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Nov. 2 2007

Lecture 18: The Fourier Transform and its Interpretations

Reading:
Kreyszig Sections: 11.4, 11.7, 11.8, 11.9 (pages496–498, 506–512 513–517, 518–523)

Fourier Transforms

Expansion of a function in terms of Fourier Series proved to be an effective way to represent functions that were periodic in an
interval x ∈ (−λ/2,−λ/2). Useful insights into “what makes up a function” are obtained by considering the amplitudes of the
harmonics (i.e., each of the sub-periodic trigonometric or complex oscillatory functions) that compose the Fourier series. That
is, the component harmonics can be quantified by inspecting their amplitudes. For instance, one could quantitatively compare
the same note generated from a Stradivarius to an ordinary violin by comparing the amplitudes of the Fourier components of
the notes component frequencies.

However there are many physical examples of phenomena that involve nearly, but not completely, periodic phenomena—and
of course, quantum mechanics provides many examples of isolated events that are composed of wave-like functions.

It proves to be very useful to extend the Fourier analysis to functions that are not periodic. Not only are the same interpre-
tations of contributions of the elementary functions that compose a more complicated object available, but there are many
others to be obtained.

For example:

momentum/position The wavenumber kn = 2πn/λ turns out to be proportional to the momentum in quantum mechanics.
The position of a function, f(x), can be expanded in terms of a series of wave-like functions with amplitudes that depend
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on each component momentum—this is the essence of the Heisenberg uncertainty principle.

diffraction Bragg’s law, which formulates the conditions of constructive and destructive interference of photons diffracting
off of a set of atoms, is much easier to derive using a Fourier representation of the atom positions and photons.

To extend Fourier series to non-periodic functions, the domain of periodicity will extended to infinity, that is the limit of
λ → ∞ will be considered. This extension will be worked out in a heuristic manner in this lecture—the formulas will be
correct, but the rigorous details are left for the math textbooks.

Recall that the complex form of the Fourier series was written as:

f(x) =
∞∑

n=−∞
Akne

ıknx where kn ≡
2πn
λ

Akn =
1
λ

∫ λ/2

−λ/2
f(x)e−ıknxdx

(18-1)

where Akn is the complex amplitude associated with the kn = 2πn/λ reciprocal wavelength or wavenumber.

This can be written in a more symmetric form by scaling the amplitudes with λ—let Akn =
√

2πCkn/λ, then

f(x) =
∞∑

n=−∞

√
2πCkn

λ
eıknx where kn ≡

2πn
λ

Ckn =
1√
2π

∫ λ/2

−λ/2
f(x)e−ıknxdx

(18-2)

Considering the first sum, note that the difference in wave-numbers can be written as:

∆k = kn+1 − kn =
2π
λ

(18-3)

which will become infinitesimal in the limit as λ→∞. Substituting ∆k/(2π) for 1/λ in the sum, the more “symmetric result”
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appears,

f(x) =
1√
2π

∞∑
n=−∞

Ckne
ıknx∆k where kn ≡

2πn
λ

Ckn =
1√
2π

∫ λ/2

−λ/2
f(x)e−ıknxdx

(18-4)

Now, the limit λ→∞ can be obtained an the summation becomes an integral over a continuous spectrum of wave-numbers;
the amplitudes become a continuous function of wave-numbers, Ckn → g(k):

f(x) =
1√
2π

∫ ∞

−∞
g(k)eıkxdk

g(k) =
1√
2π

∫ ∞

−∞
f(x)e−ıkxdx

(18-5)

The function g(k = 2π/λ) represents the density of the amplitudes of the periodic functions that make up f(x). The function
g(k) is called the Fourier Transform of f(x). The function f(x) is called the Inverse Fourier Transform of g(k), and f(x) and
g(k) are a the Fourier Transform Pair.

Higher Dimensional Fourier Transforms

Of course, many interesting periodic phenomena occur in two dimensions (e.g., two spatial dimensions, or one spatial plus
one temporal), three dimensions (e.g., three spatial dimensions or two spatial plus one temporal), or more.

The Fourier transform that integrates dx√
2π

over all x can be extended straightforwardly to a two dimensional integral of a

function f(~r) = f(x, y) by dxdy
2π over all x and y—or to a three-dimensional integral of f(~r) dxdydz√

(2π)3
over an infinite three-

dimensional volume.

