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Oct. 29 2007

Lecture 16: Integral Theorems

Reading:
Kreyszig Sections: 10.8, 10.9 (pages463–467, 468–473)

Higher-dimensional Integrals

The fundamental theorem of calculus was generalized in a previous lecture from an integral over a single variable to an
integration over a region in the plane. Specifically, for generalizing to Green’s theorem in the plane, a vector derivative of a
function integrated over a line and evaluated at its endpoints was generalized to a vector derivative of a function integrated
over the plane.
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Figure 16-14: Illustrating how Green’s theorem in the plane works. If a known vector function
is integrated over a region in the plane then that integral should only depend on the bounding
curve of that region.
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Figure 16-15: Illustration of a generalization to the Green’s theorem in the plane: Suppose
there is a bowl of a known shape submerged in a fluid with a trapped bubble. The bubble is
bounded by two different surfaces, the bowl down to z = 0 and the planar liquid surface at that
height. Integrating the function

∫
VB

dV over the bubble gives its volume. The volume must

also be equal to an integral
∫ ∫

∂VB
zdxdy over the (oriented) surface of the liquid. However,

the volume of bubble can be determined from only the curve defined by the intersection of the
bowl and the planar liquid surface; so the volume must also be equal to

∮
C(some function)ds.

The Divergence Theorem

Suppose there is “stuff” flowing from place to place in three dimensions.
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Figure 16-16: Illustration of a vector “flow field” ~J near a point in three dimensional space.
If each vector represents the rate of “stuff” flowing per unit area of a plane that is normal to
the direction of flow, then the dot product of the flow field integrated over a planar oriented
area ~A is the rate of “stuff” flowing through that plane. For example, consider the two areas
indicated with purple (or dashed) lines. The rate of “stuff” flowing through those regions is
~J · ~AB = ~J · k̂AB and ~J · ~AL = ~J · k̂AL.

If there are no sources or sinks that create or destroy stuff inside a small box surrounding a point, then the change in the
amount of stuff in the volume of the box must be related to some integral over the box’s surface:

d

dt
(amount of stuff in box) =

d

dt

∫
box

(
amount of stuff

volume
)dV

=
∫
box

d

dt
(
amount of stuff

volume
)dV

=
∫
box

(some scalar function related to ~J)dV

=
∫

box
surface

~J · d ~A

(16-1)
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J3( x=0; y=0; z=∆z
2 )

J3( x=0; y=0; z=−∆z
2 )

J2( x=0; y=−
∆y
2 ; z=0)

J2( x=0; y=
∆y
2 ; z=0)

J1( x=−∆x
2 ; y=0; z=0)

J1( x=∆x
2 ; y=0; z=0)

Figure 16-17: Integration of a vector function near a point and its relation to the change in
that vector function. The rate of change of stuff is the integral of flux over the outside—and
in the limit as the box size goes to zero, the rate of change of the amount of stuff is related to
the sum of derivatives of the flux components at that point.

To relate the rate at which “stuff M” is flowing into a small box of volume δV = dxdydz located at (x, y, z) due to a flux ~J ,
note that the amount that M changes in a time ∆t is:

∆M(δV ) = (M flowing out of δV )− (M flowing in δV )

= ~J(x− dx
2 )̂idydz− ~J(x + dx

2 ) · îdydz

+ ~J(y − dy
2 )ĵdzdx− ~J(y + dy

2 ) · ĵdzdx

+ ~J(z − dz
2 )k̂dxdy− ~J(z + dz

2 ) · k̂dxdy

∆t

= −(
∂Jx

∂x
+

∂Jy

∂y
+

∂Jz

∂z
)δV ∆t +O(dx4)

(16-2)
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If C(x, y, z) = M(δV )/δV is the concentration (i.e., stuff per volume) at (x, y, z), then in the limit of small volumes and short
times:

∂C

∂t
= −(

∂Jx

∂x
+

∂Jy

∂y
+

∂Jz

∂z
) = −∇ · ~J = −div ~J (16-3)

For an arbitrary closed volume V bounded by an oriented surface ∂V :

dM

dt
=

d

dt

∫
V

CdV =
∫

V

∂C

∂t
dV = −

∫
V
∇ · ~JdV = −

∫
∂V

~J · d ~A (16-4)

