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Lecture 20: Linear Homogeneous and Heterogeneous ODEs

Reading:
Kreyszig Sections: 1.4, 1.5 (pages19–25, 26–32)

Ordinary Differential Equations from Physical Models

In engineering and physics, modeling physical phenomena is the means by which technological and natural phenomena are
understood and predicted. A model is an abstraction of a physical system, often with simplifying assumptions, into a
mathematical framework. Every model should be verifiable by an experiment that, to the greatest extent possible, satisfies
the approximations that were used to obtain the model.

In the context of modeling, differential equations appear frequently. Learning how to model new and interesting systems is
a learned skill—it is best to learn by following a few examples. Grain growth provides some interesting modeling examples
that result in first-order ODES.

Grain Growth

In materials science and engineering, a grain usually refers a single element in an ensemble that comprises a polycrystal. In a
single phase polycrystal, a grain is a contiguous region of material with the same crystallographic orientation. It is separated
from other grains by grain boundaries where the crystallographic orientation changes abruptly.

A grain boundary contributes extra free energy to the entire system that is proportional to the grain boundary area. Thus,
if the boundary can move to reduce the free energy it will.
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Consider simple, uniformly curved, isolated two- and three-dimensional grains.

Figure 20-18: Illustration of a two-dimensional isolated circular grain and a three-dimensional
isolated spherical grain. Because there is an extra energy in the system ∆G2D = 2πRγgb and
∆G3D = 4πR2γgb, there is a driving force to reduce the radius of the grain. A simple model
for grain growth is that the velocity (normal to itself) of the grain boundary is vgb = Mgbγgbκ
where Mgb is the grain boundary mobility and κ is the mean curvature of the boundary. The
normal velocity vgb is towards the center of curvature.

A relevant question is “how fast will a grain change its size assuming that grain boundary migration velocity is proportional
to curvature?”

For the two-dimensional case, the rate of change of area can be formulated by considering the following illustration.

http://pruffle.mit.edu/3.016-2006/
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vn

∆A =vn∆tds

ds

Figure 20-19: A segment of a grain boundary moving with normal velocity vn will move a
distance vn∆t in a short time ∆t. The motion will result in a change of area −∆A for the
shrinking grain. Each segment, ds, of boundary contributes to the loss of area by ∆A =
−vn∆tds.

Because for a circle, the curvature is the same at each location on the grain boundary, the curvature is uniform and vn =
Mgbκgbγgb = Mgbγgb/R. Thus

dA

dt
= −Mgbγgb

1
R

2πR = −2πMgbγgb (20-1)

Thus, the area of a circular grain changes at a constant rate, the rate of change of radius is:

dA

dt
=

dπR2

dt
= 2πR

dR

dt
= −2πMgbγgb (20-2)

which is a first-order, separable ODE with solution:

R2(t)−R2(t = 0) = −2Mgbγgbt (20-3)

For a spherical grain, the change in volume ∆V due to the motion of a surface patch dS in a time ∆t is ∆V = vn∆t dS. The
curvature of a sphere is

κsphere =
(

1
R

+
1
R

)
(20-4)
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Therefore the velocity of the interface is vn = 2Mgbγgb/R. The rate of change of volume due to the contributions of each
surface patch is

dV

dt
= −Mgbγgb

2
R

4πR2 = −8πMgbγgbR == −4(6π2)1/3MgbγgbV
1/3 (20-5)

which can be separated and integrated:
V 2/3(t)− V 2/3(t = 0) = −constant1t (20-6)

or
R2(t)−R2(t = 0) = −constant2t (20-7)

which is the same functional form as derived for two-dimensions.

The problem (and result) is more interesting if the grain doesn’t have uniform curvature.

Figure 20-20: For a two-dimensional grain with non-uniform curvature, the local normal velocity
(assumed to be proportional to local curvature) varies along the grain boundary. Because the
motion is in the direction of the center of curvature, the velocity can be such that its motion
increases the area of the interior grain for some regions of grain boundary and decreases the
area in other regions.

However, it can still be shown that, even for an irregularly shaped two-dimensional grain, A(t)−A(t = 0) = −(const)t.

http://pruffle.mit.edu/3.016-2006/
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Integrating Factors, Exact Forms

Exact Differential Forms

In classical thermodynamics for simple fluids, expressions such as

dU =TdS − PdV

=
(

∂U

∂S

)
V

dS +
(

∂U

∂V

)
S

dV

=δq + δw

(20-8)

represent the differential form of the combined first and second laws of thermodynamics. If dU = 0, meaning that the
differential Eq. 20-8 is evaluated on a surface for which internal energy is constant, U(S, V ) = const, then the above equation
becomes a differential form

0 =
(

∂U

∂S

)
V

dS +
(

∂U

∂V

)
S

dV (20-9)

This equation expresses a relation between changes in S and changes in V that are necessary to remain on the surface
U(S, V ) = const.

