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Sept. 30 2009

Lecture 7: Linear Algebra

Reading:
Kreyszig Sections: 13.1, 13.2, 13.5, 13.6 (pages602–606, 607–611, 623–626, 626–629)

Uniqueness and Existence of Linear System Solutions

It would be useful to use the Mathematica Help Browser and open the link to Matrices & Linear Algebra in
the Mathematics & Algorithms section. Look through the tutorials at the bottom on the linked page.

A linear system of m equations in n variables (x1, x2, . . . , xn) takes the form

A11x1 + A12x2 + A13x3 + . . . + A1nxn = b1

A21x1 + A22x2 + A23x3 + . . . + A2nxn = b2

... =
...

Ak1x1 + Ak2x2 + Ak3x3 + . . . + Aknxn = bk

... =
...

Am1x1 + Am2x2 + Am3x3 + . . . + Amnxn = bm

(7-1)

and is fundamental to models of many systems.

The coefficients, Aij , form a matrix and such equations are often written in an “index” short-hand known as the Einstein
summation convention:

Ajixi = bj (Einstein summation convention) (7-2)

http://pruffle.mit.edu/3.016-2006/
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where if an index (here i) is repeated in any set of multiplied terms, (here Ajixi) then a summation over all values of that
index is implied. Note that, by multiplying and summing in Eq. 7-2, the repeated index i disappears from the right-hand-side.
It can be said that the repeated index in “contracted” out of the equation and this idea is emphasized by writing Eq. 7-2 as

xiAij = bj (Einstein summation convention) (7-3)

so that the “touching” index, i, is contracted out leaving a matching j-index on each side. In each case, Eqs. 7-2 and 7-3
represent m equations (j = 1, 2, . . . ,m) in the n variables (i = 1, 2, . . . , n) that are contracted out in each equation. The
summation convention is especially useful when the dimensions of the coefficient matrix is larger than two; for a linear elastic
material, the elastic energy density can be written as:

Eelast =
1
2
εijCijklεkl =

1
2
σpqSpqrsσrs (7-4)

where Cijkl and εij are the fourth-rank stiffness tensor and second-rank elastic strain tensor; where Sijkl and σij are the
fourth-rank compliance tensor and second-rank stress tensor;

In physical problems, the goal is typically to find the n xi for a given m bj in Eqs. 7-2, 7-3, or 7-1. This goal is conveniently
represented in matrix-vector notation:

A~x = ~b (7-5)

http://pruffle.mit.edu/3.016-2006/
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Lecture 07 Mathematica R© Example 1

Solving Linear Sets of Equations
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

Demonstrations of several different ways to solve a set of linear equations for several variables. Here we will solve equations that we
construct from matrices; in following examples, we will operate on the matrices directly.

Consider the set of equations
 x + 2y +  z  +  t  = a
-x + 4y - 2z         = b
 x + 3y + 4z + 5t = c
 x          +  z  +   t = d

We illustrate how to use a matrix representation to write these out and 
solve them…  
Start with the matrix of coefficients of the variables, mymatrix:

1

mymatrix = 8
81, 2, 1, 1<,
8-1, 4, -2, 0<,
81, 3, 4, 5<,
81, 0, 1, 1<<;

mymatrix êê MatrixForm

The system of equations will only have a unique solution if the determi-
nant of mymatrix is nonzero.

2Det@mymatrixD
Now define vectors for x and b

”
in Aê x = b

”

3myx = 8x, y, z, t<;
4myb = 8a, b, c, d<;

The left-hand side of the first equation will be

5Hmymatrix.myxL@@1DD
and the left-hand side of all four equations will be

6lhs = mymatrix.myx;
lhs êê MatrixForm

Now define an indexed variable linsys with four entries, each being one 
of the equations in the system of interest:

7linsys@i_IntegerD := lhs@@iDD == myb@@iDD
8linsys@2D

Solving the set of equations for the unknowns x
Ø

9linsol = Solve@8linsys@1D,
linsys@2D, linsys@3D, linsys@4D<, myxD

1: This example is kind of backwards. We will take a matrix

A =

0BB@
1 2 1 1
−1 4 −2 0
1 2 4 5
1 0 1 1

1CCA unknown vector ~x =

0BB@
x
y
z
t

1CCA and known vector ~b =

0BB@
a
b
c
d

1CCA
and extract four equations for input to Solve to obtain the solution to ~x. Here, the coefficient
matrix is a list of row-lists.