The last equality ∫
V
∇ · ~JdV =

∫
∂V

~J · d ~A (16-5)

is called the Gauss or the divergence theorem.
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Lecture 16 Mathematica R© Example 1

London Dispersion Potential due to a Finite Body
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

If the London interaction (i.e., energy between two induced dipoles) can be treated as a 1/r6 potential, then the potential due to a
volume is an integration over each point in the volume and and arbitrary point in space. This calculation will be made much more
efficient by turning the volume integral into a surface integral by using the divergence theorem.

Numerical integration is a cpu-time-consuming numerical procedure.  If 
there is a way to reduce the dimensionality of the integration, then we 
can reap rewards for our cleverness.  One trick is to use the divergence 
theorem to push the integration over a volume, to an integration over a 
surface. For example, we could use the divergence theorem:
ŸŸŸ volume “· P  dV = ŸŸ surfaceP ÿ d  A
For a 1/r 6  potential , we must find a vector potential P  such that “· P  = 
-1/|r” - x »6  where r” is a position in the integrated volume and  x  is a point 
at which the potential is measured.  

1

PVecLondon =

1

3 IHCX - XL2 + HCY - YL2 + HCZ - ZL2M3
 

8CX - X, CY - Y, CZ - Z<
2Needs@"VectorAnalysis`"D

3FullSimplify@
Div@PVecLondon, Cartesian@CX, CY, CZDDD
We will integrate over a cylinder of radius R and length L along the z-
axis, with its middle at the origin.  First, let's use the radius of the cylinder 
to scale all the length variables: Let (X,Y,Z)/R = (x,y,z); (CX,CY,CZ)/R = 
(cx,cy,cz), and L/R = l (the cylinder's aspect ratio).

4
ScaleRules = 8X Ø x R, Y Ø y R, Z Ø z R,

CX Ø cx R, CY Ø cy R, CZ Ø cz R<;
PvecR5 = FullSimplify@R^5 PVecLondon ê.

ScaleRules, Assumptions -> R > 0D
Therefore, f(x ) =  ŸŸŸ volume -1

r
Ø

-x
Ø 6  dV = ŸŸ surfacePVecLondon ÿ d  A  = 

(ŸŸ cylinder
surface

PVecR5  •  „ A
Ø

 + ŸŸ cylinder
ends

 PVecR5  •  „ A
Ø

)/R5

 is the total interaction between a point and a cylinder.  We can exploit 
the symmetry of the cylinder: r = x ^ 2 + y ^ 2 and z.
 We will do three integrals over the cylindrical surfaces using this expres-
sion to define the cylinder: (cx,cy,cz) = (Cos[q], Sin[q], cz):
The cylindrical surface  is the domain  q œ (0, 2p), cz œ (- l

2  , l
2 )

The two caps r œ (0,1),  q œ (0, 2p), cz=± l
2

1: To find a vector potential, ~F which has a divergence that is equal to ∇ · ~F = −1/‖ ~X − ~CX‖6,
PVecLondon is a ‘guess.’ The ~CX will vary over the solid body and ~X is an arbitrary point at
which the potential is to be determined.

2: We will need Div from the VectorAnalysis package.

3: this will show that the guess PVecLondon is a correct vector function for the −1/r6 potential.

4: Our calculation will be for a cylinder of radius R and aspect ratio λ ≡ L/R. We will use R to scale all

length variables and introduce dimensionless variables: x = X/R, y = Y/R, z = Z/R, cx = CX/R,

cy = CY/R, and cz = CZ/R. The variables are scaled by introducing ScaleRules which are rules

to be used in a replacement. Because the potential has a 1/(length5) length scale, we multiply it by

R5 to remove that dimension. We use FullSimplify after the replacement with Assumptions of a

positive radius to find the simplest possible form of the non-dimensionlized vector potential.
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Lecture 16 Mathematica R© Example 2

Cylinder Surface and Integrands
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

We parameterize the cylinder surface and compute the local oriented surface area and then find the integrand which is to be used for
the cylinder surface.