Suppose the situation is turned around and you are given the first-order ODE

dy

dx
= −M(x, y)

N(x, y)
(20-10)

which can be written as the differential form

0 = M(x, y)dx + N(x, y)dy (20-11)

Is there a function U(x, y) = const or, equivalently, is it possible to find a curve represented by U(x, y) = const?

If such a curve exists then it depends only on one parameter, such as arc-length, and on that curve dU(x, y) = 0.

http://pruffle.mit.edu/3.016-2006/
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The answer is, “Yes, such a function U(x, y) = const exists if an only if M(x, y) and N(x, y) satisfy the Maxwell relations”

∂M(x, y)
∂y

=
∂N(x, y)

∂x
(20-12)

Then if Eq. 20-12 holds, the differential form Eq. 20-11 is called an exact differential and a U exists such that dU = 0 =
M(x, y)dx + N(x, y)dy.

Integrating Factors and Thermodynamics

For fixed number of moles of ideal gas, the internal energy is a function of the temperature only, U(T )−U(To) = CV (T −To).
Consider the heat that is transferred to a gas that changes it temperature and volume a very small amount:

dU =CV dT = δq + δw = δq − PdV

δq = CV dT + PdV
(20-13)

Can a Heat Function q(T, V ) = constant be found?

To answer this, apply Maxwell’s relations.

Homogeneous and Heterogeneous Linear ODES

A linear differential equation is one that does not contain any powers (greater than one) of the function or its derivatives.
The most general form is:

Q(x)
dy

dx
+ P (x)y = R(x) (20-14)

Equation 20-15 can always be reduced to a simpler form by defining p = P/Q and r = R/Q:

dy

dx
+ p(x)y = r(x) (20-15)

http://pruffle.mit.edu/3.016-2006/
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If r(x) = 0, Eq. 20-15 is said to be a homogeneous linear first-order ODE; otherwise Eq. 20-15 is a heterogeneous linear
first-order ODE.

The reason that the homogeneous equation is linear is because solutions can superimposed—that is, if y1(x) and y2(x) are
solutions to Eq. 20-15, then y1(x)+y2(x) is also a solution to Eq. 20-15. This is the case if the first derivative and the function
are themselves linear. The heterogeneous equation is also called linear in this case, but it is important to remember that
sums and/or multiples of heterogeneous solutions are also solutions to the heterogeneous equation.

It will be demonstrated below (directly and with a Mathematica R© example) that the homogeneous equation has a solution
of the form

y(x) = const e−
R

p(x)dx (20-16)

To show this form directly, the homogeneous equation can be written as

dy

dx
= −p(x)y

Dividing each side through by through by y and integrate:∫
dy

y
= log y = −

∫
p(x)dx + const

which has solution
y(x) = conste−

R
p(x)dx

For the case of the heterogeneous first-order ODE, A trick (or, an integrating factor which amounts to the same thing) can
be employed. Multiply both sides of the heterogeneous equation by e

R
p(x):12

exp
[∫ x

a
p(z)dz

]
dy(x)
dx

+ exp
[∫ x

a
p(z)dz

]
p(x)y(x) = exp

[∫ x

a
p(z)dz

]
r(x) (20-17)

Notice that the left-hand-side can be written as a derivative of a simple expression

exp
[∫ x

a
p(z)dz

]
dy(x)
dx

+ exp
[∫ x

a
p(z)dz

]
p(x)y(x) =

d

dx

{
exp

[∫ x

a
p(z)dz

]
y(x)

}
(20-18)

12 The statistical definition of entropy is S(T, V ) = k log Ω(U(T, V )) or Ω(U(T, V )) = exp(S/k). Entropy plays the role of integrating factor.
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therefore
d

dx

{
exp

[∫ x

a
p(z)dz

]
y(x)

}
= exp [p(x)] r(x) (20-19)

which can be integrated and then solved for y(x):

y(x) = exp
[
−

∫ x

a
p(z)dz

]{
y(x = a) +

∫ x

a
r(z) exp

[∫ z

a
p(η)dη

]
dz

}
(20-20)
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Lecture 20 Mathematica R© Example 1

Solutions to the General Homogeneous Linear First-Order ODE
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

The form of Mathematica R© ’s solution for Eq. 20 is demonstrated.

