Background

The positive square root of -1

"index_1.gif"

"index_2.gif"

"index_3.gif"

"index_4.gif"

Complex numbers are composed of a real part + an imaginary part

"index_5.gif"

Simple operations on complex numbers

"index_6.gif"

"index_7.gif"

"index_8.gif"

"index_9.gif"

Mathematica does not assume that symbols are necessarily real...

"index_10.gif"

"index_11.gif"

"index_12.gif"

However, the Mathematica function ComplexExpand does assume that the variables are real....

"index_13.gif"

"index_14.gif"

"index_15.gif"

"index_16.gif"

"index_17.gif"

"index_18.gif"

"index_19.gif"

"index_20.gif"

"index_21.gif"

"index_22.gif"

"index_23.gif"

Function to convert to Polar Form

"index_24.gif"

Note: the function Arg[z] returns an angle in the range -π to π which measures the inclination of z with respect to the +Re axis in the complex plane.

"index_25.gif"

"index_26.gif"

"index_27.gif"

"index_28.gif"

"index_29.gif"

"index_30.gif"


Created by Wolfram Mathematica 6.0  (07 September 2007) Valid XHTML 1.1!