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Oct. 27 2006

Lecture 15: Surface Integrals and Some Related Theorems

Reading:
Kreyszig Sections: 10.4, 10.5, 10.6, 10.7 (pages439–444, 445–448, 449–458, 459–462)

Green’s Theorem for Area in Plane Relating to its Bounding Curve

Reappraise the simplest integration operation, g(x) =
∫

f(x)dx. Temporarily ignore all the tedious mechanical rules of finding
and integral and concentrate on what integration does.

Integration replaces a fairly complex process—adding up all the contributions of a function f(x)—with a clever new function
g(x) that only needs end-points to return the result of a complicated summation.

It is perhaps initially astonishing that this complex operation on the interior of the integration domain can be incorporated
merely by the domain’s endpoints. However, careful reflection provides a counterpoint to this marvel. How could it be
otherwise? The function f(x) is specified and there are no surprises lurking along the x-axis that will trip up dx as it marches
merrily along between the endpoints. All the facts are laid out and they willingly submit to the process their preordination
by g(x) by virtue of the endpoints.8

The idea naturally translates to higher dimensional integrals and these are the basis for Green’s theorem in the plane, Stoke’s
theorem, and Gauss (divergence) theorem. Here is the idea:

8I do hope you are amused by the evangelistic tone. I am a bit punchy from working non-stop on these lectures and wondering if anyone is really
reading these notes. Sigh.
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Figure 15-11: An irregular region on a plane surrounded by a closed curve. Once the closed
curve (the edge of region) is specified, the area inside it is already determined. This is the
simplest case as the area is the integral of the function f = 1 over dxdy. If some other
function, f(x, y), were specified on the plane, then its integral is also determined by summing
the contributions along the boundary. This is a generalization g(x) =

∫
f(x)dx and the basis

behind Green’s theorem in the plane.

The analog of the “Fundamental Theorem of Differential and Integral Calculus”9 for a region R bounded in a plane with
normal k̂ that is bounded by a curve ∂R is: ∫ ∫

R
(∇× ~F ) · k̂dxdy =

∮
∂R

~F · d~r (15-1)

The following figure motivates Green’s theorem in the plane:
9This is the theorem that implies the integral of a derivative of a function is the function itself (up to a constant).
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Figure 15-12: Illustration of how a vector valued function in a planar domain ”spills out” of
domain by evaluating the curl everywhere in the domain. Within the domain, the rotational
flow (∇× F ) from one cell moves into its neighbors; however, at the edges the local rotation
is a net loss or gain. The local net loss or gain is ~F · (dx, dy).

The generalization of this idea to a surface ∂B bounding a domain B results in Stokes’ theorem, which will be discussed later.

In the following example, Green’s theorem in the plane is used to simplify the integration to find the potential above a
triangular path that was evaluated in a previous example. The result will be a considerable increase of efficiency of the
numerical integration because the two-dimensional area integral over the interior of a triangle is reduced to a path integral
over its sides.

The objective is to turn the integral for the potential

E(x, y, z) =
∫∫

R

dξdη√
(x− ξ)2 + (y − η)2 + z2

(15-2)

into a path integral using Green’s theorem in the x–y plane:∫ ∫
R

(
∂F2

∂x
− ∂F1

∂y

)
dxdy =

∫
∂R

(F1dx + F2dy) (15-3)

http://pruffle.mit.edu/3.016-2006/
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To find the vector function ~F = (F1, F2) which matches the integral in question, set F2 = 0 and integrate to find F1 via∫
dη√

(x− ξ)2 + (y − η)2 + z2
(15-4)

http://pruffle.mit.edu/3.016-2006/
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Lecture 15 Mathematica R© Example 1

Converting an area-integral over a variable domain into a path-integral over its boundary
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

We reproduce the example from Lecture 14 where the potential was calculated in the vicinity of a triangular patch, but with much
improved accuracy and speed. The previous example’s two dimensional numerical integration which requires O(N2) calculations into
a path integration around the boundary which requires O(N) evaluations for the same accuracy. The path of integration must be
determined (i.e., (x(t), y(t))) and then the integration is obtained via (dx, dy) = (x′dt, y′dt).

