
MIT 3.016 Fall 2009 Lecture 4 c© W.C Carter 37

Sept. 16 2009

Lecture 4: Introduction to Mathematica III

Simplifying and Picking Apart Expressions, Calculus, Numerical Evaluation

A great advantage of using a symbolic algebra software package like Mathematica R© is that it
reduces or even eliminates errors that inevitably creep into pencil and paper calculations. However,
this advantage does come with a price: what was once a simple task of arranging an expression into
a convenient form is something that has to be negotiated with Mathematica R© . In fact, there are
cases where you cannot even coerce Mathematica R© into representing an expression the way that
you want it.

A Mathematica R© session often results in very cumbersome expressions. You can decide to
live with them, or use one of Mathematica R© ’s many simplification algorithms. The “Algebraic
Calculations” topics in the Tutorial Overviews section of the Helper Palette provides a nice summary
of frequently used simplification algorithms. Another method is to identify patterns and replace them
with your own definitions.

Mathematica R© has its own internal representation for rational functions (i.e., numerator expression
denominator expression)

and has special operations for dealing with these. Generally, advanced simplification methods usually
require a working knowledge of of Mathematica R© ’s internal representations.

38 MIT 3.016 Fall 2009 c© W.C Carter Lecture 4

Lecture 04 Mathematica R© Example 1
Operations on Polynomials

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2009.

There are built-in simplification operations, such as Simplify, but they will not always result in a form that
is most useful to the user. Crafting an expression into a pleasing form is an art.

1PaulENomeal = H1 + 2 a + 3 x + 4 zL^4

2FatPEN = Expand@PaulENomealD

3Factor@FatPEND

4PaulinX = Collect@FatPEN, xD

5Coefficient@PaulinX, x, 2D

6
PaulSpiffedUp = Sum@
Simplify@Coefficient@PaulinX, x, iDD x^i,
8i, 0, 20<D

7Simplify@PaulSpiffedUpD

8RashENell =
Hx + yL
Hx - yL +

Hx - yL
Hy + xL

9Apart@RashENellD

10Together@RashENellD

11Numerator@Together@RashENellDD

12Simplify@RashENellD

13Factor@RashENellD
Simplfiying Expressions with Square Roots

14RootBoy = Hx + yL2

15Simplify@RootBoyD

16Simplify@RootBoy, x œ Reals && y œ RealsD

17Simplify@RootBoy, x ¥ 0 && y ¥ 0D

18Simplify@RootBoy, x < 0 && y < 0D

19RootBoy ê. Sqrt@Hexpr_L^2D Ø expr

1: We will use this simple expression to demonstrate some of
Mathematica R© ’s algebraic manipulations.

2: Expand performs all multiplication and leaves the result as a sum.
3: Factor has an algorithm to find common terms in a sum and write

the result as a factor and a cofactor—but in this case, it will return
the original form.

4: Collect will turn in an expression into a polynomial of a user-
selected variable.

5: Coefficient picks out coefficients of user-specified powers of a
variable—this will return the coefficient of x2 in the polynomial.

6: This is an example of using Simplify together with Coefficient
to simplify only the coefficients of each power of x, and then return
the original result by multiplying by the appropriate power and
summing.

7: Simplify tries to produce a simple result (based on an internal
measure of simplicity). Here it returns the same result as Factor,
but this will not always be the case.

8: Besides polynomials, other frequently encountered forms are ratio-
nal forms—we will use this sum of rationals as an example.

9: Apart will re-express a rational form as a sum with simple denom-
inators.

10: Together will collect all terms in a sum into a single rational form.
11: Numerator returns the numerator of a single rational form.

12–13: In this case, Simplify and Factor do not produce the same
form.

14: Mathematica R© is fastidious about simplifying roots and makes
no assumptions—unless they are specified— about whether a vari-
able is real, complex, positive, or negative.

15: Many users become frustrated that Simplify doesn’t do what the
user thinks must be correct. . .
If you think it is obvious that

√
x2 should always simplify to x, then

consider that both x = ±1 satisfy
√

x2 = 1—picking only x = 1 will
miss the minus-solution. Or, consider that

√
x2 6= x for x < 0

16: Simplify will accept Assumptions as a second argument, or as an
option.

17–18: This demonstrates why it is not a good idea to automatically
simplify

√
x2.