2: A unique solution will exist if the determinant, computed with Det, is non-zero.

3–4: These will be the left-hand- and right-hand-side vectors.

5: Matrix multiplication is indicated by the period ( .). This will be the first of the equations.

6: lhs is a column-vector with four entries, and each entry is one of the lhs equations.

7–8: This function creates logical equalities for each corresponding entry on the left- and right-hand-sides.
unknowns.

9: The function Solve is used on a system of equations ({linsys[i]} and variables.

http://pruffle.mit.edu/3.016-2006/
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Lecture 07 Mathematica R© Example 2

Inverting Matrices or Just Solving for the Unknown Vector
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

Continuing the last example, it is much more compact to invert a matrix symbolically or numerically. If a matrix inverse is going to be
used over and over again, it is probably best to compute and store the inverse once. However, if a one-time only solution for ~x in A~x = ~b

is needed, then computing the inverse is computationally less efficient than using an algorithm designed to solve for ~x directly. Here is
an example of both methods.

Doing the same thing a different way, using Mathematica's LinearSolve 
function:

1? LinearSolve

LinearSolve@m, bD finds an x which solves the
LinearSolve@mD generates a LinearSolveFunction

which can be applied repeatedly to different à

2LinearSolve@mymatrix, mybD
And yet another way, based on x = A-1 A x = A-1 b 

3Inverse@mymatrixD.myb êê MatrixForm

a
7
+ b

7
- 2 c

7
+ 9 d

7

a
2
- d

2
13 a
14

- 4 b
7

+ c
7
- 23 d

14

- 15 a
14

+ 3 b
7

+ c
7
+ 19 d

14

And yet even another way, a very efficient LinearSolveFunction can be 
produced by LinearSolve. This function will operate on any rhs vector of 
the appropriate length. This would be an efficient way to find the numeri-
cal solution to a known matrix, but for many different rhs b.

4mymatrixsol = LinearSolve@mymatrixD;
The result can be applied as a function calling a vector :

5mymatrixsol@mybD
Simplify@mymatrixsol@mybDD

:1
7

Ha + b - 2 c + 9 dL,
a - d

2
,

1

14
H13 a - 8 b + 2 c - 23 dL,

1

14
H-15 a + 6 b + 2 c + 19 dL>

1–2: LinearSolve can take two arguments, A and ~b, and returns ~x that solves A~x = ~b. It will be noticibly
faster than the following inversion method, especially for large matrices.

3: The matrix inverse is obtained with Inverse and a subsequent multiplication by the right-hand-side
gives the solution.

4–5: Calling LinearSolve on a matrix alone, returns an efficient function that takes the unknown vector

as an argument. Here we show the equivalence to item 3.
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Uniqueness of solutions to the nonhomogeneous (heterogeneous) system

A~x = ~b (7-6)

Uniqueness of solutions to the homogeneous system

A ~xo = ~0 (7-7)

Adding solutions from the nonhomogeneous and homogenous systems

You can add any solution to the homogeneous equation (if they exist, there are infinitely many of them) to any solution to
the nonhomogeneous equation, and the result is still a solution to the nonhomogeneous equation.