  Suppose there is a uniformly charged surface  (sªcharge/area=1) 
occupying an equilaterial triangle in the z=0 plane:

    

1
F1@x_, y_ , z_D =

-IntegrateB 1

Hx - xL2 + Hy - hL2 + z2
, hF

The third (horizontal) boundary of the triangle patch looks like the easiest, 
let's see if an integral can be found over that patch:

2
Bottomside =

F1@x, y, zD ê. :x Ø t -
1

2
, h Ø 0> êê Simplify

3
NEside = F1@x, y, zD ê.

:x Ø
1 - t

2
, h Ø

3 t

2
> êê Simplify

4
NWside = F1@x, y, zD ê.

:x Ø
-t

2
, h Ø

3 H1 - tL
2

> êê Simplify

5
integrand =

SimplifyB -HNEside + NWsideL
2

+ BottomsideF

1: We use Green’s theorem in the plane to turn our original integralZZ
triangle
region

„
∂F2

∂η
− ∂F1

∂ξ

«
dξdη = φ(x, y, z)

=

ZZ
dηdξ

r(x − ξ, y − η, z)
=

I
triangle

perimeter

~F · d~s

A closed form for F1 (as indicated in Equation 15-4) is obtained with Integrate.

2: The bottom part of the triangle can be written as the curve: (ζ(t), η(t)) = (t − 1
2
, 0) for 0 < t < 1;

the integrand over that side is obtained by suitable replacement.

3–4: The remaining two legs of the triangle can be written similarly as: ((1 − t)/2,
√

3t/2) and
(−t/2,

√
3(1 − t)/2).

5: This is the integrand for the entire triangle to be integrated over 0 < t < 1. Note, as t goes from 0

to 1, each leg of the triangle is traversed; this integrand sums all three contributions.

http://pruffle.mit.edu/3.016-2006/
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Lecture 15 Mathematica R© Example 2

Faster and More Accurate Numerical Integration by Using Green’s Theorem.
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

Continuing the example above, we are now able to find the potential over a triangular patch with uniform charge density, with a
one-dimensional numerical integration, instead of the two-dimensional numerical integration in the last lecture.

Doing the same integral as in the previous lecture numerically, but this 
time over the boundary of the triangle instead of the triangle area.

1Pot@X_, Y_, Z_D := NIntegrate@Evaluate@
integrand ê. 8x Ø X, y Ø Y, z Ø Z<D, 8t, 0, 1<D

We will create contourplots (level sets of constant potential) at as a 
function of different heights. We check the timing of the computation to 
compare to method in the last lecture.

2

ncplot@h_D :=

ncplot@hD = ContourPlot@Pot@a, b, hD,
8a, -1, 1<, 8b, -.5, 1.5<, Contours Ø

Table@v, 8v, .25, 2, .25<D, ColorFunction Ø

ColorData@"TemperatureMap"D,
ColorFunctionScaling -> False,
PlotPoints Ø 11 , ImageSize Ø 896, 72<D

Timing@ncplot@.05DD

3

Row@8TextCell@
"Computing ContourPlots a different
h: Progress: ", "Text"D,

ProgressIndicator@Dynamic@hD, 80, .5<D<D
ncplots = Table@ncplot@hD,

8h, .025, .5, .025<D;
4ListAnimate@ncplotsD

1: There is no free lunch—the closed form of the integral is either unknown or takes too long to
compute. However, NIntegrate is much more efficient because the problem has been reduced to a
single integral instead of the double integral in the previous example.

2: A ContourPlot showing the level sets of the scalar potential field at a particular height h is obtained
by a single call to the function ncplot . Timing shows that a speed-up factor of two is obtained for
a single plot.

3: Here, we calculate a sequence of contour plots and store them for subsequent animation. Because
this calculation takes a while to finish, we add a ProgressIndicator.

4: This is an animation for the potential in a plane as we increase the height of the plane above the

triangular patch.

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2007/Notebooks/L15/Lecture-15.nb
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Representations of Surfaces

Integration over the plane z = 0 in the form of
∫

f(x, y)dxdy introduces surface integration—over a planar surface—as a
straightforward extension to integration along a line. Just as integration over a line was generalized to integration over a
curve by introducing two or three variables that depend on a single variable (e.g., (x(t), y(t), z(t))), a surface integral can be
conceived as introducing three (or more) variables that depend on two parameters (i.e., (x(u, v), y(u, v), z(u, v))).

