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Oct. 27 2006

Lecture 15: Surface Integrals and Some Related Theorems

Reading:
Kreyszig Sections: 10.4, 10.5, 10.6, 10.7 (pages439–444, 445–448, 449–458, 459–462)

Green’s Theorem for Area in Plane Relating to its Bounding Curve

Reappraise the simplest integration operation, g(x) =
∫

f(x)dx. Temporarily ignore all the tedious
mechanical rules of finding and integral and concentrate on what integration does.

Integration replaces a fairly complex process—adding up all the contributions of a function f(x)—
with a clever new function g(x) that only needs end-points to return the result of a complicated
summation.

It is perhaps initially astonishing that this complex operation on the interior of the integration
domain can be incorporated merely by the domain’s endpoints. However, careful reflection provides
a counterpoint to this marvel. How could it be otherwise? The function f(x) is specified and there
are no surprises lurking along the x-axis that will trip up dx as it marches merrily along between the
endpoints. All the facts are laid out and they willingly submit to the process their preordination by
g(x) by virtue of the endpoints.8

The idea naturally translates to higher dimensional integrals and these are the basis for Green’s
theorem in the plane, Stoke’s theorem, and Gauss (divergence) theorem. Here is the idea:

x

y
z

Figure 15-11: An irregular region on a plane surrounded by a closed curve. Once the closed
curve (the edge of region) is specified, the area inside it is already determined. This is the
simplest case as the area is the integral of the function f = 1 over dxdy. If some other
function, f(x, y), were specified on the plane, then its integral is also determined by summing
the contributions along the boundary. This is a generalization g(x) =

∫
f(x)dx and the basis

behind Green’s theorem in the plane.

8I do hope you are amused by the evangelistic tone. I am a bit punchy from working non-stop on these lectures and
wondering if anyone is really reading these notes. Sigh.
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The analog of the “Fundamental Theorem of Differential and Integral Calculus”9 for a region R
bounded in a plane with normal k̂ that is bounded by a curve ∂R is:∫ ∫

R
(∇× ~F ) · k̂dxdy =

∮
∂R

~F · d~r (15-1)

The following figure motivates Green’s theorem in the plane:
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Figure 15-12: Illustration of how a vector valued function in a planar domain ”spills out” of
domain by evaluating the curl everywhere in the domain. Within the domain, the rotational
flow (∇× F ) from one cell moves into its neighbors; however, at the edges the local rotation
is a net loss or gain. The local net loss or gain is ~F · (dx, dy).

The generalization of this idea to a surface ∂B bounding a domain B results in Stokes’ theorem,
which will be discussed later.

In the following example, Green’s theorem in the plane is used to simplify the integration to find
the potential above a triangular path that was evaluated in a previous example. The result will be
a considerable increase of efficiency of the numerical integration because the two-dimensional area
integral over the interior of a triangle is reduced to a path integral over its sides.

9This is the theorem that implies the integral of a derivative of a function is the function itself (up to a constant).
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The objective is to turn the integral for the potential

E(x, y, z) =
∫∫

R

dξdη√
(x− ξ)2 + (y − η)2 + z2

(15-2)

into a path integral using Green’s theorem in the x–y plane:∫ ∫
R

(
∂F2

∂x
− ∂F1

∂y

)
dxdy =

∫
∂R

(F1dx + F2dy) (15-3)

To find the vector function ~F = (F1, F2) which matches the integral in question, set F2 = 0 and
integrate to find F1 via ∫

dη√
(x− ξ)2 + (y − η)2 + z2

(15-4)
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Lecture 15 Mathematica R© Example 1
Converting an area-integral over a variable domain into a path-integral over its boundary

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2007.

We reproduce the example from Lecture 14 where the potential was calculated in the vicinity of a triangular
patch, but with much improved accuracy and speed. The previous example’s two dimensional numerical inte-
gration which requires O(N2) calculations into a path integration around the boundary which requires O(N)
evaluations for the same accuracy. The path of integration must be determined (i.e., (x(t), y(t))) and then the
integration is obtained via (dx, dy) = (x′dt, y′dt).