A(~x + ~xo) = ~b (7-8)

Determinants

http://pruffle.mit.edu/3.016-2006/
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Lecture 07 Mathematica R© Example 3

Determinants, Rank, and Nullity
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

Several examples of determinant calculations are provided to illustrate the properties of determinants. When a determinant vanishes
(i.e., det A = 0), there is no solution to the inhomogeneous equation detA = ~b, but there will be an infinity of solutions to det A = 0; the
infinity of solutions can be characterized by solving for a number rank of the entries of ~x in terms of the nullity of other entries of ~x

Create a matrix with one row as a linear combination of the others

1

myzeromatrix =

8mymatrix@@1DD, mymatrix@@2DD,
p * mymatrix@@1DD +

q * mymatrix@@2DD + r * mymatrix@@4DD,
mymatrix@@4DD<;

myzeromatrix êê MatrixForm

1 2 1 1
-1 4 -2 0
p - q + r 2 p + 4 q p - 2 q + r p + r
1 0 1 1

2Det@myzeromatrixD
3LinearSolve@myzeromatrix, mybD

This was not expected to have a solution 

4MatrixRank@mymatrixD
MatrixRank@myzeromatrixD

5NullSpace@mymatrixD
NullSpace@myzeromatrixD

Try solving this inhomogeneous system of equations using Solve:

6zerolhs = myzeromatrix.myx

7zerolinsys@i_IntegerD :=

zerolhs@@iDD == myb@@iDD

8zerolinsolhet =

Solve@Table@zerolinsys@iD, 8i, 4<D, myxD
No solution, as expected,  Let's solve the homogeneous problem:

9zerolinsolhom = Solve@Table@zerolinsys@iD ê.
8a Ø 0, b Ø 0, c Ø 0, d Ø 0<, 8i, 4<D, myxD

88y Ø 0, x Ø -2 t, z Ø t<<

1: A matrix is created where the third row is the sum of p×first row, q×second row, and r×fourth row.
In other words, one row is a linear combination of the others.

2: The determinant is computed with Det, and its value should reflect that the rows are not linearly
independent.

3: An attempt to solve the linear inhomogeneous equation (here, using LinearSolve) should fail.

4: When the determinant is zero, there may still be some linearly-independent rows or columns. The
rank gives the number of linearly-independent rows or columns and is computed with MatrixRank.
Here, we compare the rank of the original matrix and the linearly-dependent one we created.

5: The null space of a matrix, A, is a set of linearly-independent vectors that, if left-multiplied by A,
gives a zero vector. The nullity is how many linearly-independent vectors there are in the null space.
Sometimes, vectors in the null space are called killing vectors. By comparing to the above, you will
see examples of the rank + nullity = dimension rule for square matrices.

6–8: Here, an attempt to use Solve for the heterogeneous system with vanishing determinant is at-
tempted, but of course it is bound to fail. . .

9: However, this is the solution to the singular homogeneous problem (A~x = ~0, where det A = 0. The

solution is three (the rank) dimensional surface embedded in four dimensions (the rank plus the

nullity). Notice that the solution is a multiple of the null space that we computed in item 5.
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Properties and Roles of the Matrix Determinant

In example 07-1, it was stated (item 2) that a unique solution exists if the matrix’s determinant was non-zero. The solution,

~x =


2a+2b−4c+18d

det A
7a−7d
det A

13a−8b+2c−23d
det A

−15a+6b+2c+19d
det A

 (7-9)

indicates why this is the case and also illustrates the role that the determinant plays in the solution. Clearly, if the determinant
vanishes, then the solution is undetermined unless ~b is a zero-vector ~0 = (0, 0, 0, 0). Considering the algebraic equation, ax = b,
the determinant plays the same role for matrices that the condition a = 0 plays for algebra: the inverse exists when a 6= 0 or
det A 6= 0.