However, there are different ways to formulate representations of surfaces:

Surfaces and interfaces play fundamental roles in materials science and engineering. Unfortunately, the mathematics of
surfaces and interfaces frequently presents a hurdle to materials scientists and engineering. The concepts in surface analysis
can be mastered with a little effort, but there is no escaping the fact that the algebra is tedious and the resulting equations
are onerous. Symbolic algebra and numerical analysis of surface alleviates much of the burden.

Most of the practical concepts derive from a second-order Taylor expansion of a surface near a point. The first-order terms
define a tangent plane; the tangent plane determines the surface normal. The second-order terms in the Taylor expansion form
a matrix and a quadratic form that can be used to formulate an expression for curvature. The eigenvalues of the second-order
matrix are of fundamental importance.

The Taylor expansion about a particular point on the surface takes a particularly simple form if the origin of the coordinate
system is located at the point and the z-axis is taken along the surface normal as illustrated in the following figure.

http://pruffle.mit.edu/3.016-2006/
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Figure 15-13: Parabolic approximation to a surface and local eigenframe. The surface
on the left is a second-order approximation of a surface at the point where the coordinate axes
are drawn. The surface has a local normal at that point which is related to the cross product
of the two tangents of the coordinate curves that cross at the that point. The three directions
define a coordinate system. The coordinate system can be translated so that the origin lies at
the point where the surface is expanded and rotated so that the normal n̂ coincides with the
z-axis as in the right hand curve.

In this coordinate system, the Taylor expansion of z = f(x, y) must be of the form

∆z = 0dx + 0dy +
1
2
(dx, dy)

(
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂y

∂2f
∂y2

)(
dx
dy

)
If this coordinate system is rotated about the z-axis into its eigenframe where the off-diagonal components vanish, then the
two eigenvalues represent the maximum and minimum curvatures. The sum of the eigenvalues is invariant to transformations
and the sum is known as the mean curvature of the surface. The product of the eigenvalues is also invariant—this quantity
is known as the Gaussian curvature.

http://pruffle.mit.edu/3.016-2006/
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The method in the figure suggests a method to calculate the normals and curvatures for a surface. Those results are tabulated
below.

Level Set Surfaces: Tangent Plane, Surface Normal, and Curvature

F (x, y, z) = const

Tangent Plane (~x = (x, y, z), ~ξ = (ξ, η, ζ))

∇F · (~ξ − ~x) or
∂F

∂x
(ξ − x) +

∂F

∂y
(η − y) +

∂F

∂z
(ζ − z)

Normal

ξ − x
∂F
∂x

=
η − y

∂F
∂y

=
ζ − z

∂F
∂z

Mean Curvature

∇ ·
(
∇F
‖∇F‖

)
or2664

(
∂2F
∂y2 + ∂2F

∂z2

)
(∂F

∂x )2 +
(

∂2F
∂z2 + ∂2F

∂x2

)
(∂F

∂y )2 +
(

∂2F
∂x2 + ∂2F

∂y2

)
(∂F

∂z )2

−2
(

∂F
∂x

∂F
∂y

∂2F
∂x∂y + ∂F

∂y
∂F
∂z

∂2F
∂y∂z + ∂F

∂z
∂F
∂x

∂2F
∂z∂x

) 3775
“

∂F
∂x

2
+ ∂F

∂y

2
+ ∂F

∂z

2
”3/2
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Parametric Surfaces: Tangent Plane, Surface Normal, and Curvature

~x = (p(u, v), q(u, v), s(u, v)) or x = p(u, v)y = q(u, v)z = s(u, v)

Tangent Plane (~x = (x, y, z), ~ξ = (ξ, η, ζ))

(~ξ − ~x) · (d~x

du
× d~x

dv
) det

 ξ − x η − y ζ − z
∂p
∂u

∂q
∂u

∂s
∂u

∂p
∂v

∂q
∂v

∂s
∂v

 = 0

Normal

ξ − x
∂(q,s)
∂(u,v)

=
η − y
∂(s,p)
∂(u,v)

=
ζ − z
∂(p,q)
∂(u,v)