19: This is brute force—and not really a good idea.

http://pruffle.mit.edu/3.016-2009/Notebooks/L04/Lecture-04.nb
http://pruffle.mit.edu/3.016-2009/pdf/L04/Lecture-04-1-COL.pdf
http://pruffle.mit.edu/3.016-2009/pdf/L04/Lecture-04-1-BW.pdf
http://pruffle.mit.edu/3.016-2009/html/Lecture-04/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2009
http://pruffle.mit.edu/3.016-2009/html/Lecture-04/HTMLLinks/index_1.html

MIT 3.016 Fall 2009 Lecture 4 c© W.C Carter 39

Lecture 04 Mathematica R© Example 2
A Second Look at Calculus: Limits, Derivatives, Integrals

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2009.

Examples of Limit and calculus with built-in assumptions

1AMessyExpression =
Log@x Sin@xDD

1
x

2Limit@AMessyExpression, x Ø 0D

3DMess = D@AMessyExpression, xD

4Integrate@DMess, xD

5DefInt1 = Integrate@DMess, 8x, 0, ‰<D

6HAMessyExpression ê. x Ø eL -
HAMessyExpression ê. x Ø 0L

7DefInt2 = HAMessyExpression ê. x Ø ‰L -
Limit@AMessyExpression, x Ø 0D

8
DefInt1
DefInt2
DefInt1 ã DefInt2

9Integrate@Sin@xDêSqrt@Hx^2 + a^2LD, xD

10Integrate@Sin@xDêSqrt@Hx^2 + a^2LD,
x, Assumptions Ø Re@a^2D > 0D

11
UglyInfiniteIntegral =
Integrate@Sin@xDêSqrt@Hx^2 + a^2LD,
8x, 0, ¶<, Assumptions Ø Re@a^2D > 0D

12N@UglyInfiniteIntegralê. a Ø 1D

13Series@AMessyExpression, 8x, 0, 4<D

14FitAtZero =
Series@AMessyExpression, 8x, 0, 4<D êê Normal

15
Plot@8AMessyExpression, FitAtZero<,
8x, 0, 3<,
PlotStyle Ø 88Thickness@0.02D, Hue@1D<,

8Thickness@0.01D, Hue@0.5D<<D

1–2: This would be a challenging limit to find for many first-year calculus
students (try it!).

3–4: Here, do a quick verification using differentiation and integra-
tion to check if Mathematica R© agrees with the fundamen-
tal theorem of calculus (Integrate[D[expr,x],x]==x). Note,
Mathematica R© does not add the arbitrary constant to the in-
definite integral.

5: This definite integral should the value of AMessyExpression at
x = e, but is not obvious by inspection.

6: Simply evaluating (via application of rules) the integral at the ends
of the integration domain does not produce the correct result be-
cause of a possible division by zero.

7: Using Limit instead of direct evaluation produces the expected
result.

8: Although they have different forms (and one can probably see that
they are the same expression), testing equality shows that the two
different forms of the definite integral are the same.

9-10: Some indefinite integrals do not have closed-form solutions as in 9,
even with extra assumptions as attempted in 10.

12: But, in some cases even if the indefinite integral does not have a
closed-form solution, the definite integral will have one.

13: Series is one of the most useful and powerful Mathematica R©
functions; especially to replace a complicated function with a sim-
pler approximation in the neighborhood of a point.
Series returns a SeriesData-form which is indicated by the trail-
ing order function O. Subsequent operations, such as Simplify,
won’t work on a SeriesData-form, but Normal converts a
SeriesData to a normal expression by chopping off the O.

14–15: In this example, FitAtZero is a fourth-order approximation to
AMessyExpresssion at x = 0 and has been converted with Normal
so it can be plotted in 15 alongside the exact expression.

http://pruffle.mit.edu/3.016-2009/Notebooks/L04/Lecture-04.nb
http://pruffle.mit.edu/3.016-2009/pdf/L04/Lecture-04-2-COL.pdf
http://pruffle.mit.edu/3.016-2009/pdf/L04/Lecture-04-2-BW.pdf
http://pruffle.mit.edu/3.016-2009/html/Lecture-04/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2009
http://pruffle.mit.edu/3.016-2009/html/Lecture-04/HTMLLinks/index_2.html

40 MIT 3.016 Fall 2009 c© W.C Carter Lecture 4

Lecture 04 Mathematica R© Example 3
Solving Equations

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2009.

Solve, its resulting rules, and how to extract solutions from the rules.

Solving Equations

1TheEquation = a x^2 + b x + c

Note the use of Equal (==) rather than Set (=) in the following; using "="
will produce an error message.