A wavenumber appears for each new spatial direction and they represent the periodicities in the x-, y-, and z-directions. It

http://pruffle.mit.edu/3.016-2006/


3.016 Home

JJ J I II

Full Screen

Close

Quit

c©W. Craig Carter

is natural to turn the wave-numbers into a wave-vector

~k = (kx, ky, kz) = (
2π
λx
,
2π
λy
,
2π
λy

) (18-6)

where λi is the wavelength of the wave-function in the ith direction.

The three dimensional Fourier transform pair takes the form:

f(~x) =
1√

(2π)3

∫∫∫ ∞

−∞
g(~k)eı~k·~xdkxdkydkz

g(~k) =
1√

(2π)3

∫∫∫ ∞

−∞
f(~x)e−ı~k·~xdxdydz

(18-7)

Properties of Fourier Transforms

Dirac Delta Functions

Because the inverse transform of a transform returns the original function, this allows a definition of an interesting function
called the Dirac delta function δ(x−xo). Combining the two equations in Eq. 18-5 into a single equation, and then interchanging
the order of integration:

f(x) =
1
2π

∫ ∞

−∞

{∫ ∞

−∞
f(ξ)e−ıkξdξ

}
eıkxdk

f(x) =
∫ ∞

−∞
f(ξ)

{
1
2π

∫ ∞

−∞
eık(x−ξ)dk

}
dξ

(18-8)

Apparently, a function can be defined

δ(x− xo) =
1
2π

∫ ∞

−∞
eık(x−ξ)dk (18-9)
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that has the property

f(xo) =
∫ ∞

−∞
δ(x− xo)f(x)dx (18-10)

in other words, δ picks out the value at x = xo and returns it outside of the integration.

Parseval’s Theorem

The delta function can be used to derive an important conservation theorem.

If f(x) represents the density of some function (i.e., a wave-function like ψ(x)), the square-magnitude of f integrated over all
of space should be the total amount of material in space.∫ ∞

−∞
f(x)f̄(x)dx =

∫ ∞

−∞

{(
1√
2π
g(k)e−ıkxdk

) (
1√
2π
ḡ(κ)e−ıκxdκ

)}
dx (18-11)

where the complex-conjugate is indicated by the over-bar. This exponentials can be collected together and the definition of
the δ-function can be applied and the following simple result can is obtained∫ ∞

−∞
f(x)f̄(x)dx =

∫ ∞

−∞
g(k)ḡ(k)dk = (18-12)

which is Parseval’s theorem. It says, that the magnitude of the wave-function, whether it is summed over real space or over
momentum space must be the same.

Convolution Theorem

The convolution of two functions is given by

F (x) = p1(x) ? p2(x) =
1√
2π

∫ ∞

−∞
p1(η)p2(x− η)dη (18-13)
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If p1 and p2 can be interpreted as densities in probability, then this convolution quantity can be interpreted as “the total joint
probability due to two probability distributions whose arguments add up to x.”11

The proof is straightforward that the convolution of two functions, p1(x) and p2(x), is a Fourier integral over the product of
their Fourier transforms, ψ1(k) and ψ2(k):

p1(x) ? p2(x) =
1√
2π

∫ ∞

−∞
p1(η)p2(x− η)dη =

1√
2π

∫ ∞

−∞
ψ1(k)ψ2(k)eıkxdk (18-14)

This implies that Fourier transform of a convolution is a direct product of the Fourier transforms ψ1(k)ψ2(k).

Another way to think of this is that “the net effect on the spatial function due two interfering waves is contained by product
the fourier transforms.” Practically, if the effect of an aperture (i.e., a sample of only a finite part of real space) on a wave-
function is desired, then it can be obtained by multiplying the Fourier transform of the aperture and the Fourier transform
of the entire wave-function.

11 To think this through with a simple example, consider the probability that two dice sum up 10. It is the sum of p1(n)p2(10−n) over all possible
values of n.
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Lecture 18 Mathematica R© Example 1

Creating Images of Lattices for Subsequent Fourier Transform
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

A matrix of intensities (or, the density of scattering objects) is created as a set of “pixels” for imaging. We will use data like this to simulate

Here we create an image simulating what 
might be seen in an electron microscope. We 
will use this data to perform simulated diffrac-
tion through use of Fourier Transforms.