Mean Curvature

(
d~x
du ·

d~x
du

)(
d~x
du ×

d~x
dv ·

d2~x
dv2

)
− 2

(
d~x
du ·

d~x
dv

)(
d~x
du ×

d~x
dv ·

d2~x
dudv

)
+
(

d~x
dv ·

d~x
dv

)(
d~x
du ×

d~x
dv ·

d2~x
du2

)
(

d~x
du ×

d~x
dv ·

d~x
du ×

d~x
dv

)3/2

http://pruffle.mit.edu/3.016-2006/
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Graph Surfaces: Tangent Plane, Surface Normal, and Curvature

z = f(x, y)

Tangent Plane (~x = (x, y, z), ~ξ = (ξ, η, ζ))

∂f

∂x
(ξ − x) +

∂f

∂y
(η − y) = (ζ − z)

Normal

ξ − x
∂f
∂x

=
η − y

∂f
∂y

=
ζ − z

−1

Mean Curvature

(1 + ∂f
∂x

2
)∂2f

∂y2 − 2∂f
∂x

∂f
∂y

∂2f
∂x∂y + (1 + ∂f

∂y

2
)∂2f

∂x2√
1 + ∂f

∂x

2
+ ∂f

∂y

2

http://pruffle.mit.edu/3.016-2006/
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Lecture 15 Mathematica R© Example 3

Representations of Surfaces: Graphs z = f(x, y) (part 1)
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

Visualization examples of surfaces represented by the graph z = f(x, y); Examples of the use of MeshFunctions and ColorFunction

to visualize various surface properties are given.

1
GraphFunction@x_, y_D :=

Hx - yL Hx + yL ë I1 + Hx + yL2M
assump = 8x œ Reals, y œ Reals<

2plotdefault = Plot3D@GraphFunction@x, yD,
8x, -3, 3<, 8y, -3, 3<, PlotLabel Ø "Default"D

3

plotlevels =

Plot3D@GraphFunction@x, yD, 8x, -3, 3<,
8y, -3, 3<, MeshFunctions Ø H Ò3 &L,
ColorFunction Ø "Rainbow",
PlotLabel Ø "Constant Heights"D

4angle@x_D := HHPi ê 2 + ArcTan@xDL ê PiL
angle@x_, y_D := HHPi ê 2 + ArcTan@x, yDL ê PiL

5

plotcircles = Plot3D@
GraphFunction@x, yD, 8x, -3, 3<, 8y, -3, 3<,
MeshFunctions Ø HSqrt@Ò1^2 + Ò2^2D &L,
ColorFunction -> HHue@angle@Ò1, Ò2D * 0.5D &L,
ColorFunctionScaling Ø False,
PlotLabel Ø "Cylindrical Coordinates"D

6

CurvatureOfGraph@f_, x_, y_D :=

FullSimplify@Module@
8dfdx = D@f@x, yD, xD, dfdy = D@f@x, yD, yD,
d2fdx2 = D@f@x, yD, 8x, 2<D,
d2fdy2 = D@f@x, yD, 8y, 2<D,
d2fdxdy = D@f@x, yD, x, yD< ,
Return@HH1 + dfdx^2L d2fdx2 - 2 dfdx

dfdy d2fdxdy + H1 + dfdy^2L d2fdy2L ê
Sqrt@1 + dfdx^2 + dfdy^2DDD,

Assumptions Ø assumpD

7CurvFunc = Function@8x, y<, Evaluate@
CurvatureOfGraph@GraphFunction, x, yDDD

1: We will use GraphFunction as an example to show different ways to visualize a graph over an area.

2: Plot3D is used to plot GraphFunction with default settings.

3: Here is an example of using MeshFunctions to draw lines at constant altitude (i.e, constant values
of f(x, y))

4: This function, angle , which maps angles to the range (0, 1) will be useful for visualization examples
below (e.g., 5 and the following sections 2).

5: This will help visualize a cylindrical- in addition to the Cartesian-coordinate system. The
MeshFunctions option is used to plot concentric circles; ColorFunction illustrates the angular
coordinate, θ, with Hue.

6: Our goal is to visualize curvature on top of the graph. This is a somewhat advanced example. Here
we construct a function (CurvatureOfGraph ) that computes the curvature H(x, y) of an f(x, y), and
uses FullSimplify with assumptions that the coordinate are real numbers.

7: Here we use Function to create a symbol representing a function of two variables for the particular

instance of the curvature of f =GraphFunction . Evaluate is used in the definition to ensure that

the curvature computation is performed only once.