  Suppose  there  is  a  uniformly  charged  surface   (sªcharge/area=1)
occupying an equilaterial triangle in the z=0 plane:

    

1

F1@x_, y_ , z_D =

-IntegrateB 1

Hx - xL2 + Hy - hL2 + z2
, hF

The third (horizontal) boundary of the triangle patch looks like the easiest,
let's see if an integral can be found over that patch:

2
Bottomside =

F1@x, y, zD ê. :x Ø t -
1

2
, h Ø 0> êê Simplify

3
NEside =

F1@x, y, zD ê. :x Ø
1 - t

2
, h Ø

3 t

2
> êê Simplify

4
NWside = F1@x, y, zD ê.

:x Ø
-t

2
, h Ø

3 H1 - tL
2

> êê Simplify

5
integrand =

SimplifyB -HNEside + NWsideL
2

+ BottomsideF

1: We use Green’s theorem in the plane to turn our original integral∫∫
triangle
region

(
∂F2

∂η
− ∂F1

∂ξ

)
dξdη = φ(x, y, z)

=
∫∫

dηdξ

r(x− ξ, y − η, z)
=
∮

triangle
perimeter

~F · d~s

A closed form for F1 (as indicated in Equation 15-4) is obtained
with Integrate.

2: The bottom part of the triangle can be written as the curve:
(ζ(t), η(t)) = (t − 1

2 , 0) for 0 < t < 1; the integrand over that
side is obtained by suitable replacement.

3–4: The remaining two legs of the triangle can be written similarly as:
((1− t)/2,

√
3t/2) and (−t/2,

√
3(1− t)/2).

5: This is the integrand for the entire triangle to be integrated over
0 < t < 1. Note, as t goes from 0 to 1, each leg of the triangle is
traversed; this integrand sums all three contributions.

http://pruffle.mit.edu/3.016-2007/Notebooks/L15/Lecture-15.nb
http://pruffle.mit.edu/3.016-2007/pdf/L15/Lecture-15-1-COL.pdf
http://pruffle.mit.edu/3.016-2007/pdf/L15/Lecture-15-1-BW.pdf
http://pruffle.mit.edu/3.016-2007/html/Lecture-15/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2007
http://pruffle.mit.edu/3.016-2007/html/Lecture-15/HTMLLinks/index_1.html
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Lecture 15 Mathematica R© Example 2
Faster and More Accurate Numerical Integration by Using Green’s Theorem.

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2007.

Continuing the example above, we are now able to find the potential over a triangular patch with uniform charge
density, with a one-dimensional numerical integration, instead of the two-dimensional numerical integration in
the last lecture.

Doing the same integral  as in the previous lecture numerically, but this
time over the boundary of the triangle instead of the triangle area.

1Pot@X_, Y_, Z_D := NIntegrate@Evaluate@
integrand ê. 8x Ø X, y Ø Y, z Ø Z<D, 8t, 0, 1<D

We  will  create  contourplots  (level  sets  of  constant  potential)  at  as  a
function of different heights. We check the timing of the computation to
compare to method in the last lecture.

2

ncplot@h_D :=
ncplot@hD = ContourPlot@Pot@a, b, hD,

8a, -1, 1<, 8b, -.5, 1.5<, Contours Ø
Table@v, 8v, .25, 2, .25<D, ColorFunctionØ
ColorData@"TemperatureMap"D,
ColorFunctionScaling-> False,
PlotPoints Ø 11 , ImageSize Ø 896, 72<D

Timing@ncplot@.05DD

3

Row@8TextCell@
"Computing ContourPlots a different
h: Progress: ", "Text"D,

ProgressIndicator@Dynamic@hD, 80, .5<D<D
ncplots = Table@ncplot@hD,

8h, .025, .5, .025<D;

4ListAnimate@ncplotsD

1: There is no free lunch—the closed form of the integral is either
unknown or takes too long to compute. However, NIntegrate is
much more efficient because the problem has been reduced to a sin-
gle integral instead of the double integral in the previous example.

2: A ContourPlot showing the level sets of the scalar potential field
at a particular height h is obtained by a single call to the function
ncplot . Timing shows that a speed-up factor of two is obtained
for a single plot.

3: Here, we calculate a sequence of contour plots and store them for
subsequent animation. Because this calculation takes a while to
finish, we add a ProgressIndicator.

4: This is an animation for the potential in a plane as we increase the
height of the plane above the triangular patch.

Representations of Surfaces

Integration over the plane z = 0 in the form of
∫

f(x, y)dxdy introduces surface integration—over a
planar surface—as a straightforward extension to integration along a line. Just as integration over a
line was generalized to integration over a curve by introducing two or three variables that depend on
a single variable (e.g., (x(t), y(t), z(t))), a surface integral can be conceived as introducing three (or
more) variables that depend on two parameters (i.e., (x(u, v), y(u, v), z(u, v))).