1

ISize = 64;
AtomDensity =

N@Table@H1 + Sin@4 Hx + yL 

2 Pi ê ISizeDL 

H1 + Sin@2 Hx - 2 yL 2
Pi ê ISizeDL ê 4,

8x, 1, ISize<, 8y,
1, ISize<DD;

2
GraphicsRow@
8ArrayPlot@AtomDensityD,
ListPlot3D@AtomDensityD<,
ImageSize Ø FullD

1: Table to form a discrete set of points that we will use to approximate am image which image such as
might be seen in an transmission electron microscope. For our first set of data, we use interference of
two sine waves to produce a simulation of the density of scattering centers in an atomic lattice. Most
of the physical aspects of atomic imaging and diffraction can be simulated with the two-dimensional
techniques that are produced in these notes. We start with a 64 × 64 set of discrete points, this is
fairly small but it will produce fairly computationally inexpensive results.

2: ArrayPlot produces a gray-scale image from an array of “pixel values” between 0 (black) and 1

(white); we use Plot3D to get an additional visualization of the density of scatterers.

http://pruffle.mit.edu/3.016-2006/
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Lecture 18 Mathematica R© Example 2

Improving Visualization Contrast with ColorFunction
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

Two examples of ColorFunction, normalcontrast and highcontrast are produced that aid in the interpretation of simulated data. The
first, normalcontrast , provides a way to use a color, red, to interpolate between black at low intensities and white at high intensities.
The second, highcontrast , compresses the color change at the low-intensity end; this provides a means to visualize “noise” at low intensities.

A

To view the data better, we create 
two versions of a contrast function, 
the first (normalcontrast) is useful 
when we wish to view the entire 
range of intensities, the second 
version (highcontrast) when we wish 
to resolve differences at the low-end 
of the intensities.

4ContrastGraphics

normalcontrast

highcontrast A: Three input expressions are not shown, but available in the links provided above. The first two
define the two Pure Functions that will be used at the ColorFunction option to graphics objects.
The third produces a scale that relates the colors to the intensities.

4: ContrastGraphics , defined in item A, shows the relation of colors to intensity.

http://pruffle.mit.edu/3.016-2006/
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Lecture 18 Mathematica R© Example 3

ImagePlot
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

This will be our swiss-army knife visualizer for atomic image and diffraction image graphics.

1

ImagePlot@data_?MatrixQ,
label_: None,

colfunc_: highcontrast,

imagesize_: MediumD :=

Module@8absdata =

Abs@dataD, min, max<,
ArrayPlot@absdata,
ColorFunction Ø colfunc,
BaseStyle Ø

8Tiny, FontFamily Ø

"Helvetica"<,
PlotLabel Ø label,
ImageSize Ø imagesizeDD

1: ImagePlot takes a rectangular array of (possibly complex-valued) intensities are produces graphics

from them. It takes three optional functions for the PlotLabel, ColorFunction, and ImageSize

which will have default values if not given. It uses Abs to find the magnitude of each pixel and

then ArrayPlot to visualize it. Note, the units of the graphics are the number of pixels along the

horizontal and vertical edges.

http://pruffle.mit.edu/3.016-2006/
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Discrete Fourier Transforms

The fast fourier transform (FFT) is a very fast algorithm for compute discrete Fourier transforms (DFT) (i.e., the Fourier
transform of a data set) and is widely used in the physical sciences. For image data, the Fourier transform is the diffraction
pattern (i.e., the intensity of reflected waves from a set of objects, the pattern results from positive or negative reinforcement
or coherence).

However, for FFT simulations of the diffraction pattern from an image, the question arises on what to do with the rest of space
which is not the original image. In other words, the Fourier transform is taken over all space, but the image is finite. In the
examples that follow, the rest of space is occupied by periodic duplications of the original image. Thus, because the original
image is rectangular, there will always be an additional rectangular symmetry in the diffraction pattern due to scattering
from the duplicate features in the neighboring images.