The following is a parametric representation of a cylinder surface that is 
coaxial with the z-axis (the cylinder ends will be included later)

1CylSurf = 8 Cos@qD, Sin@qD, cz<
The infinitessimal surface vectors Ru and Rv  for the cylinder surface are 

obtained by differentiation; they will be used to find the surface patch dA
Ø

.

2CylSurfRq = D@CylSurf, qD
CylSurfRcz = D@CylSurf, czD

The surface normal given by Ru × Rv  for the cylinder surface, there for 
the following (multiplied by dq dz) is the infinitessimal oriented surface 
patch dA

Ø
.

3NormalVecCylSurf =

Cross@CylSurfRq, CylSurfRczD
The integrand to be evaluated over the cylinder surface is the vector 
potential, dotted into the normal vector.  Because of the cylindrical 
symmetry of this model, we can convert to cylindrical coordinates.  One 
set of coordinates is for the cylinder surface (x Ø R Cos[q], h Ø R Sin[q]) 
for fixed radius R (which is a model parameter) and another set of 
coordinates for where we will be testing the potential (x Ø r Cos[a], y Ø r 
Sin[a]).  Because the potential must be independent of a, we might as 
well set it to zero.

4
CylinderIntegranddqdz = FullSimplify@

HPvecR5 ê. 8cx Ø Cos@qD, cy Ø Sin@qD,
x Ø r , y Ø 0<L.NormalVecCylSurfD

We have a choice whether to integrate over cz œ  (- l2  , l2 )  or  q œ (0, 2p) 
first.  If we can a closed form for the cylinder surface over cz and then the 
cylinder end over r, then we can integrate the sum of these over q 
together.
In the next section, we will  see if we can do one of the two integrals---we 
have a choice of integrating over q or (z for the cylinder sides, and  R) for 
the cylinder ends. We find a closed form for integrating  z for the sides 
and R for the top, and then subsequently numerically integrate q for (0,2 
p).

1: This is the cylinder surface in terms of cz and θ

2: These are the differential quantities that define the local tangent plane to the cylindrical surface.

3: This will be the multiplier elemental area for a parameterized cylindrical surface d~r/dθ × d~r/dz,
this is the local normal to the surface; here it is the unit normal because we have scaled all length
quantities by R

4: CylinderIntegrandθζ is the integrand (i.e., the vector potential evaluated on the parameterized

cylinder surface) for the cylindrical surface. Because of the cylindrical symmetry of the potential,

the potential must be depend only on the normalized distance from the cylinder axis, ρ, and the height

above the mid-plane, z: this conversion to cylindrical coordinates is effected by a rule-replacement

operation.
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Lecture 16 Mathematica R© Example 3

Integrating over the Cylinder Surface
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

We have a choice whether to integrate over θ ∈ (0, 2π) or over z ∈ −λ/2, λ/2 first. We calculate the integral over cz first which
will leave a form that we can numerically integrate over θ. (Note: As of 23 Oct. 2007, I’ve determined that it is possible to
find the definite integral over θ and then over cz; therefore, this integral does has a closed form solution. For purposes of this
demonstration, we will leave the integral over θ to be computed by a numerical integration. To demonstrate the idea of reducing the
triple numerical integration, over a single numerical integration, I’ll have to find a more complicated surface to integrate over in the future.)

1

UpperPlane = 8l > 0, r > 0, z > 0 , 0 < q < 2 p<;
CylinderIntegrandUpperZdq =

FullSimplify@Integrate@
CylinderIntegranddqdz, 8cz, -l ê 2, l ê 2< ,
Assumptions Ø UpperPlaneD,
Assumptions Ø UpperPlaneD
Here we restrict z to the upper half-space. We will treat z=0 below.
Here is the limit of  the integral for z> 0 (CylinderIntegranddq) in the limit 
as z  Ø 0.

2CylinderIntegranddqZeroLimit = FullSimplify@
Limit@CylinderIntegrandUpperZdq, z Ø 0DD
Here is the limit of  the integral z=0, it is not obvious that the limit and its 
value at z=0 are the same. 