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2007/Notebooks/L15/Lecture-15.nb
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Lecture 15 Mathematica R© Example 4

Representations of Surfaces: Graphs z = f(x, y) (part 2)
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

We continue the example by visualizing the curvature and the inclination of the graph.

1

dfdx = Function@8x, y<, Evaluate@
FullSimplify@D@GraphFunction@x, yD, xD,
Assumptions Ø assumpDDD

dfdy = Function@8x, y<, Evaluate@
FullSimplify@D@GraphFunction@x, yD, yD,
Assumptions Ø assumpDDD

This is the surface with lines of constant curvature superimposed, and 
with colors associated with the local normal. 

2

plotcurvature = Plot3D@
GraphFunction@x, yD, 8x, -3, 3<, 8y, 3, -3<,
MeshFunctions Ø HCurvFunc@Ò1, Ò2D &L,
MeshStyle Ø Thick, PlotLabel Ø

"CurvaturesHlevel setsL and NormalsHcolor
variationL", ColorFunction Ø

HGlow@RGBColor@angle@dfdx@Ò1, Ò2DD,
angle@dfdy@Ò1, Ò2DD, 0.75DD &L,

ColorFunctionScaling Ø False,
Lighting Ø NoneD
Visualizing all the examples together.

3
GraphicsGrid@88plotdefault, plotlevels<,

8plotcircles, plotcurvature<<,
ImageSize Ø 2 872, 72<D

1: Two more symbols for functions of two arguments are created. Each represents a the slope of the
tangent plane in the directions of the coordinate axes.

2: Plot3D is used to illustrate the local tangent-plane with ColorFunction which points to a red-scale
for the surface slope in the x-direction and a blue-scale for the y-slope. We use Glow with Lighting

set to none.

3: Finally, we use GraphicsGrid to illustrate the four graphic-examples together.

http://pruffle.mit.edu/3.016-2006/
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Lecture 15 Mathematica R© Example 5

A Frivolous Example for Graphs z = f(x, y): Floating Pixels from Images in 3D
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

We demonstrate how to read a grey-scale image into Mathematica R© , and then use the pixel brightness values to displace the images
according to z = brightness(x, y).

1

MinMax@alist_ListD :=

Module@8flatlist = Flatten@alistD<,
Return@8Min@flatlistD, Max@flatlistD<DD

mug = Import@
"http:êêpruffle.mit.eduê~ccarterêch_face

_framesêCarter_2000_verysmall.png"D;
ProgressIndicator@Dynamic@iD, 81, 64<D
vp@i_D := 8.1 Sin@Hi - 1L Pi ê 31D,

Sin@Hi - 1L 2 Pi ê 31D, 2 Cos@2 Hi - 1L Pi ê 63D<;
minmax = MinMax@mug@@1, 1DDD;
Table@mugshot@iD =

ListPlot3D@mug@@1, 1DD, MeshStyle -> None,
Mesh Ø None, InterpolationOrder Ø 0,
ColorFunction Ø "GreenBrownTerrain",
Axes Ø False, ViewPoint Ø vp@iD,
PlotRange Ø minmax,
ImageSize Ø Full,
SphericalRegion Ø TrueD;, 8i, 1, 64<D;

Manipulate@mugshot@frameD, 8frame, 1, 64, 1<D

frame

1: We first construct a function that will pick out the largest and smallest numbers in a list, and this
will allow us to set PlotRange between the darkest and brightest pixels. (This function should
probably check to ensure that the list contains only numeric entries, so that Max and Min return
sensible results.) We will create a 3D rendering of pixels and “fly” through it. The function vp will
provide the “orbit” for our flight through the pixels.

Table is used to create Graphics3D objects from different viewpoints for subsequent animation.
Each graphics object is created with ListPlot3D with an array of pixel values for the first argument
(mug[[1,1]]). Using InterpolationOrder set to zero implies that the plot’s discrete values will not
be continuously connected (i.e., the pixels are not “warped” to ensure continuity).

I used a modified version of this example to add an animation to my homepage

http://pruffle.mit.edu/3.016-2006/
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Lecture 15 Mathematica R© Example 6

A Frivolous Example for Graphs z = f(x, y): Creating and Animating Surfaces from Image Sequences
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

We read in a sequence of images and use their pixel values to create an interpolation function for a surface z = brightness(x, y). Plot3D

calls the interpolation function produces a 3D animation from a 2D one.