The result of a discrete Fourier transform is a also a discrete set. There are a finite number of pixels in the data, the same
finite number of sub-periodic wave-numbers. In other words, the Discrete Fourier Transform of a N ×M image will be a data
set of N ×M wave-numbers:

Discrete FT Data = 2π(
1

Npixels
,

2
Npixels

, . . . ,
N

Npixels
)

×2π(
1

Mpixels
,

2
Mpixels

, . . . ,
M

Mpixels
)

(18-15)

representing the amplitudes of the indicated periodicities.
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Lecture 18 Mathematica R© Example 4

Discrete Fourier Transforms on Simulated Lattices
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

Example of taking the Discrete Fourier Transform (DFT) of the simulated lattice created above and visualizing it Fourier transform.

We create a function that shows the original 
data, its Fourier transform, and then its 
inverse transform (hopefully) back to the 
original image.

1

FourierRow@data_D :=

Module@8fourdat =

Fourier@dataD<,
GraphicsRow@
8ImagePlot@data, "",
normalcontrastD,
ImagePlot@fourdatD 	

,
ImagePlot@
InverseFourier@
fourdatD, "",
normalcontrastD<,

ImageSize Ø SmallDD
Peaks will be located located near (kx,ky) = 
2 p (a,b)/(size), where (a,b) = {(0,0), (size,0), 
(0,size), (size, size)}.  These correspond to 
the longest wavelength periodicities.

2FourierRow@AtomDensityD

Original
Data

Fourier
Transform H L

 -1@ @OriginalDD,

1: FourierRow is a function to visualize, from left to right, the input intensity data, its Fourier trans-
form, and the inverse Fourier Transform of the Fourier Transform. If the final image isn’t the same
as the first, then something went dreadfully wrong.

2: Notice that the Fourier Transform has very sharp features at the corners of the figure; this is because
the original data lattice is a linear combination of sine waves. There are three unique peaks in the
pattern. The first, and brightest, sits at (kx, ky) = (2π/λx, 2π/λy) = (1, Ny). This peak comes from
each pixel interfering with itself in a periodic repetition of the underlying rectangular (in this case,
square) lattice. As the number of pixels becomes large, this peak converges to the infinite wavelength
limit (or the data with no periodic correlations). This brightest peak is, in fact, the super position
of four periodic peaks; the other three are at: (1 + Nx, 1), (1 + Nx, 1 + Ny), and (Nx, 1 + Ny). The
reason it appears in the upper left is related to our approximation of dx and dy with 1/Nx and 1/Ny

and the underlying periodicity of the image: there are four choices on which corner to use as the
bright spot, upper-left is the one that appears.

The second brightest peak is located at ◦45 to the highest intensity peak. The peak derives from the
sin(x + y) in one of superposed waves—it is the signature of the planes oriented at ◦45 (11) in the
original data. Each peak corresponds to the superposition of two waves, and its intensity is one-half
of the brightest spot which is the superposition of four.

There are just as many low-intensity peaks as mid-intensity. These peaks are derive from the x− 2y

modulated sine-wave; their intensity is less because the distance between the corresponding planes

is larger.

http://pruffle.mit.edu/3.016-2006/
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Lecture 18 Mathematica R© Example 5

Simulating Diffraction Patterns
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

Materials scientists, microscopists, and crystallographers observe the long wavelength peak at the middle of the diffraction pattern. We
develop a data manipulation function that takes input data and outputs the same data, but with our approximation to ~k = 0 at the center.

Materials Scientists, Microscopists, and 
Crystallographers are used to seeing the k =0 
spot at the center of the diffraction image; so 
we write a function that takes the Fourier data 
and manipulates to so as to move spots to the 
center.

1

KZeroMiddle@
fourmat_?MatrixQD :=

Module@8nrows, ncols<,
8nrows, ncols< =

Dimensions@fourmatD;
RotateRight@fourmat,
8Quotient@nrows, 2D,
Quotient@ncols, 2D<DD

A
And, we modify our FourierRow 
function to use the k-at-zero 
transformation: FourierRowK0

3FourierRowK0@AtomDensityD

Original
Data

 @dataD
k=0 centered

 -1@ @OriginalDD

1: KZeroMiddle uses RotateRight to “rolls” the data array so that the left edge goes to the center,
followed by the right edge which ends up just to its left at the center; the two columns at the center
roll to both edges. The same operation is performed in the vertical direction. To find the center, we
use Quotient instead of dividing the number of columns and rows by 2 to anticipate the cases where
there is an odd number of rows or columns. Fourier transform of the diffraction image are viewed
side-by-side.