3

FewerAssumptions =

8 R > 0 , l > 0, r > 0, 0 < q < 2 p<;
CylinderIntegrandAtZerodq = Integrate@
Evaluate@CylinderIntegranddqdz ê. z Ø 0D,
8cz, -l ê 2, l ê 2< ,
Assumptions Ø FewerAssumptionsD
The limit as z -> 0 and the integrand at z = 0 are the same, so we can 
use a single integrand

4

CylinderIntegranddq@
dist_, height_, AspectRat_D :=

Evaluate@CylinderIntegrandUpperZdq ê.
8r Ø dist, z Ø height, l Ø AspectRat<D

? CylinderIntegranddq

5
CylinderContribution@
dist_, height_, AspectRat_D :=

NIntegrate@CylinderIntegranddq@dist,
height, AspectRatD, 8q, 0, 2 p<D

1: Because of the mirror symmetry of the function about the z = 0 plane, we can restrict the integral
to z > 0 and use this as an assumption to aid the definite integral over cz. (Note this is a time-
consuming integral and simplification, in the notebook form distributed with these notes, there is a
dialogue that allows the user to download a precomputed result.)

2: To determine whether we can use this integrand at the mid-plane (z = 0), we check to see if the
limit as z → 0 is the same as evaluating the integrand at z = 0 first, and then finding the integral
that applies for z = 0. Here, we check the limit.

3: Here, we set z = 0 and integrate.

4: The limit and the case of z = 0 are the same, so we use the form of the integrand,
CylinderIntegrandUpperZdθ , calculated above. We turn the expression into a function by using
Evaluate after the rule-replacement. This method of subverting the delayed evaluation, (:=), will
work so long as the function’s variables have not been assigned. These methods will be discussed in
a section below . In practice, it is probably safer to replace variables with temporary, undefined,
symbols and then cut-and-paste. (It is difficult to demonstrate the cut-and-paste with static notes
like these.)

5: The function defined above, CylinderIntegranddθ , is used as the argument to the numerical integra-

tion, NIntegrate, over θ ∈ (0, 2π). The produces a function, CylinderContribution , that gives the

contribution by integrating over the cylinder surface.
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Lecture 16 Mathematica R© Example 4

Integrating over the Cylinder’s Top Surface
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

We parameterize the cylinder’s top end-cap in terms of r (dimensionless r < 1) and θ, and then find a closed-form solution for the double
integral over the top surface.

1TopSurf = 8r Cos@qD, r Sin@qD, l ê 2<

2TopSurfRq = D@TopSurf, qD
TopSurfRr = D@TopSurf, rD

3NormalVecTopSurf =

FullSimplify@Cross@TopSurfRr, TopSurfRqDD

4

EndAssumptions =

8l > 0, r > 0 , z > 0, -1 § Cos@qD < 1<;
TopIntegranddqdr = FullSimplify@

HPvecR5 ê. 8cx Ø r Cos@qD, cy Ø r Sin@qD, cz Ø

l ê 2, x Ø r, y Ø 0<L.NormalVecTopSurf,
Assumptions Ø EndAssumptionsD

5

InsideAbovedr = Integrate@TopIntegranddqdr,
8q, 0, 2 p<, Assumptions Ø

8 0 < r < 1, l > 0, r < 1 , z > l ê 2< D;
InsideBelowdr = Integrate@TopIntegranddqdr,

8q, 0, 2 p<, Assumptions Ø

8 0 < r < 1, l > 0, r < 1 , z < l ê 2< D;
OutsideAbovedr = Integrate@TopIntegranddqdr,

8q, 0, 2 p<, Assumptions Ø

8 0 < r < 1, l > 0, r > 1 , z > l ê 2< D;
OutsideBelowdr = Integrate@TopIntegranddqdr,

8q, 0, 2 p<, Assumptions Ø

8 0 < r < 1, l > 0, r > 1 , z < l ê 2< D;
Grid@88InsideAbovedr, InsideBelowdr<,

8OutsideAbovedr, OutsideBelowdr<<D
6TopIntegranddr = ‘InsideAbovedr

7TopPart = Integrate@TopIntegranddr, 8r, 0, 1<,
Assumptions Ø 8 l > 0, r > 0 , z > 0, z ≠ l ê 2<D

8
TopContribution@dist_, height_,
AspectRat_D := Evaluate@TopPart ê.
8r Ø dist, z Ø height, l Ø AspectRat<D

? TopContribution

1–4: As in the case for the cylinder’s curved surface, the top surface is parameterized, then the local
tangent is computed, and the local oriented surface differential element is computed. The integrand
is produced with the inner-product with the vector potential evaluated at the cylinder’s top.

