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Oct. 15 2007

Lecture 13: Differential Operations on Vectors

Reading:
Kreyszig Sections: 9.8, 9.9 (pages410–413, 414–416)

Generalizing the Derivative

The number of different ideas, whether from physical science or other disciplines, that can be understood with reference to
the “meaning” of a derivative from the calculus of scalar functions, is very very large. Our ideas about many topics, such as
price elasticity, strain, stability, and optimization, are connected to our understanding of a derivative.

In vector calculus, there are generalizations to the derivative from basic calculus that act on a scalar and give another scalar
back:

gradient (∇): A derivative on a scalar that gives a vector.

curl (∇×): A derivative on a vector that gives another vector.

divergence (∇·): A derivative on a vector that gives scalar.

Each of these have “meanings” that can be applied to a broad class of problems.

The gradient operation on f(~x) = f(x, y, z) = f(x1, x2, x3),

gradf = ∇f

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
=

(
∂

∂x
,

∂

∂y
,

∂

∂z

)
f (13-1)
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has been discussed previously. The curl and divergence will be discussed below.
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Lecture 13 Mathematica R© Example 1

Scalar Potentials and their Gradient Fields
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

An example of a scalar potential, due three point charges in the plane, is visualized. Methods for computing a gradient are presented.
Simple 2  D 1 ê r potential

1potential@x_ , y_, xo_ , yo_D :=

-1 ê Sqrt@Hx - xoL^2 + Hy - yoL^2D
A field source located a distance 1 south of the origin

2HoleSouth@x_, y_D :=

potential@x, y, Cos@3 Pi ê 2D, Sin@3 Pi ê 2DD

3HoleNorthWest@x_ , y_D :=

potential@x, y, Cos@Pi ê 6D, Sin@ Pi ê 6DD

4HoleNorthEast@x_ , y_D :=

potential@x, y, Cos@ 5 Pi ê 6D, Sin@5 Pi ê 6DD
Function that returns the two dimensional (x,y) gradient field of any 
function declared a function of two arguments:

5
gradfield@scalarfunction_D :=

8D@scalarfunction@x, yD, xD êê Simplify,
D@scalarfunction@x, yD, yD êê Simplify<
Generalizing the function to any arguments:

6
gradfield@scalarfunction_, x_ , y_D :=

8D@scalarfunction@x, yD, xD êê Simplify,
D@scalarfunction@x, yD, yD êê Simplify<
The sum of three potentials:

7
ThreeHolePotential@x_, y_D :=

HoleSouth@x, yD +

HoleNorthWest@x, yD + HoleNorthEast@x, yD
f(x,y) visualization of the scalar potential:

8Plot3D@ThreeHolePotential@x, yD,
8x, -2, 2<, 8y, -2, 2<D
Contour visualization of the three-hole potential

9
ContourPlot@ThreeHolePotential@x, yD,
8x, -2, 2<, 8y, -2, 2<, PlotPoints Ø 40,
ColorFunction Ø HHue@1 - Ò * 0.66D &LD

1: This is the 2D 1/r-potential; here potential takes four arguments: two for the location of the charge
and two for the position where the “test” charge “feels” the potential.

2-4: These are three fixed charge potentials, arranged at the vertices of an equilateral triangle.

5: gradfield is an example of a function that takes a scalar function of x and y and returns a vector
with component derivatives: the gradient vector of the scalar function of x and y.

6: However, the previous example only works for functions of x and y explicitly. This expands gradfield
to other Cartesian coordinates other than x and y.

7: ThreeHolePotential is the superposition of the three potentials defined in 2–4.

8: Plot3D is used to visualize the superposition of the potentials due to the three charges.

