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Problem Set 3: Out: 2 Oct. and Due: 19 Oct.

Individual assigments should be a combination of your hand-worked solutions
and other printed material—they should be placed in the mailbox outside Prof.
Carter’s door. Email group assignments to 3016-psets(the symbol at)pruffle.mit.edu

For the individual problems indicated as “Handworked”, you should work your solutions by
hand and show your work. Print the results of software-worked solutions, and staple them to your
hand-worked assignments before turning them in.

The following are this week’s randomly assigned homework groups. The first member of the
group is the “Jomework Jefe” who will be in charge of setting up work meetings and have respon-
sibility for turning in the group’s homework notebook. If some some reason, the first member in
the list is incapacitated, recalcitrant, or otherwise unavailable, then the second member should
take that position. Attention slackers: The Jefe should include a line at the top of your notebook
listing the group members that participated in the notebook’s production; only those listed will
receive credit. Group names are boldfaced text.

Chaonians: p desai,alobeidi,phillie , poojay, yasmined, j obrien

Dodonaioi: garo, szipparo, dyyoung, khessler, gerhardt

Euboeans: jcybarra, paraiba, azook, agaro, nathanp, jvquez

Kassipaei: emcisaac, pmelo, hsi, mataeux, cku313, swhudson

Pamphylians: jbreucop, b jones, mirnas, teby, aparna s, cklyons

Spartans: ckubber, bmiglesi, arathir, lvegter, tkish

Thesprotians: grahamvs, shawnad, sabago, kparedes, brendapa

Orestae: jsteimel, mikeyurk, joke021, mmann, bwee
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Individual (Handworked) Exercise I3-1
Find the rotation matrix that transforms(

−
√

3
8

9
8

9
8

5
√

3
8

)

into its principle coordinate system.

Individual (Handworked) Exercise I3-2
A system’s heat capacity at constant volume, CV , is the rate at which a system’s temperature

increases as heat is transferred at constant volume. For example, the volume could be constrained
by embedding it in an infinitely stiff box.

A system’s heat capacity at constant pressure, CP , is the rate at which a system’s temperature
increases as heat is transferred at constant pressure. This is a typical case, the system could be
directly in contact with the atmosphere.

These heat capacities are given by

CV = T

(
∂S(T, V )

∂T

)
= T

(
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)
V

and CP = T

(
∂S(T, P )

∂T

)
= T

(
∂S
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)
P

Where dG = −SdT + V dP is an exact differential.

1. Show that

CP − CV = −T

(
∂P (V,T )

∂T

)2

∂P (V,T )
∂V

2. What is the physical meaning of the partial derivatives in the above equation—-and what
are they positive or negative for stable systems?

3. Which is greater in a stable system, CP or CV .

Individual Exercise I3-3
The relation between the stress tensor σij and the strain tensor εkl is

σij = Cijklεkl ≡ σ = C ε

where Cijkl represents the rank-4 stiffness tensor and its components are the elastic constants.
In general, there are relations between the components of Cijkl that are determined by material
symmetry. This problem will consider the simplest case—an isotropic material.

Cijkl =
Eν

(1 + ν)(1− 2ν)
δijδkl +

E

2(1 + ν)
(δikδjl + δilδjk)

where δij is the Kroenecker delta:

δij =

{
1 i = j
0 i 6= j
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where the Lameé coefficient λ and the shear modulus G are given in terms of the Young’s modulus
and Poisson’s ratio, E and ν as

λ =
Eν

(1 + ν)(1− 2ν)
and G =

E

2(1 + ν)

1. For an isotropic material, the Cijkl are given by Write a function that computes the com-
ponents Cijkl in terms of the Young’s Modulus E and the Poisson’s Ratio ν for an isotropic
material.

2. Considering the stress and strain symmetry relations, σij = σji and εij = εji, Write a function
that computes the stress component σij for any strain εkl.

3. For presenting the tensor relation in a easy-to-view format, it

σp = Cpqεq

where the p and q are 1,2,3,4,5, and 6 as follows

σp ≡



σ1 ≡ σ11

σ2 ≡ σ22

σ3 ≡ σ33

σ4 ≡ σ23 ≡ σy
1

σ5 ≡ σ31 ≡ σy
2

σ6 ≡ σ12 ≡ σy
3


where σy

1
is my personal notation meaning ”twisting stress around the 1 axis (x-axis).

Cpq =


C11 C12 C13 C14 C15C16

C21 C22 C23 C24 C25C26

C31 C32 C33 C34 C35C36
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
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
C1111 C1122 C1133 C1123 C1131C1112

C2211 C2222 C2233 C2223 C2231C2212

C3311 C3322 C3333 C3323 C3331C3312

C2311 C2322 C2333 C2323 C2331C2312

C3111 C3122 C3133 C3123 C3131C3112

C1211 C1222 C1233 C1223 C1231C1212
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
(1)

and

εp ≡



ε1 ≡ ε11

ε2 ≡ ε22

ε3 ≡ ε33

ε4 ≡ 2ε23 ≡ 2εy
1

ε5 ≡ 2ε31 ≡ 2εy
2

ε6 ≡ 2ε12 ≡ 2εy
3


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(n.b., these displayed forms are not tensors!). Write a function that returns the σp in terms
of the εq, E, and ν.