5–6: There is a singularity at the cylinder surface that produces a little extra work on our part to ensure
that we don’t evaluate at this singularity. To get a closed form of the integral over θ, it is useful to
divide space into four regions where the potential is to be measured: 1) Inside the cylinder radius
and above the cylinder top; 2) Inside the cylinder radius and below the cylinder top; 3) Outside the
cylinder radius and above the cylinder top; 4) Outside the cylinder radius and below the cylinder
top. These give the same result, so long as we don’t evaluate at the cylinder’s surface.

7: The top integrand in r can be integrated for r ∈ (0, 1) and produces a closed form.

8: A function for the contribution of the upper disk, TopContribution , is defined.
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Lecture 16 Mathematica R© Example 5

Integrating over the Cylinder’s Bottom Surface
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

We parameterize the cylinder’s bottom end-cap (cz = −λ/2) in terms of r (dimensionless r < 1) and θ, and then find a closed-form
solution for the double integral over the bottom surface.

1BotSurf = 8r Cos@qD, r Sin@qD, -l ê 2<

2BotSurfRq = D@BotSurf, qD
BotSurfRr = D@BotSurf, rD

3NormalVecBotSurf =

FullSimplify@Cross@BotSurfRq, BotSurfRrDD

4

BotIntegranddqdr =

FullSimplify@HPvecR5 ê. 8cx Ø r Cos@qD,
cy Ø r Sin@qD, cz Ø -l ê 2, x Ø r, y Ø 0<L.

NormalVecBotSurf, Assumptions Ø

EndAssumptionsD

5

inside = 8 0 < r < 1, l > 0, r < 1 , z > 0< ;
outside = 8 0 < r < 1, l > 0, r > 1 , z > 0<;
BotIntegrandInsidedr =

Simplify@Integrate@BotIntegranddqdr,
8q, 0, 2 p<, Assumptions Ø insideD,
Assumptions Ø insideD

BotIntegrandOutsidedr =

Simplify@Integrate@BotIntegranddqdr,
8q, 0, 2 p<, Assumptions Ø outsideD,
Assumptions Ø outside D

6BotIntegranddr = BotIntegrandOutsidedr

7BotPart = Integrate@BotIntegranddr, 8r, 0, 1<,
Assumptions Ø 8 l > 0, r > 0 , z > 0<D

8
BotContribution@dist_, height_,
AspectRat_D := Evaluate@BotPart ê.
8r Ø dist, z Ø height, l Ø AspectRat<D

9

LondonCylinderPotential@dist_, height_,
AspectRat_D := CylinderContribution@
dist, height, AspectRatD +

TopContribution@dist, height, AspectRatD +

BotContribution@dist, height, AspectRatD

1–4: As above for the cylinder’s outside and for its top surface, the bottom disk is parameterized, then
the local tangent is computed, and the local oriented surface differential element is computed. The
integrand is produced with the inner-product with the vector potential evaluated at the cylinder’s
bottom.

5–6: Similar to our method of avoiding the singularity at the top surface To get a closed form of the
bottom-disk integral over θ, space is divided into two regions where the potential is to be measured:
1) Inside the cylinder; 2) Outside the cylinder. These give the same result.

7: The bottom integrand in r can be integrated for r ∈ (0, 1) and produces a closed form.

8: A function for the contribution of the bottom disk, BotContribution , is defined.

9: We can produce a function to compute the potential at any point in space by summing the contri-

butions from all three cylinder surfaces. The first function is the most expensive because it contains

a numerical integration over θ.
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Efficiency and Speed Issues: When to Evaluate the Right-Hand-Side of a Function in Mathematica R© .