2TheZeroes = Solve@TheEquation == 0, xD
Note that the roots are given as Rules. Now we ask Mathematica to verify
that the solutions it found are indeed roots to the specified equation. Here
is a prototypical example of using Replace (/.) to accomplish this:

3TheEquation ê. TheZeroes

4Simplify@TheEquation ê. TheZeroesD
More examples of using Solve:

5a@i_D := i + 1

6TheQuinticEquation = Sum@a@iD x^i, 8i, 0, 5<D

7TheFiveSols = Solve@TheQuinticEquationã 0, xD

8N@TheFiveSolsD
x ê. N@TheFiveSolsD

9Quad1 = a x^2 + y + 3
Quad2 = a y^2 + x + 1

10Solve@8Quad1 ã 0, Quad2 ã 0<, 8x, y<D

1: We assign the familiar quadratic equation to TheEquation as a
demonstration of how to solve equations and extract solutions.

2: Solve takes a logical equality (or a list of logical equalities for simul-
taneous equations) as a first argument. It returns a list of solutions
in the form of rules. Here, the list of rules is assigned to TheZeroes.
There will be one rule for every solution found—if no solutions are
found then Solution will either return an empty list, or a symbolic
list of pure functions that the solutions must satisfy for subsequent
use in numerical functions (this case qualifies as an advanced topic).
For the general quadratic case, Solve returns a list with two rules of
the form {{x->solution1},{x->solution2}}—it is a list of lists.
We will see why it is a list of lists when we examine the solution to
simultaneous equations in two variables in 9.

3: To evaluate the original equation at the values of x that solve
it, one uses the rules (TheZeros) as a list of replacements:
TheEquation/.TheZeros returns a list of the two values with x
replaced by the solutions.

4: Using Simplify on this result produces the expected zeroes.
5–6: To see what Solve might do with higher-order polynomials, we

set up a simple function for the coefficients of a particular quintic
equation and create it using Sum.

7: The zeroes of a quintic polynomial do not have general closed forms.
Here Mathematica R© will return a symbolic representation of the
solution rules—which we assign to TheFiveSols. This representa-
tion indicates that the solution doesn’t have a closed form, but the
form is suitable for subsequent numerical analysis.

8: To extract the numerical solution to TheQuinticEquation==0, the
first line will return a list of rules for x; the second line returns a
list of x with those rules used as a replacement.

10: This is an example of a solution to coupled quadratic
equations. There are four solutions with the form:
{{x->xsol1,y->ysol1},. . .,{x->xsol4,y->ysol4}}. Each
member of the list must contain a rule for each variable; that is
why the solution has the form of a list of a list.

Sometimes, no closed-form solution is possible. Mathematica R© will try to give you rules (in
perhaps a seemingly strange form) but it really means that you don’t have a solution to work with. One
usually resorts to a numerical technique when no closed-form solution is possible— Mathematica R©
has a large number of built-in numerical techniques to help out. A numerical solution is an approxi-
mation to the actual answer. Good numerical algorithms can anticipate where numerical errors creep
in and accounts for them, but it is always a good idea to check a numerical solution to make sure it
approximates the solution to the original equation.

http://pruffle.mit.edu/3.016-2009/Notebooks/L04/Lecture-04.nb
http://pruffle.mit.edu/3.016-2009/pdf/L04/Lecture-04-3-COL.pdf
http://pruffle.mit.edu/3.016-2009/pdf/L04/Lecture-04-3-BW.pdf
http://pruffle.mit.edu/3.016-2009/html/Lecture-04/HTMLLinks/index_3.html
http://pruffle.mit.edu/3.016-2009
http://pruffle.mit.edu/3.016-2009/html/Lecture-04/HTMLLinks/index_3.html

MIT 3.016 Fall 2009 Lecture 4 c© W.C Carter 41

Of course, to get a numerical solution, the equation in question must evaluate to a number. This
means if you want to know the numerical approximate solutions x(b) that satisfy x6 + 3x2 + bx = 0,
you have to iterate over values of b and “build up” your function x(b) one b at a time.

The “Numerical Equation Solving” topic in the “Numerical Mathematics” within “Tutorial Overviews”
section of the Helper Palette provides a nice summary.

Lecture 04 Mathematica R© Example 4
Numerical Algorithms and Solutions

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2009.