A–3: FourierRowK0 duplicates the functionality of FourierRow , but the Fourier data is filtered with

KZeroMiddle before display. The definition of the graphics function is straightforward and sup-

pressed in these class notes versions. This simulates an observed fraction pattern, but with colors

instead of gray-scale to indicate intensity of the image’s periodicities. KZeroAtCenter divides the

original matrix data into four approximately equal-sized parts,

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2007/Notebooks/L18/Lecture-18.nb
http://pruffle.mit.edu/3.016-2007/pdf/L18/Lecture-18-5-COL.pdf
http://pruffle.mit.edu/3.016-2007/pdf/L18/Lecture-18-5-BW.pdf
http://pruffle.mit.edu/3.016-2007/html/Lecture-18/HTMLLinks/index_5.html
http://pruffle.mit.edu/3.016-2007/html/Lecture-18/HTMLLinks/index_5.html


3.016 Home

JJ J I II

Full Screen

Close

Quit

c©W. Craig Carter

Lecture 18 Mathematica R© Example 6

Alternative Representations of Diffraction Data
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

Because our data is organized as intensities over the x–y plane we can use the z-direction to add another component to visualization.
We can also use the same contrast function that we employed for the two-dimensional simulation.

1

Spots3D@data_,
range_: AllD :=

ListPlot3D@KZeroMiddle@
Abs@Fourier@dataDDD,

ColorFunction Ø

Hhighcontrast@Ò3D &L,
PlotRange Ø rangeD

2

Spots3DRow@data_,
range_D := Module@8plt<,
plt = Spots3D@dataD;
GraphicsRow@
8plt, Show@plt,
PlotRange Ø rangeD<DD

3Spots3DRow@
AtomDensity, 80, 7<D

1: Spots3D uses ListPlot3D to convert our discrete two-dimensional data into a Graphics3D object.
We create a default argument for the range of intensities to be plotted, and use highcontrast on the
z-values.

2–3: Spots3DRow takes Fourier data and creates visualizations for the all the intensities, and a second

argument for a range, which permits us to observe the finer structure of the diffraction intensities. In

this case, because the data is the superposition of two sine-waves, discrete approximations to sharp

peaks are observed.

http://pruffle.mit.edu/3.016-2006/
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Lecture 18 Mathematica R© Example 7

Diffraction Patterns of Defective Lattices
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

In this example, the simulated atomic density is modified to simulate the removal of one atom—in other words, we simulate a vacancy.

A
Algorithm to Create a Defect in a 
Simulated Atomic Density Image : 
Here, the algorithm will create new 
data which will be called 
AtomDensityWithDefect

2FourierRowK0@
AtomDensityWithDefectD

Original
Data

 @dataD
k=0 centered

 -1@ @OriginalDD

3
Spots3DRow@
AtomDensityWithDefect,
80, 1 ê 2<D

A: AtomDensityWithDefect are simulated data with a vacancy (definition-algorithm suppressed in class
notes). It selects one of the maximum intensity positions at random, and then sets data in, disk
centered at that position, to zero.

2–3: The vacancy affects the diffraction pattern with diffuse, low-intensity scattering near ~k = 0. The

3D version shows more clearly that the peaks remain the dominate feature, and we have to decrease

the range to very small intensities to find the defect scattering all. Nevertheless, the intensity that

is shed from the peaks into the entire spectrum reproduces the defect on the reconstructed image.

http://pruffle.mit.edu/3.016-2006/
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Lecture 18 Mathematica R© Example 8

Diffraction Patterns from Lattices with Thermal ‘Noise’
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

Functions to create a two-dimensional lattices of squares with a specifiable amount of randomness in their position are created. are
developed with a variable that simulates random deviation from their ideal lattice positions.