The standard practice is to define functions in Mathematica with :=. However, sometimes it makes sense to evaluate the
right-hand-side when the function definition is made. These are the cases where the right hand side would take a long time to
evaluate—each time the function is called, the evaluation would be needed again and again. The following example illustrates
a case where it makes sense to use Evaluate in a function definition (or, equivalently defining the function with immediate
assignment =).

As in the use of (=), this can result in errors if the function’s variables have been defined previously. In cases where it
is desirable to create a function from an expression, it is probably safest to use rule-replacement with undefined variables,
observe the result, and then use cut-and-paste to define a function with a delayed evaluation in terms of these demonstrably
undefined variables.
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Lecture 16 Mathematica R© Example 6

To Evaluate or Not to Evaluate when Defining Functions
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

This example illustrates a case in which immediate evaluation = would be preferable to delayed evaluation :=
Let's set a baseline to check efficiency. Here we check timing to integrate 
something

1Timing@Integrate@Exp@Tan@xDD, 8x, 0, c<DD
We check the same thing again, because Mathematica may have spent 
some time loading algorithms to integrate

2Timing@Integrate@Exp@Tan@xDD, 8x, 0, c<DD
Here, we time how long it takes to create a function (with delayed 
assignment), but using Evaluate on the rhs.

3Timing@DelayedEvaluated@c_D :=

Evaluate@Integrate@Exp@Tan@xDD, 8x, 0, c<DDD
The following is equivalent to the above (safer) definition---and will work 
so long as c is not assigned to an expression.

4Timing@Immediate@c_D =

Integrate@Exp@Tan@xDD, 8x, 0, c<DD
The following should take the *least* amount of time to perform, but as 
we shall see is not as efficient in the long run.

5Timing@FunctionDef@c_D :=

Integrate@Exp@Tan@xDD, 8x, 0, c<DD

6
? DelayedEvaluated
? Immediate
? FunctionDef

The following should give a rapid result

7Timing@DelayedEvaluated@0.5DD
Timing@Immediate@0.5DD

The following will not be rapid, because it has to do the symbolic integra-
tion before returning the result.

8Timing@FunctionDef@0.5DD

1: When a non-trivial integral is done for the first time, Mathematica loads various libraries. Notice
the difference in timing between this first computation of

R
exp[tan(x)]dx and the following one.

2: The second evaluation is faster. Now, a baseline time has been established for evaluating this integral
symbolically.

3: Here, to make a function definition for the integral, the symbolic integral is obtained and so the
function definition takes longer than it would if we had not used Evaluate.

4: Using an = is roughly equivalent to using Evaluate above and the time to make the function
assignment should be approximately the same.

5: Here, the symbolic integration is delayed until the function is called (later). Therefore, the function
assignment is very rapid.

6: We can use the ?-operator to investigate the stored forms of the three function definitions. The first
two forms are roughly equivalent, except for the delayed versus immediate function definition. The
third form uses the unevaluated integral in the definition. symbolic information.

7: The function evaluation is much faster in the case where the symbolic integration is not needed. This
would be the preferred form if the function were to be called many times.

8: The relatively slow speed of the function which contains the unevaluated integral indicates that

it would be a poor choice when numerical efficiency is an issue. Therefore, if we were to use

ContourPlot, or some other function that would need to compute the result at many different points,

then the integration would be done at each point, instead of having its closed form evaluated. Thus,

the function with the embedded closed form is preferable.
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Lecture 16 Mathematica R© Example 7

Visualizing the Hamaker Potential of a Finite Cylinder: Contours of Constant Potential
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

We use the function that we have defined above as the argument to ContourPlot. Because the function is singular at the cylinder surface,
we choose to plot the logarithm of the potential instead. Because the potential is negative outside of the cylinder, we must use an abso-
lute value before taking the log. To remind ourselves that the potential is negative outside the cylinder, we multiply the log by minus-one.