The determinant is only defined for square matrices; it derives from the elimination of the n unknown entries in ~x using all
n equation (or rows) of

A~x = 0 (7-10)

For example, eliminating x and y from(
a11 a12

a21 a22

) (
x
y

)
=

(
0
0

)
gives the expression

det
(

a11 a12

a21 a22

)
≡ a11a22 − a12a21 = 0

(7-11)

and eliminating x, y, and z from a11 a12 a13

a21 a22 a23

a31 a32 a33

  x
y
z

 =

 0
0
0


gives the expression

detA ≡ a11a22a33 − a11a32a23 + a21a32a13 − a21a12a33 + a31a12a23 − a31a22a13 = 0

(7-12)

The following general and true statements about determinants are plausible given the above expressions:

http://pruffle.mit.edu/3.016-2006/
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• Each term in the determinant’s sum us products of N terms—a term comes from each column.

• Each term is one of all possible the products of an entry from each column.

• There is a plus or minus in front each term in the sum, (−1)p, where p is the number of neighbor exchanges required to
put the rows in order in each term written as an ordered product of their columns (as in Eqs. 7-11 and 7-12).

These, and the observation that it is impossible to eliminate ~x in Eqs. 7-11 and 7-12 if the information in the rows is
redundant (i.e., there is not enough information—or independent equations—to solve for the ~x), yield the general properties
of determinants that are illustrated in the following example.

http://pruffle.mit.edu/3.016-2006/
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Lecture 07 Mathematica R© Example 4

Properties of Determinants and Numerical Approximations to Zero
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

Rules, corresponding to how detA changes when the columns of A are permuted or multiplied by a constant, are demonstrated.

1rv@i_D :=

rv@iD = Table@RandomReal@8-1, 1<D, 8j, 6<D
Now use rv to make a 6 x 6 matrix, then find its determinant:

2RandMat = Table@rv@iD, 8i, 6<D
3Det@RandMatD

Switching two rows changes the sign but not the magnitude of the 
determinant:

4Det@8rv@2D, rv@1D, rv@3D, rv@4D, rv@5D, rv@6D<D
Multiply one row by a constant and calculate determinant:

5Det@8a * rv@2D, rv@1D,
rv@3D, rv@4D, rv@5D, rv@6D<D
Multiply two rows by a constant and calculate determinant:

6Det@8a * rv@2D, a * rv@1D,
rv@3D, rv@4D, rv@5D, rv@6D<D
Multiply all rows by a constant and calculate determinant:

7Det@
a 8rv@2D, rv@1D, rv@3D, rv@4D, rv@5D, rv@6D<D

8
Clear@a, b, c, d, eD
LinDepVec = a * rv@1D + b * rv@2D +

c * rv@3D + d * rv@4D + e * rv@5D
Example of numerical precision: this determinant should evaluate to 
zero…

9Det@8rv@1D, rv@2D,
rv@3D, rv@4D, rv@5D, LinDepVec<D

-4.85723 µ 10-17 a + 4.85723 µ 10-17 b +

4.16334 µ 10-17 c - 4.85723 µ 10-17 d - 1.38778 µ 10-17 e

However, numerical precision does 

10Chop@Det@8rv@1D, rv@2D,
rv@3D, rv@4D, rv@5D, LinDepVec<DD

1–2: A matrix, RandMat , is created from rows with random real entries between -1 and 1.

3–4: This will demonstrate that switching neighboring rows of a matrix changes the sign of the determi-
nant.

5–6: Multiplying one column of a matrix by a constant a, multiplies the matrix’s determinant by one
factor of a; multiplying two rows by a gives a factor of a2. Multiplying every entry in the matrix by
a changes its determinant by an.

7: Because the matrix has one linearly-dependent column, its determinant should vanish. This exam-
ple demonstrates what happens with limited numerical precision operations on real numbers. The
determinant is not zero, but could be considered effectively zero.

8: We create a row which is an arbitrary linear combination of the first five rows of RandMat.

9: This determinant should be zero. However, because the entries are numerical, differences which
are smaller than the precision with which a number is stored, may make it difficult to distinguish
between something that is numerically zero and one that is precisely zero. This is sometimes known
as round-off error.