A

Function to Create A Lattice of 
Squares : 
NoisyLattice[TotalSize, 
LatticeVector1, LatticeVector2, 
SquareSize, 
RandomDisplacements]

2
NoNoise =

NoisyLattice@64, 88, 4<,
816, 16<, 1, 80, 0<D;

3
FourierRowK0@NoNoiseD
GraphicsRow@
8Spots3D@NoNoiseD,
Spots3D@NoNoise, 80, 2<D<D

4

SomeNoise =

NoisyLattice@64, 88, 4<,
816, 16<, 1, 81, 1<D;

FourierRowK0@SomeNoiseD
GraphicsRow@
8Spots3D@SomeNoiseD,
Spots3D@SomeNoise,
80, 2<D<D

A: NoisyLattice ’s first argument is the size N of the N ×N that is returned. It also takes input for the
two lattice-vectors, the size of squares to place near the lattice positions, and a vector that specifies
the magnitude of random displacements in the x and y directions. (The definition, which is a bit
long and complicated, is suppressed in the class-notes.) This function will produce smaller unit cells
if the lattice vectors are divisors of the data size.

2–3: This simulates data from ‘perfect’ lattice of squares. Note, that in this case, the entire diffrac-
tion pattern is filled. This is because the original data are not sine-waves, but superposed square-
wave-patterns. This diffraction pattern is called the reciprocal lattice by materials scientists and
crystallographers.

4: The data from SomeNoise will illustrate the effect of adding isotropic thermal noise (in a real crystal,

the amplitude of the noise will be larger in the elastically soft directions, it would not be difficult

to modify this function to take a matrix of compliances to multiply the random displacements) A

diffuse ring of scattering about ~k = 0 is superimposed onto the ‘ideal’ diffraction pattern.

http://pruffle.mit.edu/3.016-2006/
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Lecture 18 Mathematica R© Example 9

Computational Microscopy
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

We produce functions to create circular apertures and interactively move and resize the apertures on the diffraction pattern.
Transmission electron microscopy works by accelerating electrons with a voltage difference and sending them towards a target. The
electrons interact with the target and scatter. After the electrons have passed through the sample, they are focused with a magnetic
objective lens (or typically lenses). This lens produces a plane at which electrons scattered in the same direction arrive at the same
point—this is the diffraction pattern. Because diffraction transforms periodic elements into points, it is closely related to the fourier
transform. An image of the target is created beyond this diffraction plane. An operator of an electron microscope can toggle between
looking at the diffraction-plane or the image-plane.
The “Bright-Field Image” consists of using a central aperture around the direct beam to block off all others from contributing to the
image.
The “Dark-Field Image” consists of selecting a specific diffracted peak with the aperture and using that to form an image.
A “Structure image,” or a “lattice image,” uses the direct beam and one or more diffracted beams to form the image. In this case, the
apertures are typically much larger than for bright- or dark-field imaging.
Aperture size is effectively limited because of spherical aberrations that become significant for beams that are “off-axis” by a significant
amount. So, in practice one can only use part of the Fourier spectrum (reciprocal space) to produce an image in TEM. You always lose
some structure information in the image formation.

A

Function to Create Two Circular 
Aperatures (i.e, to remove all data 
from a Fourier Transform except the 
regions inside two specified circles:

CircAps[Center1, Center2, Radius1, 
Radius2, FourierData]

B

Function to Perform Diffraction Spot 
Microscopy on Real-Space Images

DiffractionMicroscopy[RealData]
Creates a Interactive Structure with 
Four Windows Arranged in a Square.

NorthWest: All Fourier Data from 
Real Image with Movable 
Aperatures, use a clicked mouse to 
move aperatures to various 
diffraction peaks.

NorthEast: The original real 
space image.

SouthWest: The Fourier image of 
the aperature filtered data. (Don't try 
to move these aperatures)

SouthEast: The reconstructed 
image from the aperature filtered 
data.

A: CircAps is a function (definition suppressed in class-notes) designed to take the positions of the
centers of two circular apertures, their radii, and input data (which is intended to be the Fourier
transform of scattering density. It returns the data with zeroes everywhere except within the aper-
tures, where it has the same value as the input data.