However, there are different ways to formulate representations of surfaces:
Surfaces and interfaces play fundamental roles in materials science and engineering. Unfortunately,

the mathematics of surfaces and interfaces frequently presents a hurdle to materials scientists and

http://pruffle.mit.edu/3.016-2007/Notebooks/L15/Lecture-15.nb
http://pruffle.mit.edu/3.016-2007/pdf/L15/Lecture-15-2-COL.pdf
http://pruffle.mit.edu/3.016-2007/pdf/L15/Lecture-15-2-BW.pdf
http://pruffle.mit.edu/3.016-2007/html/Lecture-15/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2007
http://pruffle.mit.edu/3.016-2007/html/Lecture-15/HTMLLinks/index_2.html
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engineering. The concepts in surface analysis can be mastered with a little effort, but there is no
escaping the fact that the algebra is tedious and the resulting equations are onerous. Symbolic algebra
and numerical analysis of surface alleviates much of the burden.

Most of the practical concepts derive from a second-order Taylor expansion of a surface near a point.
The first-order terms define a tangent plane; the tangent plane determines the surface normal. The
second-order terms in the Taylor expansion form a matrix and a quadratic form that can be used to
formulate an expression for curvature. The eigenvalues of the second-order matrix are of fundamental
importance.

The Taylor expansion about a particular point on the surface takes a particularly simple form if
the origin of the coordinate system is located at the point and the z-axis is taken along the surface
normal as illustrated in the following figure.

xegn

yegn

z
n
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rv

Figure 15-13: Parabolic approximation to a surface and local eigenframe. The surface
on the left is a second-order approximation of a surface at the point where the coordinate axes
are drawn. The surface has a local normal at that point which is related to the cross product
of the two tangents of the coordinate curves that cross at the that point. The three directions
define a coordinate system. The coordinate system can be translated so that the origin lies at
the point where the surface is expanded and rotated so that the normal n̂ coincides with the
z-axis as in the right hand curve.

In this coordinate system, the Taylor expansion of z = f(x, y) must be of the form

∆z = 0dx + 0dy +
1
2
(dx, dy)

(
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂y

∂2f
∂y2

)(
dx
dy

)
If this coordinate system is rotated about the z-axis into its eigenframe where the off-diagonal com-
ponents vanish, then the two eigenvalues represent the maximum and minimum curvatures. The sum
of the eigenvalues is invariant to transformations and the sum is known as the mean curvature of the
surface. The product of the eigenvalues is also invariant—this quantity is known as the Gaussian
curvature.

The method in the figure suggests a method to calculate the normals and curvatures for a surface.
Those results are tabulated below.
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Level Set Surfaces: Tangent Plane, Surface Normal, and Curvature

F (x, y, z) = const

Tangent Plane (~x = (x, y, z), ~ξ = (ξ, η, ζ))

∇F · (~ξ − ~x) or
∂F

∂x
(ξ − x) +

∂F

∂y
(η − y) +

∂F

∂z
(ζ − z)

Normal

ξ − x
∂F
∂x

=
η − y

∂F
∂y

=
ζ − z

∂F
∂z

Mean Curvature

∇ ·
(
∇F
‖∇F‖

)
or2664

(
∂2F
∂y2 + ∂2F

∂z2

)
(∂F

∂x )2 +
(

∂2F
∂z2 + ∂2F

∂x2

)
(∂F

∂y )2 +
(

∂2F
∂x2 + ∂2F

∂y2

)
(∂F

∂z )2

−2
(

∂F
∂x

∂F
∂y

∂2F
∂x∂y + ∂F

∂y
∂F
∂z

∂2F
∂y∂z + ∂F

∂z
∂F
∂x

∂2F
∂z∂x

) 3775
“

∂F
∂x

2
+ ∂F

∂y

2
+ ∂F

∂z

2
”3/2

Parametric Surfaces: Tangent Plane, Surface Normal, and Curvature

~x = (p(u, v), q(u, v), s(u, v)) or x = p(u, v)y = q(u, v)z = s(u, v)

Tangent Plane (~x = (x, y, z), ~ξ = (ξ, η, ζ))

(~ξ − ~x) · (d~x

du
× d~x

dv
) det

 ξ − x η − y ζ − z
∂p
∂u

∂q
∂u

∂s
∂u

∂p
∂v

∂q
∂v

∂s
∂v

 = 0

Normal

ξ − x
∂(q,s)
∂(u,v)