1LogAbsCyl@r_, h_, AR_D :=

Log@Abs@LondonCylinderPotential@r, h, ARDDD

2
Plot@LogAbsCyl@0.0, h, 4D, 8h, 0, 2.5<,
Exclusions Ø 82.0<, PlotRange Ø 80, 18<,
PlotStyle Ø 8Thick, Darker@BlueD<,
BaseStyle Ø 8Medium<D

3
Plot@LogAbsCyl@x, 0, 1D,
8x, 0.0, 1.5<, Exclusions Ø 81.0<,
PlotRange Ø 80, 20<, PlotStyle Ø 8Thick, Red<,
BaseStyle Ø 8Medium<, ImageSize Ø LargeD

4

conplotouter =

ContourPlot@-LogAbsCyl@dist, h, 4D,
8dist, 0, 1.5<, 8h, 0, 2.5<,
RegionFunction Ø Function@8dist, h<,
dist > 1.01 »» h > 2.01D,

PlotRange Ø 8-15, 1<, Contours Ø 15,
ColorFunction Ø "AvocadoColors",
AspectRatio Ø Automatic,
ImageSize Ø Medium, Exclusions Ø

88dist ã 1.0, Abs@dist - 1.0D < 0.001<,
8h ã 2.0, Abs@h - 2D < 0.001<<D

5

conplotinner =

ContourPlot@LogAbsCyl@dist, h, 4D D,
8dist, 0, 1.5<, 8h, 0, 2.5<, RegionFunction Ø

Function@8dist, h<, dist < 0.99 && h < 1.99D,
PlotRange Ø 80, 15<, Contours Ø 16,
ColorFunction Ø "LakeColors",
AspectRatio Ø Automatic, ImageSize Ø Medium,
BaseStyle -> 8Medium<, AspectRatio Ø Automatic

6Show@conplotinner, conplotouterD 

1: We define a short-hand function to wrap around the potential function so that the log(|P |) is com-
puted.

2–3: To get an idea of what the function looks like, we plot the potential first along the cylinder axis,
and then for a distance within the mid-plane.

4: We break the contour-plots into an inner and an outer graphic. Here we use ContourPlot to plot
(minus) the logarithm of the potential outside the cylinder. RegionFunction is used to to limit
the region over which the plot is computed and displayed. Furthermore, the numerical integration is
ill-behaved along lines that continue from the cylinder’s corner; we use Exclusions to avoid these
regions. We use a green tone, AvocadoColors, to indicate the negative values.

5: Here, we produce the contour-plot for the region inside the cylinder. Again, we use the
RegionFunction-option of ContourPlot. We use blue tones, LakeColors, to indicate the posi-
tive potential values.

6: We combine the inner and outer regions into a single plot by using Show.
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Lecture 16 Mathematica R© Example 8

Visualizing the Hamaker Potential of a Finite Cylinder: Three-Dimensional Plots
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

We produce and equivalent visualization with Plot3D. From the form of these plots, it is clear that a non-polar molecule would be
attracted to the cylinder, with a force that becomes unbounded in the vicinity of the cylinder. The barrier to cross into the cylinder is
infinite at the cylinder surface. However, within a cylinder there is a force that pushes a foreign particle to the center of the cylinder.
The Hamaker force would tend to push pores towards the middle of a dielectric cylinder.

1

plotoutside3D =

Plot3D@-LogAbsCyl@dist, h, 4D, 8dist, 0, 1.5<,
8h, 0, 2.5<, RegionFunction Ø Function@

8dist, h<, dist > 1.01 »» h > 2.01D,
PlotRange Ø 8-15, 1<, MeshFunctions -> 8Ò3 &<,
ColorFunction Ø "AvocadoColors",
AspectRatio Ø Automatic,
ImageSize Ø Large, BaseStyle -> 8Medium<,
AspectRatio Ø AutomaticD

2

plotinside3D =

Plot3D@LogAbsCyl@dist, h, 4D, 8dist, 0, 1.5<,
8h, 0, 2.5<, RegionFunction Ø Function@

8dist, h<, dist < 0.99 && h < 1.99D,
PlotRange Ø 80, 15<, MeshFunctions -> 8Ò3 &<,
ColorFunction Ø "LakeColors",
AspectRatio Ø Automatic,
ImageSize Ø Large, BaseStyle -> 8Medium<,
AspectRatio Ø AutomaticD

3Show@plotinside3D,
plotoutside3D, PlotRange Ø 8-15, 15<D

4

1–2: Plot3D is used as in the previous example with the RegionFunction option to separate the inner-
from the outer-evaluation. The MeshFunctions option is used to produce shading that is consistent
with the contour plots in the previous example.