4. Invert the stiffness tensor 1 to find the relationship for the compliance matrix Sqp for an
isotropic materials where

εq = Sqpσp

and write the six equations for the εq.

5. The shear modulus, G, is related to the Young’s modulus and Poisson’s ratio by

G =
E

2(1 + ν)

rewrite the six equations above in terms of E and G. Why is G called the shear modulus?

6. A spring with a negative spring constant is intrinsically unstable. Why?

7. Here, the analogy to a negative spring constant is explored in a three-dimensional material.

The stored elastic energy per unit volume is given by the tensor-product of stress and strain:
Eel/V = σijεij. Write this expression in terms of strain and the elastic constants for an
isotropic material.

The condition for stability is that the stored energy must always be positive for any state of
strain. What constraints does this impose on the elastic constants E and ν?

Individual Exercise I3-4
Consider the vector field ~v(~x):

~v(~x) =
xî + yĵ + zk̂√
x2 + y2 + z2

1. Show that ~v(~x) does not have a vector potential.

2. Show that the vector field ~u(~x)

~u(~x) =
(xî + yĵ + zk̂)R2

(x2 + y2 + z2)3/2

is equal to ~v(~x) on a sphere of radius R centered at the origin.

3. Show that ~w(~x):

~w(~x) =
(yî− xĵ)zR2

(x2 + y2)
√

x2 + y2 + z2

is a vector potential for ~u(~x). And, is also vector potential for ~v(~x) as long as ~x is restricted
to a sphere of radius R.
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Group Exercise G3-1
The stress around an edge dislocation in an isotropic elastic body is given by

σxx =
−Gb

2π(1− ν)

y(3x2 + y2)

(x2 + y2)2
σyy =

Gb

2π(1− ν)

y(x2 − y2)

(x2 + y2)2

σxy = =
Gb

2π(1− ν)

x(x2 − y2)

(x2 + y2)2
σzz = ν(σxx + σyy) σyz = σzx = 0

Here, b is the magnitude of the Burger’s vector which is parallel to the x-axis.

1. Visualize the hydrostatic pressure P = −Trace(σij)/3 for an edge dislocation. You should
not need to specify the values of G and ν.

2. The hydrostatic pressure is a measure of a stress state’s tendency to decrease the material’s
volume. One measure of the stress state’s tendency to shear a volume is known as a von
Mises stress:

S =

√
(σe 1 − σe 2)2 + (σe 2 − σe 3)2 + (σe 3 − σe 1)2

6
where the σe i are the eigenvalues of the stress tensor. Visualize S for an edge dislocation.

3. Compute the stored elastic energy density for an edge dislocation and visualize it.

4. Using the stress field for an edge dislocation, compute its stored elastic energy inside a
cylinder of radius R that is coaxial with the z-axis. Plot the stored energy as a function of
R. Comment on any unexpected results.

Group Exercise G3-2
Interstitial defects will diffuse in response to a dislocation. Because interstitials tend to make

the surrounding lattice expand, they cause a local expansion. These interstitials tend to diffuse
towards regions of net tension (i.e., negative hydrostatic pressure).

This problem will explore methods to simulate this diffusion. The relation of the motion of a
particle in response to a local driving force is known as the Einstein-Smoluchowski relation

~v = −M∇Φ

where Φ is the potential-energy scalar-field for the energy of a particle, and ~v is the “root-mean-
squared drift-velocity vector.” For interstitials, this scalar field is the hydrostatic pressure P
(interstitials tend to flow towards regions of tension where P is more negative: higher energy at
larger P ).

Diffusion is to be simulated by two techniques: “forced marchers” and “activated random
walkers.”

1. Simulate and visualize the evolution of a set of interstitial atoms in the vicinity of an edge
dislocation. Use a random placement of points for the initial state. Assume that ~v = −M∇P
and then update the positions incrementally with:

~x(t + ∆t) = ~x(t) + ~v(~x)∆t

There is a singularity at the location of the dislocation. Your algorithm will probably need
to treat interstitials in the neighborhood of the dislocation as special cases.

Should it make any difference if you treat this as a two- or three-dimensional simulation?
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2. In this simulation, the effect of temperature on the flow of interstitials will be simulated with
a Metropolis algorithm (c.f., Problem G3-3 from 3.016 2008). The interstitial energy is the
local pressure multiplied by the “extra volume” associated with the interstitial, P (~x)∆V .
Pick two or three different temperatures that illustrate the effect of temperature on the
evolution on the interstitials.

Should it make any difference if you treat this as a two- or three-dimensional simulation?

6