B: DiffractionMicroscopy (definition suppressed, but available at the links given above) takes an array

of values representing scattering density, and creates an interactive simulation which allows the user

to move the apertures with the mouse, and their radii with slider controls. This definition is only

about 20 lines of code, and demonstrates the economy of Mathematica R© 6’s new Manipulate

function. We will demonstrate examples below.

http://pruffle.mit.edu/3.016-2006/
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Lecture 18 Mathematica R© Example 10

Visualizing Simulated Selected Area Diffraction
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

We create a function that creates a square array of square “grains”. Each grain will be simplified by creating a sinusoidal modulation
in each of the Ng ×Ng with a random orientation picked from an equally spaced set of angles in (0, N2

gπ).

A
GrainStructure[TotalSize, 
GrainSize]
Creates an array of "square 
grains" with stripes oriented in 
somewhat random orientations

2

Grains =

GrainStructure@128, 64D;
ImagePlot@Grains,
"Simulated
Grain Structure",

normalcontrast, LargeD

Simulated Grain Structure A: This is a definition of the function GrainStructure (suppressed in class-notes). Its first argument is
the number of pixels along one side of the image, and the second is the number of pixels along the
side of the grains. It is best to make the grain size a divisor of the image size.

2: This is an example of creating data and imaging it for a 2× 2 grain structure.

http://pruffle.mit.edu/3.016-2006/
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Lecture 18 Mathematica R© Example 11

Simulated Diffraction Imaging on a Polycrystal
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

We use our simulated grain structure as input to our diffraction simulator, DiffractionMicroscopy .

Diffraction Spot Microscopy on grain structure. 

1DiffractionMicroscopy@
GrainsD

Purple
Radius

Fourier Representation of Data
Click on Aperatures to Move

Input
Data

Selected Fourier DataFiltered Image

Yellow
Radius

1: Here is an example of our interactive function, DiffractionMicroscopy , on a polycrystal. You can

move each aperture by mouse-dragging and control their sizes with the sliders. You can only move

the apertures in the upper-left image. Try these simple experiments first:

Image Orientation of a Single Grain: Move the purple aperture over on of the green diffraction peaks.

Notice that only one grain is imaged in the reconstruction. Because the yellow aperture is picking

up data from the ~k = 0 spot, the other aperture is producing the modulation of a single sine wave.

Imaging a Single Grain: Shrink the yellow aperture to zero; this is a “dark-field” simulation. Move

the purple aperture over a single peak; notice that a single grain is imaged, but its modulation has

disappeared.

Imaging a Defect: Keeping the yellow aperture at zero-radius, move the purple apertures over one

of the streaks in the diffraction pattern. Notice that a grain boundary is imaged—pay attention to

the orientation of the grain boundary relative to that of the streak in the diffraction image.

http://pruffle.mit.edu/3.016-2006/
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Lecture 18 Mathematica R© Example 12

Bright-Field and Dark-Field Imaging of a Lattice with Thermal Noise
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

We use our ideal lattice of squares and a similar one with a bit of thermal noise to continue our investigation of diffraction phenomena.

1DiffractionMicroscopy@
NoNoiseD

2DiffractionMicroscopy@
SomeNoiseD

Purple
Radius

Fourier Representation of Data
Click on Aperatures to Move

Input
Data

Selected Fourier DataFiltered Image

Yellow
Radius

1: Here, we use our computational microscope, DiffractionMicroscopy , on an ideal lattice. Here are
some experiments to try:
Image a Set of Planes Leave the yellow aperture over the ~k = 0 peak. Move the purple aperture one
of the nearby spots. Notice the orientation and periodicity of the planes in the reconstructed image.
Detect Periodicity Leave the yellow aperture at ~k = 0. Move the purple aperture from one of
the nearby peaks to a similarly oriented one along the same ray from the origin. Notice that the
orientation of the planes do not change, but the period of modulation is increased. (Also, recall
that this is a complex superposition of sine-waves to make squares, in the simple superposition of
sine-waves, there we fewer peaks.)

2: Here, we do the same example with our randomly perturbed lattice of squares. There is a significant

amount of diffuse scattering, but by observing carefully, you will see the the same peaks that were

present for the perfect lattice.