1
DSolve@
y'@xD + p@xD y@xD ã 0,
y@xD, xD

::y@xD Ø ‰Ÿ1
x
-p@K@1DD „K@1D C@1D>>

The dummy integration variables  (K[1] in the 
above) and any integration constants  (C[1] 
above) are picked by Mathematica .  Mathemat-
ica returns the most general form of homoge-
neous linear first-order solutiion,

2
DSolve@
y'@xD + H2 x + 1L y@xD ã 0,
y@xD, xD

::y@xD Ø ‰-x-x2 C@1D>>

There is an integration constant above, that 
will take on a specific value if an additional 
condition (such as an initial condition, or a 
boundary condition) is specified

3
DSolve@
8y'@xD + H2 x + 1L y@xD ã 0,
y@0D == 4<, y@xD, xD

::y@xD Ø 4 ‰-x-x2>>

1: DSolve solves the linear homogeneous equation first-order ODE dy/dx + p(x)y = 0. Two variables
are introduced in the solution: one is the ‘dummy-variable’ of the integration in Eq. 20 which
Mathematica R© introduces in the form K[N] and an integration constant which is given the form
C[N].

2: Here, a specific p(x) is given, so the dummy variable doesn’t appear if p(ζ) can be integrated sym-
bolically, as in this case for p(ζ) = 2x + 1.

3: Furthermore, if enough boundary conditions are given to solve for the integration constants, then

the C[N] are not needed either.
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Lecture 20 Mathematica R© Example 2

Solutions to the General Heterogeneous Linear First-Order ODE
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

This demonstrates the use of DSolve to find symbolic solutions of heterogeneous linear homogeneous first-order ODEs: Eq. 20-20. We
will see how the homogeneous solution is always part of the sum for a heterogeneous solution.

1

2
DSolve@
y'@xD + p@xD y@xD ã r@xD,
y@xD, xD

::y@xD Ø ‰Ÿ1
x
-p@K@1DD „K@1D C@1D +

‰Ÿ1
x
-p@K@1DD „K@1D

‡
1

x

‰-Ÿ1
K@2D

-p@K@1DD „K@1D r@K@2DD 

„K@2D>>

The  solution is general~two dummy integra-
tion variables and one constant of integration. 

3

homsol =

DSolve@y'@xD - y@xD ã 0,
y@xD, xD

hetsol = DSolveA
y'@xD - y@xD ã ‰2 x,
y@xD, xE

99y@xD Ø ‰x C@1D==

99y@xD Ø ‰2 x + ‰x C@1D==

1: DSolve solves the general linear heterogeneous equation, dy/dx + p(x)y = r(x), to give the form
Eq. 20-20. Note how the homogeneous solution (i.e., the part that depends on C[1]) is part of the
solution.

2: This is an example for a specific case: p(x) = −1 and r(x) = e2x. The homogeneous solution is

displayed alongside to reinforce that it is always part of the solution.
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Example: The Bernoulli Equation

The linear first-order ODEs always have a closed form solution in terms of integrals. In general non-linear ODEs do not have
a general expression for their solution. However, there are some non-linear equations that can be reduced to a linear form;
one such case is the Bernoulli equation:

dy

dx
+ p(x) y = r(x) ya (20-21)

Reduction relies on a clever change-of-variable, let u(x) = [y(x)]1−a, then Eq. 20-21 becomes

du

dx
+ (1− a)p(x) u = (1− a) r(x) (20-22)

which is a linear heterogeneous first-order ODE and has a closed-form solution.

However, not all non-linear problems can be converted to a linear form. In these cases, numerical methods are required.

http://pruffle.mit.edu/3.016-2006/
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Lecture 20 Mathematica R© Example 3

Changing Variables in Symbolic Differential Equations
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

The Bernoulli equation, Eq. 20-21, is used to demonstrate how to change variables in an ODE.

1
BernoulliEquation =

y'@xD + p@xD y@xD ==

r@xD Hy@xDL^HaL

2yRep = u@xD
1

1-a

DyRep = D@yRep, xD

3
step1 = BernoulliEquation ê.

8y@xD Ø yRep,
y'@xD Ø DyRep<

4step2 = PowerExpand@step1D
5step3 = Simplify@step2D
6BE = Solve@step3, u'@xDD
7uprime = u'@xD ê. BE

8
usol =

u@xD ê. DSolve@u'@xD ã

uprime@@1DD, u@xD, xD

9ysol =

Husol@@1DDL^H1 ê H1 - aLL

10
BernoulliEquation
Simplify@
p@xD ysol + D@ysol, xDD

1: The Bernoulli equation is a non-linear first order ODE, but a series of transformations can turn it
into an equivalent linear form.

2: Symbols for what will be used as replacements for y(x) and its derivative in BernoulliEquation are
defined.

3: For step1, the symbols are used for a rule-replacement.

4: Using the form with replacements, the assumption that all variables are real is employed by using
PowerExpand.

5: Simplify produces an equation for which the right-hand-side is zero; thus assuming that u(x) is not
identically zero, it can be factored out of the equation.

6: Using Solve (n.b, not DSolve) to find u′(x) reveals the linear form of Bernoulli’s equation in terms
of the new variable.