=
η − y
∂(s,p)
∂(u,v)

=
ζ − z
∂(p,q)
∂(u,v)

Mean Curvature

(
d~x
du ·

d~x
du

)(
d~x
du ×

d~x
dv ·

d2~x
dv2

)
− 2

(
d~x
du ·

d~x
dv

)(
d~x
du ×

d~x
dv ·

d2~x
dudv

)
+
(

d~x
dv ·

d~x
dv

)(
d~x
du ×

d~x
dv ·

d2~x
du2

)
(

d~x
du ×

d~x
dv ·

d~x
du ×

d~x
dv

)3/2
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Graph Surfaces: Tangent Plane, Surface Normal, and Curvature

z = f(x, y)

Tangent Plane (~x = (x, y, z), ~ξ = (ξ, η, ζ))

∂f

∂x
(ξ − x) +

∂f

∂y
(η − y) = (ζ − z)

Normal

ξ − x
∂f
∂x

=
η − y

∂f
∂y

=
ζ − z

−1

Mean Curvature

(1 + ∂f
∂x

2
)∂2f

∂y2 − 2∂f
∂x

∂f
∂y

∂2f
∂x∂y + (1 + ∂f

∂y

2
)∂2f

∂x2√
1 + ∂f

∂x

2
+ ∂f

∂y

2
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Lecture 15 Mathematica R© Example 3
Representations of Surfaces: Graphs z = f(x, y) (part 1)

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2007.

Visualization examples of surfaces represented by the graph z = f(x, y); Examples of the use of MeshFunctions

and ColorFunction to visualize various surface properties are given.

1
GraphFunction@x_, y_D :=

Hx - yL Hx + yL ë I1 + Hx + yL2M
assump = 8x œ Reals, y œ Reals<

2plotdefault = Plot3D@GraphFunction@x, yD,
8x, -3, 3<, 8y, -3, 3<, PlotLabel Ø "Default"D

3

plotlevels =
Plot3D@GraphFunction@x, yD, 8x, -3, 3<,
8y, -3, 3<, MeshFunctionsØ H Ò3 &L,
ColorFunctionØ "Rainbow",
PlotLabel Ø "Constant Heights"D

4angle@x_D := HHPiê2 + ArcTan@xDLêPiL
angle@x_, y_D := HHPiê2 + ArcTan@x, yDLêPiL

5

plotcircles = Plot3D@
GraphFunction@x, yD, 8x, -3, 3<, 8y, -3, 3<,
MeshFunctionsØ HSqrt@Ò1^2 + Ò2^2D &L,
ColorFunction -> HHue@angle@Ò1, Ò2D*0.5D &L,
ColorFunctionScalingØ False,
PlotLabel Ø "Cylindrical Coordinates"D

6

CurvatureOfGraph@f_, x_, y_D :=
FullSimplify@Module@

8dfdx = D@f@x, yD, xD, dfdy = D@f@x, yD, yD,
d2fdx2 = D@f@x, yD, 8x, 2<D,
d2fdy2 = D@f@x, yD, 8y, 2<D,
d2fdxdy = D@f@x, yD, x, yD< ,
Return@HH1 + dfdx^2L d2fdx2 - 2 dfdx

dfdy d2fdxdy + H1 + dfdy^2L d2fdy2Lê
Sqrt@1 + dfdx^2 + dfdy^2DDD,

Assumptions Ø assumpD

7CurvFunc = Function@8x, y<, Evaluate@
CurvatureOfGraph@GraphFunction, x, yDDD

1: We will use GraphFunction as an example to show different ways
to visualize a graph over an area.

2: Plot3D is used to plot GraphFunction with default settings.
3: Here is an example of using MeshFunctions to draw lines at con-

stant altitude (i.e, constant values of f(x, y))
4: This function, angle , which maps angles to the range (0, 1) will be

useful for visualization examples below (e.g., 5 and the following
sections 2).

5: This will help visualize a cylindrical- in addition to the Cartesian-
coordinate system. The MeshFunctions option is used to plot con-
centric circles; ColorFunction illustrates the angular coordinate,
θ, with Hue.

6: Our goal is to visualize curvature on top of the graph. This is a
somewhat advanced example. Here we construct a function (Cur-
vatureOfGraph ) that computes the curvature H(x, y) of an f(x, y),
and uses FullSimplify with assumptions that the coordinate are
real numbers.