Examples of numerical algorithms NIntegrate FindRoot

Numerical Solutions

1Integrate@Sin@ xDêSqrt@Hx^2 + a^2LD, xD

2Integrate@
Sin@ xDêSqrt@Hx^2 + a^2LD, 8x, 0, 1<D

3
NIntegrate@
HSin@ xDêSqrt@Hx^2 + a^2LDL ê. a Ø 1,
8x, 0, 2 Pi<D

4
Plot@
NIntegrate@Sin@ xDêSqrt@Hx^2 + a^2LD,
8x, 0, 2 Pi<D, 8a, 0, 10<, PlotStyle Ø Thick,
BaseStyle Ø 8Large, FontFamily Ø "Helvetica"<D

5
Plot@8AMessyExpression, FitAtZero<, 8x, 0, 3<,
PlotStyle Ø 88Thickness@0.02D, Hue@1D<,

8Thickness@0.01D, Hue@0.5D<<D

6NSolve@AMessyExpressionã 0, xD

7FindRoot@AMessyExpressionã 0, 8x, .5, 1.5<D

8FindRoot@FitAtZero ã 0, 8x, .5, 1.5<D

9FindRoot@AMessyExpressionã 0, 8x, 2.5, 3<D

3: NIntegrate can find solutions in cases where Integrate cannot
find a closed-form solution. It is necessary that the integrand should
evaluate to a number at all points in the domain of integration (it
is possible that the integrand could have singularities at a limited
set of isolated points). Thus, a rule and replacement for a has to be
used for the integrand that appears in 2. Along with the numerical
integrand, the bounds of the definite integral must also be specified.
Like most numerical algorithms, NIntegrate can return wrong re-
sults (viz NIntegrate[1/x,{x,1,∞}]). However, in practice these
cases are rare; but, be wary.

4: NIntegrate is sufficiently fast that we can treat the integrand in 2
as a function of a. Here, we let plot vary a like the x-axis and plot
the results of the numerical integrand from 0 to 2π as a function of
a.

5: Here we use Plot to compare our previous fourth-order
polynomial approximation (FitAtZero) to the exact result
(AMessyExpression).

6: NSolve will find roots to polynomial forms, but not for more general
expressions.

7: FindRoot will operate on general expressions and find solutions,
but additional information is required to inform where to search.

1. You will want to save your work.

2. You will want to modify your old saved work

3. You will want to use your output as input to another program

4. You will want to use the output of another program as input to Mathematica R© .

http://pruffle.mit.edu/3.016-2009/Notebooks/L04/Lecture-04.nb
http://pruffle.mit.edu/3.016-2009/pdf/L04/Lecture-04-4-COL.pdf
http://pruffle.mit.edu/3.016-2009/pdf/L04/Lecture-04-4-BW.pdf
http://pruffle.mit.edu/3.016-2009/html/Lecture-04/HTMLLinks/index_4.html
http://pruffle.mit.edu/3.016-2009
http://pruffle.mit.edu/3.016-2009/html/Lecture-04/HTMLLinks/index_4.html

42 MIT 3.016 Fall 2009 c© W.C Carter Lecture 4

You have probably learned that you can save your Mathematica R© notebook with a menu. This is
one way to take care of the first two items above. There are more ways to do this and if you want to do
something specialized like the last two items, then you will have to make Mathematica R© interact
with files. Because an operating system has to allow many different kinds of programs to interact with
its files, the internal operations to do input/output (I/O) seem somewhat more complicated than they
should be. Mathematica R© has a few simple ways to do I/O—and it has some more complex ways
to do it as well.

It is useful to have a few working examples that you can modify for your purposes. The examples
will serve you well about 90% of the time. For the other 10%, one has to take up the task of learning
the guts of I/O—hopefully, beginners can ignore the gory bits.

The “Files and Streams” overview within the “Tutorial Overviews” section of the Helper Palette
is useful. Data reading is also integrated into Mathematica R© —see the “Data Handling & Data
Sources” section at the top level of the help browser.

MIT 3.016 Fall 2009 Lecture 4 c© W.C Carter 43

Lecture 04 Mathematica R© Example 5
Interacting with the Filesystem

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2009.

Reading and writing data directly and through the use of a filestream. A user should check and (sometimes)
change the working directory to interact with files using Directory or SetDirectory. Otherwise, the full path
to a file must be given.

File Input and Output

1Directory@D

2AMessyExpression >> AFile.m

3Clear@AMessyExpressionD

4<< Afile.m

The previous statement reads in the expression, but it is not assigned to
its previous symbol

5AMessyExpression

6AMessyExpression = << AFile.m

7AMessyExpression

8FilePrint@"Afile.m"D

9Close@"ANewFileName"D

10AFileHandle = OpenWrite@
"ANewFileName", FormatType Ø OutputFormD

11RandomPairs =
Table@RandomReal@80, 1<, 2D, 8i, 10<D

12Write@AFileHandle, RandomPairsD

13FilePrint@"ANewFileName"D

14Write@AFileHandle, MatrixForm@RandomPairsDD

15FilePrint@"ANewFileName"D

16Close@AFileHandleD

1: Directory will print the current directory into which, and from
which, files will be read (if that directory is writable and read-
able). To change Mathematica R© ’s current directory, use
SetDirectory.