10: Problems with numerical imprecision can usually be alleviated with Chop which sets small magnitude

numbers to zero.
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http://pruffle.mit.edu/3.016-2008/Notebooks/L07/Lecture-07.nb
http://pruffle.mit.edu/3.016-2008/pdf/L07/Lecture-07-4-COL.pdf
http://pruffle.mit.edu/3.016-2008/pdf/L07/Lecture-07-4-BW.pdf
http://pruffle.mit.edu/3.016-2008/html/Lecture-07/HTMLLinks/index_4.html
http://pruffle.mit.edu/3.016-2008/html/Lecture-07/HTMLLinks/index_4.html


3.016 Home

JJ J I II

Full Screen

Close

Quit

c©W. Craig Carter

Lecture 07 Mathematica R© Example 5

Determinants and the Order of Matrix Multiplication
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

Symbolic matrices are constructed to show examples of the rules det(AB) = det A det B and AB 6= BA.
Creating a symbolic matrix

1SymVec = 8a, a, a, c, c, c<;

2Permuts = Permutations@SymVecD
Permuts êê Dimensions

3

SymbMat = 8
Permuts@@1DD,
Permuts@@12DD,
Permuts@@6DD,
Permuts@@18DD,
Permuts@@17DD,
Permuts@@9DD<;

SymbMat êê MatrixForm

4DetSymbMat = Simplify@Det@SymbMatDD
Creating a matrix of random  rational numbers

5

RandomMat =

TableBTableBRandomInteger@8-100, 100<D
RandomInteger@81, 100<D ,

8i, 6<F, 8j, 6<F;
MatrixForm@RandomMatD

6DetRandomMat = Det@RandomMatD
7CheckA = Det@SymbMat.RandomMatD êê Simplify

8DetRandomMat * DetSymbMat == CheckA

Does the determinant of a product depend on the order of multiplication?

9CheckB = Det@RandomMat.SymbMatD êê Simplify

10CheckA ã CheckB

However, the product of two matrices depends on which matrix is on the 
left and which is on the right

11HRandomMat.SymbMat - SymbMat.RandomMatL êê
Simplify êê MatrixForm

1–3: Using Permutations to create all possible permutations of two sets of three identical objects for
subsequent construction of a symbolic matrix, SymbMat, for demonstration purposes.

4: The symbolic matrix has a fairly simple determinant—it can only depend on two symbols and must
be sixth-order.

5: A matrix with random rational numbers is created. . .

6: And, of course, its determinant is also a rational number.

7–10: This demonstrates that the determinant of a product is the product of determinants and is inde-
pendent of the order of multiplication. . .

11: However, the result of multiplying two matrices does depend on the order of multiplication: AB 6=
BA, in general.

Matrix multiplication is non-commutative: AB 6= BA for most matrices. However, any two matrices
for which the order of multiplication does not matter (AB = BA) are said to commute. Commutation
is an important concept in quantum mechanics and crystallography.

Think about what commuting matrices means physically. If two linear transformations commute,

then the order in which they are applied doesn’t matter. In quantum mechanics, an operation is

roughly equivalent to making an observation—commuting operators means that one measurement

does not interfere with a commuting measurement. In crystallography, operations are associated

with symmetry operations—if two symmetry operations commute, they are, in a sense, “orthogonal

operations.”
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The properties of determinants

Vector Spaces

Consider the position vector

~x =

 x
y
z

 =

 x1

x2

x3

 (7-13)

The vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1) can be used to generate any general position by suitable scalar multiplication and
vector addition:

~x =

 x
y
z

 = x

 1
0
0

 + y

 0
1
0

 + z

 0
0
1

 (7-14)

Thus, three dimensional real space is “spanned” by the three vectors: (1, 0, 0), (0, 1, 0), and (0, 0, 1). These three vectors are
candidates as “basis vectors for <3.”

Consider the vectors (a,−a, 0), (a, a, 0), and (0, a, a) for real a 6= 0.