7: Here we use Function to create a symbol representing a func-
tion of two variables for the particular instance of the curvature of
f =GraphFunction . Evaluate is used in the definition to ensure
that the curvature computation is performed only once.

http://pruffle.mit.edu/3.016-2007/Notebooks/L15/Lecture-15.nb
http://pruffle.mit.edu/3.016-2007/pdf/L15/Lecture-15-3-COL.pdf
http://pruffle.mit.edu/3.016-2007/pdf/L15/Lecture-15-3-BW.pdf
http://pruffle.mit.edu/3.016-2007/html/Lecture-15/HTMLLinks/index_3.html
http://pruffle.mit.edu/3.016-2007
http://pruffle.mit.edu/3.016-2007/html/Lecture-15/HTMLLinks/index_3.html
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Lecture 15 Mathematica R© Example 4
Representations of Surfaces: Graphs z = f(x, y) (part 2)

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2007.

We continue the example by visualizing the curvature and the inclination of the graph.

1

dfdx = Function@8x, y<, Evaluate@
FullSimplify@D@GraphFunction@x, yD, xD,
Assumptions Ø assumpDDD

dfdy = Function@8x, y<, Evaluate@
FullSimplify@D@GraphFunction@x, yD, yD,
Assumptions Ø assumpDDD

This  is  the surface with lines of constant curvature superimposed, and
with colors associated with the local normal. 

2

plotcurvature = Plot3D@
GraphFunction@x, yD, 8x, -3, 3<, 8y, 3, -3<,
MeshFunctionsØ HCurvFunc@Ò1, Ò2D &L,
MeshStyle Ø Thick, PlotLabel Ø
"CurvaturesHlevel setsL and NormalsHcolor
variationL", ColorFunctionØ

HGlow@RGBColor@angle@dfdx@Ò1, Ò2DD,
angle@dfdy@Ò1, Ò2DD, 0.75DD &L,

ColorFunctionScalingØ False,
Lighting Ø NoneD

Visualizing all the examples together.

3
GraphicsGrid@88plotdefault, plotlevels<,

8plotcircles, plotcurvature<<,
ImageSize Ø 2 872, 72<D

1: Two more symbols for functions of two arguments are created. Each
represents a the slope of the tangent plane in the directions of the
coordinate axes.

2: Plot3D is used to illustrate the local tangent-plane with
ColorFunction which points to a red-scale for the surface slope
in the x-direction and a blue-scale for the y-slope. We use Glow
with Lighting set to none.

3: Finally, we use GraphicsGrid to illustrate the four graphic-
examples together.

http://pruffle.mit.edu/3.016-2007/Notebooks/L15/Lecture-15.nb
http://pruffle.mit.edu/3.016-2007/pdf/L15/Lecture-15-4-COL.pdf
http://pruffle.mit.edu/3.016-2007/pdf/L15/Lecture-15-4-BW.pdf
http://pruffle.mit.edu/3.016-2007/html/Lecture-15/HTMLLinks/index_4.html
http://pruffle.mit.edu/3.016-2007
http://pruffle.mit.edu/3.016-2007/html/Lecture-15/HTMLLinks/index_4.html
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Lecture 15 Mathematica R© Example 5
A Frivolous Example for Graphs z = f(x, y): Floating Pixels from Images in 3D

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2007.

We demonstrate how to read a grey-scale image into Mathematica R© , and then use the pixel brightness
values to displace the images according to z = brightness(x, y).

1

MinMax@alist_ListD :=
Module@8flatlist = Flatten@alistD<,
Return@8Min@flatlistD, Max@flatlistD<DD

mug = Import@
"http:êêpruffle.mit.eduê~ccarterêch_face

_framesêCarter_2000_verysmall.png"D;
ProgressIndicator@Dynamic@iD, 81, 64<D
vp@i_D := 8.1 Sin@Hi - 1L Piê31D,

Sin@Hi - 1L 2 Piê31D, 2 Cos@2 Hi - 1L Piê63D<;
minmax = MinMax@mug@@1, 1DDD;
Table@mugshot@iD =

ListPlot3D@mug@@1, 1DD, MeshStyle -> None,
Mesh Ø None, InterpolationOrderØ 0,
ColorFunctionØ "GreenBrownTerrain",
Axes Ø False, ViewPoint Ø vp@iD,
PlotRange Ø minmax,
ImageSize Ø Full,
SphericalRegionØ TrueD;, 8i, 1, 64<D;

