The Time-Dependent Solution to the Diffusion Equation in the Plane Rectangular Initial Conditions

This is the solution to the time-dependent diffusion equation in the infinite plane for iniital conditions c = 1 inside a rectangle (-a/2 < x < a/2 && -b/2 < y < b/2) and zero outside.

"index_30.gif"

"index_31.gif"

Introduce a fixed model parameter and non-dimensional variables:

"index_32.gif"

"index_33.gif"

"index_34.gif"

"index_35.gif"

"index_36.gif"

Visualize the solution by plotting the concentration as  function of x and y, and animate as  function of time.

"index_37.gif"

"index_38.gif"

Another visualization scheme: plot the isoconcentration lines as  function of x and y, and animate as function of time.  This is like the temporal evolution of a topographical map.

"index_39.gif"

"index_40.gif"

"index_41.gif"


Created by Wolfram Mathematica 6.0  (17 September 2007) Valid XHTML 1.1!