~x =

 x
y
z

 =
x + y

2a

 a
−a
0

 +
x− y

2a

 a
a
0

 +
x− y + 2z

2a

 0
a
a

 (7-15)

So (a,−a, 0), (a, a, 0), and (0, a, a) for real a 6= 0 also are basis vectors and can be used to span <3.

The idea of basis vectors and vector spaces comes up frequently in the mathematics of materials science. They can represent
abstract concepts as well as being shown by the following two dimensional basis set:

http://pruffle.mit.edu/3.016-2006/
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basis vector 1 basis vector 2

+ +

+ +

+ +

= =

= =

= =

1.0 1.0

0.5 0.7

0.2 1.0

1.0 0.1

1.0 0.5

1.0 0.0

Figure 7-2: A vector space for two-dimensional CsCl structures. Any combination of center-site
concentration and corner-site concentration can be represented by the sum of two basis vectors
(or basis lattice). The set of all grey-grey patterns is a vector space of patterns.

Linear Transformations

http://pruffle.mit.edu/3.016-2006/
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Lecture 07 Mathematica R© Example 6

Visualization Example: Polyhedra
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

A simple octagon with different colored faces is transformed by operating on all of its vertices with a matrix. This example demonstrates
how symmetry operations, like rotations reflections, can be represented as a matrix multiplication, and how to visualize the results of
linear transformations generally.

We now demonstrate the use of matrix multiplication for manipulating an 
object, specifically an octohedron. The Octahedron is made up of eight 
polygons and the initial coordinates of the vertices were set to make a 
regular octahedron with its main diagonals parallel to axes x,y,z. The 
faces of the octahedron are colored so that rotations and other transforma-
tions can be easily tracked.

1<< "PolyhedronOperations`"
Show@PolyhedronData@"Octahedron"DD

Above, the color of the three dimensional object derives from the colors 
in the light sources. For example, note that there appears to be a blue 
light pointing down from the left. The lights stay fixed as we rotate the 
object. If Lighting Ø None, then the polyhedron's faces will appear to be 
black.

2Show@PolyhedronData@"Octahedron"D,
Lighting Ø NoneD
We can extract data from the Octahedron, and build our own with 
individually colored faces. We will need the individual colors to identify 
what happens to the polyhedron under linear transformaions.

3PolyhedronData@"Octahedron", "Faces"D
The object ColOct is defined below to draw an octahedron and it invokes 
the Polygon function to draw the triangular faces by connecting three 
points at specific numerical coordinates that we obtain from the Octahe-
dron data. Because we will turn off lighting, we will ask that each of the 
faces glow, using the Glow graphics directive

4

octa = 8p@1D, p@2D, p@3D, p@4D, p@5D, p@6D< =

PolyhedronData@
"Octahedron", "Faces"D@@1DD;

colface@i_D := Glow@Hue@i ê 8DD ;
ColOct =

88colface@0D, Polygon@8p@4D, p@5D, p@6D<D<,
8colface@1D, Polygon@8p@4D, p@6D, p@2D<D<,
8colface@2D, Polygon@8p@4D, p@2D, p@1D<D<,
8colface@3D, Polygon@8p@4D, p@1D, p@5D<D<,
8colface@4D, Polygon@8p@5D, p@1D, p@3D<D<,
8colface@5D, Polygon@8p@5D, p@3D, p@6D<D<,
8colface@6D, Polygon@8p@3D, p@1D, p@2D<D<,
8colface@7D, Polygon@8p@6D, p@3D, p@2D<D<<;

5Show@Graphics3D@ColOctD, Lighting Ø NoneD

1: The package PolyhedronOperations contains Graphics Objects and other information such as
vertex coordinates of many common polyhedra. This demonstrates how an Octahedron can be
drawn on the screen. The color of the faces comes from the light sources. For example, there is a
blue source behind your left shoulder; as you rotate the object the faces—oriented so that they reflect
light from the blue source—will appear blue-ish. The color model and appearance is an advanced
topic.