2: Simple redirection of an expression into a file is achieved with >>
The working directory must be writable. Selected symbols can be
saved in files all at once using Save.

4: A file containing a Mathematica R© expression can be read in
with << The file must be readable.

5: Only the expression was saved using >>, not the symbol it was
assigned to.

8: The contents of a file can be displayed using FilePrint.
10: This opens a filestream for subsequent use. Note that the filestream

(here called AFileHandle) is associated with a filename (here
ANewFileName). Filestreams give the user much more control over
the way the file is written. The use of filestreams is useful for cases
where data is written incrementally during a calculation and this
method can be generalized to different kinds of devices. Another
use of file streams is when the user wants to have the program com-
pute the file name as a string value, and then use the filestream to
write to a file with a meaningful string (e.g., name the file from a
computed string “x=3 y=2.dat”)

11: We use RandomReal to create some example data (a list of ten pairs
of random numbers) to write to the filestream.

12: An example of writing data directly with a filestream.
13: Subsequent writes to the filestream get appended to the end of the

file. Here we write the MatrixForm of the data.
16: It is good practice to close open file streams when writing is finished.

http://pruffle.mit.edu/3.016-2009/Notebooks/L04/Lecture-04.nb
http://pruffle.mit.edu/3.016-2009/pdf/L04/Lecture-04-5-COL.pdf
http://pruffle.mit.edu/3.016-2009/pdf/L04/Lecture-04-5-BW.pdf
http://pruffle.mit.edu/3.016-2009/html/Lecture-04/HTMLLinks/index_5.html
http://pruffle.mit.edu/3.016-2009
http://pruffle.mit.edu/3.016-2009/html/Lecture-04/HTMLLinks/index_5.html

44 MIT 3.016 Fall 2009 c© W.C Carter Lecture 4

Lecture 04 Mathematica R© Example 6
Using Packages

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2009.

There are a number of packages that come with Mathematica R© (and more that can be bought for special
purposes). The packages contain functions and data that can be added to a Mathematica R© session as desired,
and not loaded beforehand. This helps regulate the amount of memory required to run Mathematica R© . You
should look through the various packages in the help browser to get an idea of what is there—it is also a good
idea to take a look at the inside of a package by editing a package file with an editor. By doing this, you will see
some of internal structure of Mathematica R© and good examples of professional programming.

Using Packages
Fortunately, others have gone to the trouble of writing files full of useful
stuff--and you can load this stuff into Mathematica for your very own use.
Some people produce useful stuff and you can buy it, which is nice if you
find it valuable--and you can write stuff and gain value by selling it, which
might be even more nice.
Mathematica comes with a group of Standard Packages, that you can
load in to do special tasks. The Package documentation can be found
with the Helper Palette, available at http://puffle.mit.edu/3.016/Help-
Pallette-Builder.nb. For example, take a look at the specialized package
Calendar:

1<< Calendar`

2DayOfWeek@81929, 9, 30<D

3DateList@D

4CalendarChange@DateList@D, Gregorian, IslamicD

5DateString@CalendarChange@
DateList@D, Gregorian, IslamicDD

1: A package is read in using the input operator << or with Needs.
Here is an example of how Calendar is read.

2: DayOfWeek is one of the functions available in Calendar.
3: DateList is part of the standard Mathematica R© kernel, without

arguments it returns the current date and time.
4: We use the Gregorian calendar–here is the current date in the Is-

lamic calendar.
5: Here, we print the Islamic date in a more readable form. It would

be nice to have a little function to translate the day and the month
into Arabic. . .

http://pruffle.mit.edu/3.016-2009/Notebooks/L04/Lecture-04.nb
http://pruffle.mit.edu/3.016-2009/pdf/L04/Lecture-04-6-COL.pdf
http://pruffle.mit.edu/3.016-2009/pdf/L04/Lecture-04-6-BW.pdf
http://pruffle.mit.edu/3.016-2009/html/Lecture-04/HTMLLinks/index_6.html
http://pruffle.mit.edu/3.016-2009
http://pruffle.mit.edu/3.016-2009/html/Lecture-04/HTMLLinks/index_6.html

	Lecture 4: Introduction to Mathematica III
	Lecture 4: Simplifying and Picking Apart Expressions, Calculus, Numerical Evaluation
	Example 4-1: Operations on Polynomials
	Example 4-2: A Second Look at Calculus: Limits, Derivatives, Integrals
	Example 4-3: Solving Equations
	Example 4-4: Numerical Algorithms and Solutions
	Example 4-5: Interacting with the Filesystem
	Example 4-6: Using Packages

