Determinants and Numerical Approximations to Zero

"index_53.gif"

Start by building a routine to make vectors containing six random numbers on the interval {-1,1}:

"index_54.gif"

"index_55.gif"

"index_56.gif"

"index_57.gif"

"index_58.gif"

Now use rv to make a 6 x 6 matrix, then find its determinant:

"index_59.gif"

"index_60.gif"

"index_61.gif"

"index_62.gif"

Switching two rows changes the sign but not the magnitude of the determinant:

"index_63.gif"

"index_64.gif"

"index_65.gif"

"index_66.gif"

Multiply one row by a constant and calculate determinant:

"index_67.gif"

"index_68.gif"

Multiply two rows by a constant and calculate determinant:

"index_69.gif"

"index_70.gif"

Multiply all rows by a constant and calculate determinant:

"index_71.gif"

"index_72.gif"

"index_73.gif"

"index_74.gif"

Example of numerical precision: if one row of a 6 x 6 matrix is a linear combination of the other five rows, its determinant should evaluate to zero…

"index_75.gif"

"index_76.gif"

However, numerical precision does

"index_77.gif"

"index_78.gif"


Created by Wolfram Mathematica 6.0  (06 September 2007) Valid XHTML 1.1!