2: Setting Lighting→None removes the light sources and the octahedron will appear black. Our
objective is to observe the effect of linear transformation on this object. To do this, will will want
to identify each of the octahedron’s faces by “painting” it.

3: We will build a custom octahedron from the Mm’s version using PolyhedronData.

4: The data is extracted by grabbing the first part of PolyhedronData (i.e., [[1]]). We assign the
name of the list octa , and name its elements p[i] in one step.

A function is defined and will be used to call Glow and Hue for each face. When the face glows and
the lighting is off, the face will appear as the “glow color”, independent of its orientation.

ColOct is a list of graphics-primitive lists: each element of the list uses the glow directive and then
uses the points of the original octahedron to define Polygons in three dimensions.

5: We wrap ColOct inside Graphics3D and use Show with lighting off to visualize.
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Lecture 07 Mathematica R© Example 7

Linear Transformations: Matrix Operations on Polyhedra
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

A moderately sophisticated Mathematica R© function is defined to help visualize the effect of operating on each point of a polyhedron
with a 3× 3-matrix representing a symmetry operation.

1

transoct@tmat_, description_StringD :=

8ColOct ê.
8Polygon@8a_List, b_List, c_List<D Ø

Polygon@8tmat.a, tmat.b, tmat.c<D<,
Text@Style@MatrixForm@tmatDD, 80, 0, -.25<D,
Text@Style@description, Darker@RedDD,
80, 0, .25<, Background Ø WhiteD<

2
Show@Graphics3D@
transoct@881, 0, 0<, 80, 1, 0<, 80, 0, -1<<,
"mirror-@001D"DD, Lighting Ø NoneD

3

identity = IdentityMatrix@3D;
rot90@001D = 880, -1, 0<, 81, 0, 0<, 80, 0, 1<<;
ref@010D = 881, 0, 0<, 80, -1, 0<, 80, 0, 1<<;
o@1, 1D = transoct@identity, "original"D;
o@1, 2D = transoct@rot90@001D, "90-@001D"D;
o@1, 3D = transoct@ref@010D, "m-@010D"D;
o@2, 1D = transoct@ref@010D.rot90@001D,

"90-@100D then m-@010D"D;
o@2, 2D = transoct@rot90@001D.ref@010D,

"m-@010D then 90-@100D"D;
4RotationTransform@Pi, 81, 1, 0<D

5o@2, 3D = transoctB
0 1 0
1 0 0
0 0 -1

, "180-@110D"F;

6

sc@q_, f_D :=

3 8Cos@qD Sin@fD, Sin@qD Sin@fD, Cos@fD<
Manipulate@GraphicsGrid@
Table@Show@Graphics3D@o@i, jDD,
Lighting Ø None, ViewPoint Ø sc@q, fD,
ImageSize Ø 8200, 200<,
PlotRange Ø 88-1, 1<, 8-1, 1<, 8-1, 1<<D,

8j, 3<, 8i, 2<DD, 88q, 2.1<, 0, 2 p<,
88f, -1.4<, -p ê 2, p ê 2<D

1: This is a moderately sophisticated example of rule usage inside of a function (transoct ) definition:
the pattern matches triangles ( Polygons with three points) in a graphics primitive; names the points;
and then multiplies a matrix by each of the points. The first argument to transoct is the matrix
which will operate on the points; the second argument is an identifyer that will be used with Text

to annonate the graphics.

2: This demonstrates the use of transoct : we get a rotate-able 3D object with floating text identifying
the name of the operation and the matrix that performs the operation.

3: We will build an example that will visualize several symmetry steps simultaneously (say that fast
outloud). We define matrices for identity , rot90[001] , and ref[010] , respectively, which leave the
polyhedra’s points unchanged, rotate counter-clockwise by 90◦ around the [001]-axis, and reflect
through the origin in the direction of the [010]-axis.

We use these matrices to create new octahedra corresponding to combinations of symmetry opera-
tions.