Manipulate@mugshot@frameD, 8frame, 1, 64, 1<D

frame

1: We first construct a function that will pick out the largest and
smallest numbers in a list, and this will allow us to set PlotRange
between the darkest and brightest pixels. (This function should
probably check to ensure that the list contains only numeric entries,
so that Max and Min return sensible results.) We will create a 3D
rendering of pixels and “fly” through it. The function vp will
provide the “orbit” for our flight through the pixels.
Table is used to create Graphics3D objects from different view-
points for subsequent animation. Each graphics object is created
with ListPlot3D with an array of pixel values for the first ar-
gument (mug[[1,1]]). Using InterpolationOrder set to zero
implies that the plot’s discrete values will not be continuously con-
nected (i.e., the pixels are not “warped” to ensure continuity).
I used a modified version of this example to add an animation to
my homepage

http://pruffle.mit.edu/3.016-2007/Notebooks/L15/Lecture-15.nb
http://pruffle.mit.edu/3.016-2007/pdf/L15/Lecture-15-5-COL.pdf
http://pruffle.mit.edu/3.016-2007/pdf/L15/Lecture-15-5-BW.pdf
http://pruffle.mit.edu/3.016-2007/html/Lecture-15/HTMLLinks/index_5.html
http://pruffle.mit.edu/3.016-2007
http://pruffle.mit.edu/3.016-2007/html/Lecture-15/HTMLLinks/index_5.html
http://pruffle.mit.edu/~ccarter
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Lecture 15 Mathematica R© Example 6
A Frivolous Example for Graphs z = f(x, y): Creating and Animating Surfaces from Image Sequences

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2007.

We read in a sequence of images and use their pixel values to create an interpolation function for a surface
z = brightness(x, y). Plot3D calls the interpolation function produces a 3D animation from a 2D one.

1

Table@chface@readD = Import@
"http:êêpruffle.mit.eduê~ccarterêch_face

_framesêch_face." <>
ToString@100 + read - 1D <> ".png"D;

facedata@readD = ListInterpolation@
chface@readD@@1, 1DD, 880, 1<, 80, 1<<D;

If@read ã 1, minmax =
MinMax@chface@readD@@1, 1DDD;, minmax =
MinMax@8minmax, chface@readD@@1, 1DD<DD;,

8read, 1, 28, 1<D;
pface@i_D := Plot3D@facedata@iD@x, yD,

8y, 0, 1<, 8x, 0, 1<, PlotRange Ø minmax,
ColorFunctionØ "GreenBrownTerrain",
Mesh Ø False, Axes Ø False,
ViewPoint Ø 8-0.25, -2, 5<, ImageSize Ø AllD

ListAnimate@Table@pface@gcompD,
8gcomp, 1, 28, 1<D, DefaultDurationØ 10D

1: Table is used to iteratively read images that were created from
a typical web-animation. (I am working on a way to do this di-
rectly from a single image file with multiple frames (with color),
but haven’t finished yet. ListInterpolation is used to create a
continuous function of x and y in the domain 0 < |x|&|y| < 1. The
height of the function corresponds to the brightness of the pixel.
The function pface [i] produces a Graphics3D object for each
frame in the animation. ListAnimate produces the animation
from the image-functions.
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Lecture 15 Mathematica R© Example 7
Representations of Surfaces: Parametric Surfaces ~x(u, v)

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2007.

Visualization techniques for surfaces of the form (x(u, v), y(u, v), z(u, v)) are presented.

1SurfaceParametric@u_, v_D := 8Cos@uD v,
u Cos@u + vD, Cos@uDêH.1 + Cos@uD^2L<

2
ParametricPlot3D@
Evaluate@SurfaceParametric@u, vDD,
8u, -2, 2<, 8v, -2, 2<D
Using Manipulate, we can vary the boundary domain, and provide a more
intuitive way to understand this complicated surface.