1

Table@chface@readD = Import@
"http:êêpruffle.mit.eduê~ccarterêch_face

_framesêch_face." <>

ToString@100 + read - 1D <> ".png"D;
facedata@readD = ListInterpolation@
chface@readD@@1, 1DD, 880, 1<, 80, 1<<D;

If@read ã 1, minmax =

MinMax@chface@readD@@1, 1DDD;, minmax =

MinMax@8minmax, chface@readD@@1, 1DD<DD;,
8read, 1, 28, 1<D;

pface@i_D := Plot3D@facedata@iD@x, yD,
8y, 0, 1<, 8x, 0, 1<, PlotRange Ø minmax,
ColorFunction Ø "GreenBrownTerrain",
Mesh Ø False, Axes Ø False,
ViewPoint Ø 8-0.25, -2, 5<, ImageSize Ø AllD

ListAnimate@Table@pface@gcompD,
8gcomp, 1, 28, 1<D, DefaultDuration Ø 10D

1: Table is used to iteratively read images that were created from a typical web-animation. (I am

working on a way to do this directly from a single image file with multiple frames (with color), but

haven’t finished yet. ListInterpolation is used to create a continuous function of x and y in the

domain 0 < |x|&|y| < 1. The height of the function corresponds to the brightness of the pixel. The

function pface [i] produces a Graphics3D object for each frame in the animation. ListAnimate

produces the animation from the image-functions.

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2007/Notebooks/L15/Lecture-15.nb
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Lecture 15 Mathematica R© Example 7

Representations of Surfaces: Parametric Surfaces ~x(u, v)
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

Visualization techniques for surfaces of the form (x(u, v), y(u, v), z(u, v)) are presented.

1SurfaceParametric@u_, v_D := 8Cos@uD v,
u Cos@u + vD, Cos@uD ê H.1 + Cos@uD^2L<

2
ParametricPlot3D@
Evaluate@SurfaceParametric@u, vDD,
8u, -2, 2<, 8v, -2, 2<D
Using Manipulate, we can vary the boundary domain, and provide a more 
intuitive way to understand this complicated surface.

3

evolution = Table@ParametricPlot3D@
Evaluate@SurfaceParametric@u, vDD,
8u, -ep, ep<, 8v, -ep, ep<, PlotRange Ø

88-4, 4<, 8-4, 4<, 8-4, 4<<, PlotPoints Ø

81 + Round@ep ê .125D, 1 + Round@ep ê .125D<,
ImageSize Ø FullD, 8ep, .125, 4.25, .125<D;

ListAnimate@evolution, ImageSize Ø FullD

1–2: Using ParametricPlot3D to visualize a surface of the form (x(u, v), y(u, v), z(u, v)) given by Sur-
faceParametric . The lines of constant u and v generate the “square mesh” of the approximation to
the surface. Each line on the surface is of the form: ~r1(u) = (x(u, v = const), y(u, v = const), z(u, v =
const)) and ~r2(v) = (x(u = const, v), y(u = const, v), z(u = const, v)). The set of all crossing lines
~r1(u) and ~r2(v) is the surface. Each little “square” surface patch provides a convenient way to define
the local surface normal—because both the vectors d~r1/du and d~r2/dv are tangent to the surface,
their cross-product is either an inward-pointing normal or outward-pointing normal.

3: The nature of parametric surfaces are typically much more complicated than for graphs. Because the

surface often folds over and through itself, it is difficult to comprehend its shape. For this case, it is

useful to visualize the evolution of the surface as the domain of (u, v) increases. Here we use Table

to iteratively increase the size of the domain, and then use ListAnimate to visualize its evolution.

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2007/Notebooks/L15/Lecture-15.nb
http://pruffle.mit.edu/3.016-2007/pdf/L15/Lecture-15-7-COL.pdf
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Lecture 15 Mathematica R© Example 8

Representations of Surfaces: Level Sets constant = f(x, y, z)
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

Visualization examples of surfaces represented their level sets constant = F (x, y, z) are presented. This type of surface representation
is particularly convenient when surfaces are disconnected, or merge during an evolution. Level sets are used extensively in phase field
models of microstructural evolution.