3: We use Show with an extended PlotRange to produce the combined three dimensional surface

representing the potential as a function of distance from the axis cylinder and height above its

mid-plane.
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Stokes’ Theorem

The final generalization of the fundamental theorem of calculus is the relation between a vector function integrated over an
oriented surface and another vector function integrated over the closed curve that bounds the surface.

A simplified version of Stokes’s theorem has already been discussed—Green’s theorem in the plane can be written in full
vector form: ∫ ∫

R

(
∂F2

∂x
− ∂F1

∂y

)
dxdy =

∫
R
∇× ~F · d ~A

=
∮

∂R
(F1dx + F2dy) =

∮
∂R

~F · d~r

ds
ds

(16-6)

as long as the region R lies entirely in the z = constant plane.

In fact, Stokes’s theorem is the same as the full vector form in Eq. 16-6 with R generalized to an oriented surface embedded
in three-dimensional space: ∫

R
∇× ~F · d ~A =

∮
∂R

~F · d~r

ds
ds (16-7)

Plausibility for the theorem can be obtained from Figures 16-14 and 16-15. The curl of the vector field summed over a surface
“spills out” from the surface by an amount equal to the vector field itself integrated over the boundary of the surface. In
other words, if a vector field can be specified everywhere for a fixed surface, then its integral should only depend on some
vector function integrated over the boundary of the surface.

Maxwell’s equations

The divergence theorem and Stokes’s theorem are generalizations of integration that invoke the divergence and curl operations
on vectors. A familiar vector field is the electromagnetic field and Maxwell’s equations depend on these vector derivatives as

http://pruffle.mit.edu/3.016-2006/
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well:

∇ · ~B = 0 ∇× ~E =
∂ ~B

∂t

∇× ~H =
∂ ~D

∂t
+~j ∇ · ~D = ρ

(16-8)

in MKS units and the total electric displacement ~D is related to the total polarization ~P and the electric field ~E through:

~D = ~P + εo
~E (16-9)

where εo is the dielectric permittivity of vacuum. The total magnetic induction ~B is related to the induced magnetic field ~H
and the material magnetization through

~B = µo( ~H + ~M) (16-10)

where µo is the magnetic permeability of vacuum.

Ampere’s Law

Ampere’s law that relates the magnetic field lines that surround a static current is a macroscopic version of the (static)
Maxwell equation ∇× ~H = ~j:

Gauss’ Law

Gauss’ law relates the electric field lines that exit a closed surface to the total charge contained within the volume bounded
by the surface. Gauss’ law is a macroscopic version of the Maxwell equation ∇ · ~D = ρ:

http://pruffle.mit.edu/3.016-2006/
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PVecLondon, 172
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TopContribution, 175
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converting, 177
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flux
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FullSimplify, 172
function definitions in Mathematica
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functions from expressions, 177
fundamental theorem of calculus

generalizations to higher dimensions, 167
relation to divergence and Stokes’ theorem, 167
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visualization, 167
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Mathematica function
:=, 178
=, 178
Assumptions, 172
AvocadoColors, 179
ContourPlot, 178, 179
Div, 172
Evaluate, 174, 177, 178
Exclusions, 179
FullSimplify, 172
LakeColors, 179
MeshFunctions, 180
NIntegrate, 174
Plot3D, 180
PlotRange, 180
RegionFunction, 179, 180
Show, 179, 180

Mathematica package
VectorAnalysis, 172

Maxwell’s equations, 181
MeshFunctions, 180

NIntegrate, 174

Plot3D, 180
PlotRange, 180
pop-up dialogue

example of use, 174
PVecLondon, 172

RegionFunction, 179, 180

ScaleRules, 172

scaling
example of method, 172

Show, 179, 180
sources and sinks

accumulation and divergence theorem, 169
Stokes’ theorem, 181

visualization, 168

TopContribution, 175

VectorAnalysis, 172
volume of captured bubble in a fixed container, 168
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