Discover Robustness of Imaging with Noise If you leave the yellow aperture over ~k = 0, and move

the purple aperture over one of the “perfect peaks,” you will see a reconstruction of perfect planes

even though they are barely discernible in the original image. If you shrink the purple radius, while

leaving it over the peak, you will see the quality of the planes improves as less diffuse scattering is

included. This simulates how a microscopist can image individual atom planes at finite temperatures

where atoms are vibrating around their equilibrium positions.
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Lecture 18 Mathematica R© Example 13

Selected Area Diffraction on Image Data
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

DiffractionMicroscopy is used on data that is extracted from a gray-scale image-file.

1
AnImage = Import@
"http:êêpruffle.mit.eduê
3.016-2007êMsChang.
pgm"D

2DiffractionMicroscopy@
1 - ChangDataD

1: We read in an image that is stored on the ‘net. We do a bit of plastic surgery on this data to put it
into a form that is ready for our microscope (plastic surgery algorithm suppressed in class-notes)

2: We perform selected area diffraction on this image. Notice that we can highlight different aspects of
the image by selecting different aperture locations.

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2007/Notebooks/L18/Lecture-18.nb
http://pruffle.mit.edu/3.016-2007/pdf/L18/Lecture-18-13-COL.pdf
http://pruffle.mit.edu/3.016-2007/pdf/L18/Lecture-18-13-BW.pdf
http://pruffle.mit.edu/3.016-2007/html/Lecture-18/HTMLLinks/index_13.html
http://pruffle.mit.edu/3.016-2007/html/Lecture-18/HTMLLinks/index_13.html


3.016 Home

JJ J I II

Full Screen

Close

Quit

c©W. Craig Carter

Index

Abs, 204
ArrayPlot, 202, 204
AtomDensityWithDefect, 209

CircAps, 211
ColorFunction, 203, 204
ContrastGraphics, 203
convolution of two functions, 200
convolution theorem, 200

physical interpretation, 201

delta functions, 199
density conservation

Parseval’s theorem, 200
Diffraction

simulated, 207
three-dimensional representations of two-dimensional data,

208
diffraction, 197

interactive simulation of lattice diffraction, 214
simulated, 206

DiffractionMicroscopy, 211, 213–215
Dirac delta functions, 199
discrete Fourier transforms with Mathematica, 206

Example function
AtomDensityWithDefect, 209
CircAps, 211
ContrastGraphics, 203
DiffractionMicroscopy, 211, 213–215

FourierRowK0, 207
FourierRow, 206, 207
GrainStructure, 212
ImagePlot, 204
KZeroAtCenter, 207
KZeroMiddle, 207
NoisyLattice, 210
SomeNoise, 210
Spots3DRow, 208
Spots3D, 208
highcontrast, 203, 208
normalcontrast, 203

fast Fourier transforms, 206
fast fourier transforms, 205
Fourier series

complex form, 197
Fourier transform

as limit of infinite domain Fourier series, 198
Fourier transforms, 196

higher dimensional, 198
Fourier transforms on graphical images, 215
FourierRow, 206, 207
FourierRowK0, 207

grain boundary, 213
grains

simulation for diffraction, 212
GrainStructure, 212
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harmonics, 196
highcontrast, 203, 208

ImagePlot, 204
ImageSize, 204

KZeroAtCenter, 207
KZeroMiddle, 207

lattice images
simulated, 202

lattice vibrations
diffraction from, 210

ListPlot3D, 208

Manipulate
economy of, 211

Manipulate, 211
Mathematica function

Abs, 204
ArrayPlot, 202, 204
ColorFunction, 203, 204
ImageSize, 204
ListPlot3D, 208
Manipulate, 211
PlotLabel, 204
Quotient, 207
RotateRight, 207
Table, 202

momentum and wavenumber, 196

NoisyLattice, 210
normalcontrast, 203

Parseval’s theorem, 200
PlotLabel, 204
polycrystal

diffraction from, 213
simulation for diffraction, 212

Pure Functions, 203

Quotient, 207

reciprocal lattice, 210
RotateRight, 207

simulated lattice images, 202
SomeNoise, 210
Spots3D, 208
Spots3DRow, 208

Table, 202
TEM diffraction patterns and image reconstruction

simulations of, 211

vacancies
simulated diffuse scattering from, 209

wave-vector, 199
wavenumber, 196
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