1ConstFunction = x2 - 4 x y + y2 + z2

2ContourPlot3D@ConstFunction, 8x, -1, 1<,
8y, -1, 1<, 8z, -1, 1<, Contours Ø 82.5<D
The following statements produce contour plots of the same function, 
using two different methods for colorizing the surfaces...

3cpa = ContourPlot3D@ConstFunction, 8x, -3, 3<,
8y, -3, 3<, 8z, -3, 3<, Contours Ø 80, 2, 8<D

4

cpb = ContourPlot3D@ConstFunction,
8x, -3, 3<, 8y, -3, 3<, 8z, -3, 3<,
Contours Ø 80, 2, 8<, ContourStyle Ø 8
Directive@Pink, Opacity@0.8DD,
Directive@Yellow, Opacity@0.8DD,
Directive@Orange, Opacity@0.8DD<D

5
Manipulate@
ContourPlot3D@ConstFunction, 8x, -3, 3<,
8y, -3, 3<, 8z, -3, 3<, Contours -> 8i<,
ImageSize Ø FullD, 8i, -2, 10, .25<D

1: ConstFunction will be used for the following visualization examples.

1–2: A contour in two-dimensions is a curve; we have seen examples of such curves with ContourPlot.
A contour in three-dimensions is a surface and we will use ContourPlot3D to visualize the level set
formulation of a surface constant = F (x, y, z) given by ConstFunction . Here, we explicitly specify
those x, y, and z for which x2 − 4xy + y2 + z2 = 2.5.

3: Here is an example of specifying three different level sets by passing several Contours to
ContourPlot3D. It is difficult to distinguish which surface belongs to a particular level set.

4: The surfaces can be distinguished from one another with by giving each a different graphics
Directive its own color. Setting Opacity to a value less than one helps eliminate the ‘hidden
surface’ problem.

5: The evolution of level sets can be visualized with Manipulate by varying the value that is passed to

Contours. It is apparent why this surface representation is useful when surfaces undergo topological

changes. It may be helpful to consider these changes as a higher dimensional effect: consider t =

f(x, y, z) as a graph ‘over’ 3D region, or a four-dimensional surface. As a lower dimensional example

(i.e., t = f(x, y)), consider the curves that develop as a torus (ummmm doughnut) is slice sequentially

from one side. Initially the perimeter is an single closed elongated loop, which eventually begins to

pinch in the middle and then break into isolated curves.

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2007/Notebooks/L15/Lecture-15.nb
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Integration over Surfaces

Integration of a function over a surface is a straightforward generalization of
∫ ∫

f(x, y)dxdy =
∫

f(x, y)dA. The set of all
little rectangles dxdy defines a planar surface. A non-planar surface ~x(u, v) is composed of a set of little parallelogram patches
with sides given by the infinitesimal vectors

~rudu =
∂~x

∂u
du

~rvdu =
∂~x

∂v
dv

(15-5)

Because the two vectors ~ru and ~rv are not necessarily perpendicular, their cross-product is needed to determine the magnitude
of the area in the parallelogram:

dA = ‖~ru × ~rv‖dudv (15-6)

and the integral of some scalar function, g(u, v) = g(x(u, v), y(u, v)) = g(~x(u, v)), on the surface is∫
g(u, v)dA =

∫ ∫
g(u, v)‖~ru × ~rv‖dudv (15-7)

However, the operation of taking the norm in the definition of the surface patch dA indicates that some information is getting
lost—this is the local normal orientation of the surface. There are two choices for a normal (inward or outward).

When calculating some quantity that does not have vector nature, only the magnitude of the function over the area matters
(as in Eq. 15-7). However, when calculating a vector quantity, such as the flow through a surface, or the total force applied
to a surface, the surface orientation matters and it makes sense to consider the surface patch as a vector quantity:

~A(u, v) = ‖ ~A‖n̂(u, v) = An̂(u, v)

d ~A = ~ru × ~rv

(15-8)

where n̂(u, v) is the local surface unit normal at ~x(u, v).

http://pruffle.mit.edu/3.016-2006/
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Lecture 15 Mathematica R© Example 9

Example of an Integral over a Parametric Surface
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

The surface energy of single crystals often depends on the surface orientation. This is especially the case for materials that have covalent
and/or ionic bonds. To find the total surface energy of such a single crystal, one has to integrate an orientation-dependent surface energy,
γ(n̂), over the surface of a body. This example compares the total energy of such an anisotropic surface energy integrated over a sphere
and a cube that enclose the same volume.