7: The rule that is produced by Solve is used to extract the symbolic form of u′(x); the symbolic form
of u′(x) is assigned to uprime.

8: To extract the solution (usol), we use the rule produced by DSolve on the equation u′(x) = usol.

9: The back-transformation is used to find the general solution y(x) to the non-linear form of the
Bernoulli equation (ysol).

10: The solution, ysol, is plugged back into the left-hand-side of the Bernoulli equation and, with

Simplify, is shown to be r(x)ysola.
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Lecture 20 Mathematica R© Example 4

Numerical Solutions to Non-linear First-Order ODEs
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

An example of computing the numerical approximation to the solution to a non-linear ODE is presented. The solutions are re-
turned in the forms of a list of replacement rules to InterpolatingFunction. An InterpolatingFunction is a method to use
numerical interpolation to extract an approximation for any point—it works just like a function and can be called on a variable like
InterpolatingFunction[0.2]. In addition to the interpolation table, the definition specifies the domain over which the interpolation is
considered valid.

Mathematica cannot find a direct solution to 
the following nonlinear ODE

1
DSolve@
Sin@2 Pi y'@xD^2D ==

y@xD x, y@xD, xD
NDSolve is a numerical method for finding a 
solution. An initial condition and the desired 
range of solution are required.

2
solution = NDSolve@

8Sin@2 Pi y'@xD^2D ==

y@xD x, y@0D == 1<,
y, 8x, 0, 3.5<D

88y Ø InterpolatingFunction@
880., 3.5<<, <>D<,

8y Ø InterpolatingFunction@
880., 3.5<<, <>D<<

3y@0.5D ê. solution

80.907437, 1.09733 + 0. Â<

4y@PiD ê. solution

80.0524983,
2.50186 - 0.61067 Â<

1: This shows that DSolve cannot find a symbolic solution to sin[2π(y′)2] = y(x)x.

2: Using NDSolve on a non-linear ODE, the solution is returned as a InterpolatingFunction replace-
ment list. Note that there is a warning about “inverse functions” being used to find the solution; this
is because of the sin-function which is causing Mathematica to assume a particular domain. There
may be more solutions than the two that were that were returned as an InterpolatingFunction.

[: 3–4] This demonstrates how the numerical approximation to the non-linear ODE is obtained at

particular values of x.
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Lecture 20 Mathematica R© Example 5

Plotting Numerical Solutions to Non-linear First-Order ODEs
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

This is an example of how to extract plot-table expressions from the rules for InterpolationFunctions that are returned from NDSolve.

1PStyle = 88Red, Thick<,
8Darker@GreenD, Thick<<;

2

PlotVanilla =

Plot@Evaluate@y@xD ê.
solutionD, 8x, 0, 3.5<,

PlotStyle Ø PStyle,
PlotRange Ø 80, 2<,
PlotLabel Ø "Plot"D;

3

PlotReal = Plot@Evaluate@
Re@y@xD ê. solutionDD,

8x, 0, 3.5<, PlotStyle Ø

PStyle, PlotLabel Ø

"Real Part"D;

4

PlotIm = Plot@Evaluate@
Im@y@xD ê. solutionDD,

8x, 0, 3.5<, PlotStyle Ø

PStyle, PlotLabel Ø

"Imaginary Part"D;

5
GraphicsRow@8PlotVanilla,
PlotReal, PlotIm<,
ImageSize Ø SmallD

1: Because solution obtained above is a list containing two rules, two curves will be plotted. Here we
define a short-hand for the expression that will be passed to PlotStyle in the plots below. The first
curve will be red, and the second will be Darker green.

2: Here, Plot is called on the y[x] with replacements defined the rule-set for InterpolatingFunctions,
solution, that was obtained from NDSolve previously. Using Evaluate here immediately creates

a list of length two, and plot recognizes this as two curves to which the PlotStyles can be applied.
If Evaluate were not used, then both curves would be be red.

Plot only produces curves where the numerical value can be represented by a real number; if a
solution has a point where it transforms from real to complex, Plot will show a curve that appears
to end.

3–4: To determine the solution behavior, the real and imaginary parts are extracted with Re and Im.

5: This GraphicsRow indicates the solution behavior: the first solution is real over the domain where

the interpolation is valid; the second solution transforms from real to complex near x = 0.8.
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Mathematica warning
inverse functions, 239

Maxwell relations
relation to integrability conditions, 231

NDSolve, 240
numerical interpolation, 239
numerical solutions to non-linear differential equations, 239

plotting results, 240

ordinary first-order differential equation
for two-dimensional grain growth, 229

physical models, 227
Plot, 240
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Re, 240
rule-replacement

example for an ODE, 238
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Simplify, 238
solution, 240
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