3

evolution = Table@ParametricPlot3D@
Evaluate@SurfaceParametric@u, vDD,
8u, -ep, ep<, 8v, -ep, ep<, PlotRange Ø
88-4, 4<, 8-4, 4<, 8-4, 4<<, PlotPoints Ø
81 + Round@epê.125D, 1 + Round@epê.125D<,
ImageSize Ø FullD, 8ep, .125, 4.25, .125<D;

ListAnimate@evolution, ImageSize Ø FullD

1–2: Using ParametricPlot3D to visualize a surface of the form
(x(u, v), y(u, v), z(u, v)) given by SurfaceParametric . The lines
of constant u and v generate the “square mesh” of the approxi-
mation to the surface. Each line on the surface is of the form:
~r1(u) = (x(u, v = const), y(u, v = const), z(u, v = const)) and
~r2(v) = (x(u = const, v), y(u = const, v), z(u = const, v)). The
set of all crossing lines ~r1(u) and ~r2(v) is the surface. Each little
“square” surface patch provides a convenient way to define the lo-
cal surface normal—because both the vectors d~r1/du and d~r2/dv
are tangent to the surface, their cross-product is either an inward-
pointing normal or outward-pointing normal.

3: The nature of parametric surfaces are typically much more com-
plicated than for graphs. Because the surface often folds over and
through itself, it is difficult to comprehend its shape. For this case,
it is useful to visualize the evolution of the surface as the domain of
(u, v) increases. Here we use Table to iteratively increase the size
of the domain, and then use ListAnimate to visualize its evolution.
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Lecture 15 Mathematica R© Example 8
Representations of Surfaces: Level Sets constant = f(x, y, z)

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2007.

Visualization examples of surfaces represented their level sets constant = F (x, y, z) are presented. This type of
surface representation is particularly convenient when surfaces are disconnected, or merge during an evolution.
Level sets are used extensively in phase field models of microstructural evolution.

1ConstFunction = x2 - 4 x y + y2 + z2

2ContourPlot3D@ConstFunction, 8x, -1, 1<,
8y, -1, 1<, 8z, -1, 1<, Contours Ø 82.5<D
The  following  statements  produce  contour  plots  of  the  same  function,
using two different methods for colorizing the surfaces...

3cpa = ContourPlot3D@ConstFunction, 8x, -3, 3<,
8y, -3, 3<, 8z, -3, 3<, Contours Ø 80, 2, 8<D

4

cpb = ContourPlot3D@ConstFunction,
8x, -3, 3<, 8y, -3, 3<, 8z, -3, 3<,
Contours Ø 80, 2, 8<, ContourStyle Ø 8
Directive@Pink, Opacity@0.8DD,
Directive@Yellow, Opacity@0.8DD,
Directive@Orange, Opacity@0.8DD<D

5
Manipulate@
ContourPlot3D@ConstFunction, 8x, -3, 3<,
8y, -3, 3<, 8z, -3, 3<, Contours -> 8i<,
ImageSize Ø FullD, 8i, -2, 10, .25<D

1: ConstFunction will be used for the following visualization exam-
ples.

1–2: A contour in two-dimensions is a curve; we have seen examples of
such curves with ContourPlot. A contour in three-dimensions is
a surface and we will use ContourPlot3D to visualize the level
set formulation of a surface constant = F (x, y, z) given by Const-
Function . Here, we explicitly specify those x, y, and z for which
x2 − 4xy + y2 + z2 = 2.5.

3: Here is an example of specifying three different level sets by passing
several Contours to ContourPlot3D. It is difficult to distinguish
which surface belongs to a particular level set.

4: The surfaces can be distinguished from one another with by giving
each a different graphics Directive its own color. Setting Opacity
to a value less than one helps eliminate the ‘hidden surface’ problem.

5: The evolution of level sets can be visualized with Manipulate by
varying the value that is passed to Contours. It is apparent why
this surface representation is useful when surfaces undergo topo-
logical changes. It may be helpful to consider these changes as a
higher dimensional effect: consider t = f(x, y, z) as a graph ‘over’
3D region, or a four-dimensional surface. As a lower dimensional ex-
ample (i.e., t = f(x, y)), consider the curves that develop as a torus
(ummmm doughnut) is slice sequentially from one side. Initially
the perimeter is an single closed elongated loop, which eventually
begins to pinch in the middle and then break into isolated curves.

Integration over Surfaces

Integration of a function over a surface is a straightforward generalization of
∫ ∫

f(x, y)dxdy =
∫

f(x, y)dA.
The set of all little rectangles dxdy defines a planar surface. A non-planar surface ~x(u, v) is composed
of a set of little parallelogram patches with sides given by the infinitesimal vectors

~rudu =
∂~x

∂u
du

~rvdu =
∂~x

∂v
dv

(15-5)
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Because the two vectors ~ru and ~rv are not necessarily perpendicular, their cross-product is needed to
determine the magnitude of the area in the parallelogram:

dA = ‖~ru × ~rv‖dudv (15-6)

and the integral of some scalar function, g(u, v) = g(x(u, v), y(u, v)) = g(~x(u, v)), on the surface is∫
g(u, v)dA =

∫ ∫
g(u, v)‖~ru × ~rv‖dudv (15-7)

However, the operation of taking the norm in the definition of the surface patch dA indicates that
some information is getting lost—this is the local normal orientation of the surface. There are two
choices for a normal (inward or outward).