1sphere@u_ , v_ D :=

R 8Cos@vD Cos@uD , Cos@vD Sin@uD , Sin@vD<

2Ru@u_ , v_D = D@sphere@u, vD, uD êê Simplify

Rv@u_ , v_D = D@sphere@u, vD, vD êê Simplify

3

Needs@"VectorAnalysis`"D
NormalVector@u_ , v_ D =

CrossProduct@Ru@u, vD, Rv@u, vDD êê Simplify
NormalMag = FullSimplify@
Norm@NormalVector@u, vDD, Assumptions Ø

8R ¥ 0, 0 § u § 2 p, -p ê 2 < v < p ê 2<D
UnitNormal@u_, v_D =

NormalVector@u, vD ê NormalMag

4SurfaceTension@nvec_D :=

1 + gamma111 * nvec@@1DD2 nvec@@2DD2 nvec@@3DD2

5
SphericalPlot3D@
SurfaceTension@UnitNormal@u, vDD ê.
gamma111 Ø 12,

8u, 0, 2 Pi<, 8v, -Pi ê 2, Pi ê 2<D

6
SphereEnergy = Integrate@Integrate@

SurfaceTension@UnitNormal@u, vDD Cos@vD,
8u, 0, 2 p<D, 8v, -p ê 2, p ê 2<D

7CubeSide = H4 p ê 3L^H1 ê 3L

8CubeEnergy =

6 I CubeSide2 SurfaceTension@81, 0, 0<DM

9
EqualEnergies =

Solve@CubeEnergy ã SphereEnergy,
gamma111D êê Flatten

10N@gamma111 ê. EqualEnergiesD

1: This is the parametric equation of the sphere in terms of longitude v ∈ (0, 2π) and latitude u ∈
(−π/2, π/2).

2: Calculate the tangent plane vectors ~ru and ~rv

3: Using CrossProduct from the VectorAnalysis package to calculate a vector that is normal to the
surface, ~ru × ~rv, for subsequent use in the surface integral. Using Norm to find the magnitude of
the local normal, we can produce a function to return the unit normal vector n̂, UnitNormal , as a
function of the surface parameters.

4: This is just an example of a γ(n̂) that depends on direction that will be used for purposes of
illustration.

5: Using SphericalPlot3D, the form of SurfaceTension for the particular choice of γ111 = 12 is
visualized.

6: Using the result from | ~ru × ~rv|, the total surface energy of a spherical body of radius R = 1 is
computed by integrating γn̂ over the entire surface.

7–8: This would be the energy of a cubical body with the same volume as the sphere with unit radius.
The cube is oriented so that its faces are normal to 〈100〉.

9–10: This calculation is not very meaningful, but it is the value of the surface anisotropy factor γ111 such

that the cube and sphere have the same total surface energy. The total-surface-energy minimizing

shape for a fixed volume is calculated using the Wulff theorem.
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SurfaceTension, 169
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pface, 165
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Function, 162
fundamental theorem of differential and integral calculus, 152

Glow, 163
graph surfaces

visualization example, 162
GraphFunction, 162
Graphics3D, 164, 165
GraphicsGrid, 163
Green’s theorem in the plane

relation to Stoke’s theorem, 153
turning integrals over simple closed regions to their bound-

aries, 151
visual interpretation, 152
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Integrate, 155
integration

over surface, 168
InterpolationOrder, 164

level set surfaces
visualization example, 167

Lighting, 163
ListAnimate, 165, 166
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ListPlot3D, 164

magic integral theorems, 151
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Manipulate, 167
Mathematica function
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Evaluate, 162
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PlotRange, 164
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SphericalPlot3D, 169
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Mathematica package
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example application of Green’s theorem, 156
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visualization example, 166

ParametricPlot3D, 166
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phase field models of microstructural evolution, 167
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floating in three dimensions, 164
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SphericalPlot3D, 169
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surface
Gaussian curvature, 158
mean curvature, 158

surface integral, 168
surface patch

analysis, 157
SurfaceParametric, 166
surfaces

representations, 157
table of tangent planes, normals, and curvature, 159

SurfaceTension, 169

Table, 164–166
tangent plane, 168
Timing, 156
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