://pruffle.mit.edu/3.016-2008/html/Lecture-14/HTMLLinks/index_4.html
http://pruffle.mit.edu/3.016-2008/html/Lecture-14/HTMLLinks/index_4.html
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Lecture 14 Mathematica R© Example 5

Potential near a Charged and Shaped Surface Patch: Brute Force
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

A example of a multiple integral and its numerical evaluation for the triangular charged patch.

1
TrianglePotentialNumeric@x_, y_, z_D :=

NIntegrateB1 ì Hx - xL2 + Hy - hL2 + z2 , :h, 0,

3 í 2>, :x, h í 3 - 1 ê 2, 1 ê 2 - h í 3 >F

2TrianglePotentialNumeric@1, 3, .01D

3Plot@TrianglePotentialNumeric@x, x, 1 ê 40D,
8x, -1, 1<D

4

cplot@h_D := cplot@hD = ContourPlot@
TrianglePotentialNumeric@x, y, hD,
8x, -1, 1<, 8y, -0.5, 1.5<, Contours Ø

Table@v, 8v, .25, 2, .25<D, ColorFunction Ø

ColorData@"TemperatureMap"D,
ColorFunctionScaling -> False,
PlotPoints Ø 11D

Timing@cplot@1 ê 10DD

5

Row@8TextCell@
"Computing ContourPlots a different
h: Progress: ", "Text"D,

ProgressIndicator@Dynamic@hD, 80, .5<D<D
cplots = Table@cplot@hD, 8h, .025, .5, .025<D;

6ListAnimate@cplotsD

1: Mathematica R© can’t seem to find a closed-form solution to this integral over the triangular domain,
However, the energy can be integrated numerically. Here is a function that calls NIntegrate for a
location given by its arguments. We will call this function at different heights z. Multidimensional
integration is generally computationally expensive.

2–3: Here are examples calling the numerical function TrianglePotentialNumeric . First, the function is
evaluated at a single point; next, it is evaluated and plotted along a ◦45-line parallel in the z = 1/40
plane.

4: The function cplot calls TrianglePotentialNumeric repeatedly at variable x and y to generate a
ContourPlot at height specified by the argument to cplot . These plots will eventually appear in an
animation, so ColorFunctionScaling is set to false so that the colors will be consistent between
frames. The Contours are set explicitly so that they are also consistent across frames. Timing

indicates that each plot consumes a large number of cpu cycles.

5: Because each frame is expensive to compute, it is not a good idea to compute them within an
animation. Here, we use Table to generate individual frames (n.b., the cplots stores its previous
calculations in memory). Because this is time consuming, we add a progress monitor that will
dynamically update as each cplot[h] is computed. We use ProgressIndicator on the argument
Dynamic[h]. Dynamic informs Mathematica R© that a particular variable will be changing;

therefore the object that calls it will need to be updated.

6: We use ListAnimate on the pre-computed frames.

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2008/Notebooks/L14/Lecture-14.nb
http://pruffle.mit.edu/3.016-2008/pdf/L14/Lecture-14-5-COL.pdf
http://pruffle.mit.edu/3.016-2008/pdf/L14/Lecture-14-5-BW.pdf
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