When calculating some quantity that does not have vector nature, only the magnitude of the
function over the area matters (as in Eq. 15-7). However, when calculating a vector quantity, such as
the flow through a surface, or the total force applied to a surface, the surface orientation matters and
it makes sense to consider the surface patch as a vector quantity:

~A(u, v) = ‖ ~A‖n̂(u, v) = An̂(u, v)

d ~A = ~ru × ~rv

(15-8)

where n̂(u, v) is the local surface unit normal at ~x(u, v).
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Lecture 15 Mathematica R© Example 9
Example of an Integral over a Parametric Surface

Download notebooks, pdf(color), pdf(bw), or html from http://pruffle.mit.edu/3.016-2007.

The surface energy of single crystals often depends on the surface orientation. This is especially the case for
materials that have covalent and/or ionic bonds. To find the total surface energy of such a single crystal, one has
to integrate an orientation-dependent surface energy, γ(n̂), over the surface of a body. This example compares
the total energy of such an anisotropic surface energy integrated over a sphere and a cube that enclose the same
volume.

1sphere@u_ , v_ D :=
R 8Cos@vD Cos@uD , Cos@vD Sin@uD , Sin@vD<

2Ru@u_ , v_D = D@sphere@u, vD, uD êê Simplify
Rv@u_ , v_D = D@sphere@u, vD, vD êê Simplify

3

Needs@"VectorAnalysis "̀D
NormalVector@u_ , v_ D =
CrossProduct@Ru@u, vD, Rv@u, vDD êê Simplify
NormalMag = FullSimplify@
Norm@NormalVector@u, vDD, Assumptions Ø
8R ¥ 0, 0 § u § 2 p, -p ê2 < v < p ê2<D

UnitNormal@u_, v_D =
NormalVector@u, vDêNormalMag

4
SurfaceTension@nvec_D :=

1 + gamma111 *nvec@@1DD2 nvec@@2DD2 nvec@@3DD2

5
SphericalPlot3D@
SurfaceTension@UnitNormal@u, vDD ê.
gamma111 Ø 12,

8u, 0, 2 Pi<, 8v, -Piê2, Piê2<D

6
SphereEnergy = Integrate@Integrate@

SurfaceTension@UnitNormal@u, vDD Cos@vD,
8u, 0, 2 p<D, 8v, -p ê2, p ê2<D

7CubeSide = H4 p ê3L^H1ê3L

8
CubeEnergy =

6 I CubeSide2 SurfaceTension@81, 0, 0<DM

9
EqualEnergies =
Solve@CubeEnergy ã SphereEnergy,
gamma111D êê Flatten

10N@gamma111 ê. EqualEnergiesD

1: This is the parametric equation of the sphere in terms of longitude
v ∈ (0, 2π) and latitude u ∈ (−π/2, π/2).

2: Calculate the tangent plane vectors ~ru and ~rv

3: Using CrossProduct from the VectorAnalysis package to calcu-
late a vector that is normal to the surface, ~ru × ~rv, for subsequent
use in the surface integral. Using Norm to find the magnitude of the
local normal, we can produce a function to return the unit normal
vector n̂, UnitNormal , as a function of the surface parameters.

4: This is just an example of a γ(n̂) that depends on direction that
will be used for purposes of illustration.

5: Using SphericalPlot3D, the form of SurfaceTension for the par-
ticular choice of γ111 = 12 is visualized.

6: Using the result from | ~ru× ~rv|, the total surface energy of a spherical
body of radius R = 1 is computed by integrating γn̂ over the entire
surface.

7–8: This would be the energy of a cubical body with the same volume
as the sphere with unit radius. The cube is oriented so that its
faces are normal to 〈100〉.

9–10: This calculation is not very meaningful, but it is the value of the
surface anisotropy factor γ111 such that the cube and sphere have
the same total surface energy. The total-surface-energy minimizing
shape for a fixed volume is calculated using the Wulff theorem.
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