4–5: It is not always straightforward to write down the matrix corresponding to an arbitrary sym-
metry operation. Mathematica R© has functions to help find many of them; here, we use
RotationTransform to find the matrix corresponding to rotation by 180◦ around the [110]-axis.

6: This will display six of the octahedra with their annotated symmetry operations. Manipulate is

used to change the viewpoint to someplace on a sphere of radius 3 (by changing the latitude angle,

φ, and the longitude θ). A function to return a cartesian representation of the spherical coordinates

is defined first and is used as the ViewPoint for each Graphics3D-object. Table iterates over the

o[i,j] and passes its result to GraphicsGrid.
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Lecture 07 Mathematica R© Example 8

Visualization Example: Invariant Symmetry Operations on Crystals
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

Each crystal’s unit cell can be uniquely characterized by the symmetry operations (i.e., fixed rotation about an axis, reflection across
a plane, and inversion through the origin) which leave the unit cell unchanged. The set of such symmetry operations define the crys-
tal point group. There are only 32 point groups in three dimensions. In this example, we demonstrate invariant operations for an FCC cell.

1

corners = Flatten@Table@8i, j, k<,
8i, 0, 1<, 8j, 0, 1<, 8k, 0, 1<D, 2D

faces = Join@Permutations@80.5, 0.5, 0<D,
Permutations@80.5, 0.5, 1<DD

fccsites = Join@faces, cornersD
srad = 2 í 4;

FCC = Table@
Sphere@fccsites@@iDD, sradD, 8i, 1, 14<D

axes = 8 8RGBColor@1, 0, 0, .5D,
Cylinder@880, 0, 0<, 82, 0, 0<<, .05D<,

8RGBColor@0, 1, 0, .5D,
Cylinder@880, 0, 0<, 80, 2, 0<<, .05D<,

8RGBColor@0, 0, 1, .5D,
Cylinder@880, 0, 0<, 80, 0, 2<<, .05D<<;

fccmodel = Translate@Join@FCC, axesD,
8-.5, -.5, -.5<D

Graphics3D@fccmodelD

2

bbox = 1.25 88-1, 1<, 8-1, 1<, 8-1, 1<<;
ManipulateAGridA99"original",

"2pê3-@111D", "roto-inversion: 3
ê
"=,

8Graphics3D@fccmodel, PlotRange Ø bbox,
ViewPoint Ø sc@q, fDD,
Graphics3D@Rotate@fccmodel, 2 p ê 3,

81, 1, 1<D, PlotRange Ø bbox,
ViewPoint Ø sc@q, fDD, Graphics3D@
Rotate@GeometricTransformation@
fccmodel, -IdentityMatrix@3DD,
2 p ê 3, 81, 1, 1<D, PlotRange Ø bbox,
ViewPoint Ø sc@q, fDD<=E,

88q, 2.2<, 0, 2 p<, 88f, -.6<,
-p ê 2, p ê 2<E

1: The first two commands define faces and corners which are the coordinates of the face-centered and
corner lattice-sites. Note the use of Flatten in corners has the qualifier 2—it limits the scope of
Flatten which would normally turn a list of lists into a (flat) single list. Join is used to collect the
two coordinate lists together into fccsites . The atoms will be visualized with the Sphere graphics
primitive and we use srad to set the radius of a close-packed FCC structure. FCC is a list of (a
list of) graphics primitives for each of the fourteen spheres, and then three cylinders with Opacity

and color are used to define the coordinate axes graphics: axes .

fccmodel is created by joining the spheres and the cylinders, and then using Translate on the
resulting graphics primitives to put the center of the FCC cell at the origin.

2: Translate is an example of a function that operates directly on graphics primitives. We use related

functions that also operate on graphics primitives, Rotate and GeometricTransformation, to

illustrate how rotation by 120◦ about [111], and how inversion (multiplication by “minus the identity

matrix”) followed by the same rotation, are invariant symmetry operations for the FCC lattice.
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