9: ContourPlot is an alternative method to visualize this scalar field. The option ColorFunction points

to an example of a Pure Function—a method of making functions that do not operate with the usual

“square brackets.” Pure functions are indicated with the & at the end; the # is a place-holder for

the pure function’s argument.
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Divergence and Its Interpretation

The divergence operates on a vector field that is a function of position, ~v(x, y, z) = ~v(~x) = (v1(~x), v2(~x), v3(~x)), and returns
a scalar that is a function of position. The scalar field is often called the divergence field of ~v, or simply the divergence of ~v.

div ~v(~x) = ∇ · ~v =
∂v1

∂x
+

∂v2

∂y
+

∂v3

∂z
=

(
∂

∂x
,

∂

∂y
,

∂

∂z

)
· (v1, v2, v3) =

(
∂

∂x
,

∂

∂y
,

∂

∂z

)
· ~v (13-2)

Think about what the divergence means.
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Lecture 13 Mathematica R© Example 2

Visualizing the Gradient Field and its Divergence: The Laplacian
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

A visualization gradient field of the potential defined in the previous example is presented. The divergence of the gradient ∇·∇φ = ∇2φ

(i.e., the result of the Laplacian operator ∇2) is computed and visualized.
Gradient field of three-hole potential

1gradthreehole = gradfield@ThreeHolePotentialD

2

Needs@"VectorFieldPlots`"D;
VectorFieldPlots`VectorFieldPlot@
gradthreehole, 8x, -2, 2<, 8y, -2, 2<,
ScaleFactor Ø 0.2`, ColorFunction Ø

HHue@1 - Ò1 0.66`D &L, PlotPoints Ø 21D

Function that takes a two-dimensional vector function of (x,y) as an 
argument and returns its divergence

3divergence@8xcomp_ , ycomp_<D :=

Simplify@D@xcomp, xD + D@ycomp, yDD

4divgradthreehole = divergence@
gradfield@ThreeHolePotentialDD êê Simplify

Plotting the divergence of the gradient
I“ ÿ H“ f L is the ``Laplacian'' “ 2 f , sometimes indicated with symbol Df M

5Plot3D@divgradthreehole, 8x, -2, 2<,
8y, -2, 2<, PlotPoints -> 60D

1: We use our previously defined function gradfield to compute the gradient of ThreeHolePotential
everywhere in the plane.

2: PlotVectorField is in the VectorFieldPlots package. Because a gradient produces a vector field
from a scalar potential, arrows are used at discrete points to visualize it.

3: The divergence operates on a vector and produces a scalar. Here, we define a function, divergence
, that operates on a 2D-vector field of x and y and returns the sum of the component derivatives.
Therefore, taking the divergence of the gradient of a scalar field returns a scalar field that is naturally
associated with the original—its physical interpretation is (minus) the rate at which gradient vectors
“diverge” from a point.

4–5: We compute the divergence of the gradient of the scalar potential. This is used to visualize the

Laplacian field of ThreeHolePotential .
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Coordinate Systems

The above definitions are for a Cartesian (x, y, z) system. Sometimes it is more convenient to work in other (spherical,
cylindrical, etc) coordinate systems. In other coordinate systems, the derivative operations ∇, ∇·, and ∇× have different
forms. These other forms can be derived, or looked up in a mathematical handbook, or specified by using the Mathematica R©
package “VectorAnalysis.”

http://pruffle.mit.edu/3.016-2006/
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Lecture 13 Mathematica R© Example 3

Coordinate Transformations
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

Examples of Coordinate Transformations obtained from the VectorAnalysis package are presented.
It is no surprise that many of these differential operations already exist in 
Mathematica packages.

1<< "VectorAnalysis`"

Converting between coordinate systems
The spherical coordinates expressed in terms of the cartesian x,y,z

2CoordinatesFromCartesian@
8x, y, z<, Spherical@r, theta, phiDD

: x2 + y2 + z2 ,

ArcCosB z

x2 + y2 + z2
F, ArcTan@x, yD>

The cartesian coordinates expressed in terms of the spherical r q f

3CoordinatesToCartesian@
8r, theta, phi<, Spherical@r, theta, phiDD

8r Cos@phiD Sin@thetaD,
r Sin@phiD Sin@thetaD, r Cos@thetaD<

The equation of a line  through the origin in spherical coodinates

4
Simplify@
CoordinatesFromCartesian@8a t, b t, c t<,
Spherical@r, theta, phiDD, t > 0D

1–2: CoordinatesFromCartesian from the VectorAnalysis package transforms three Cartesian coordi-
nates, named in the first argument-list, into one of many coordinate systems named by the second
argument.

3: CoordinatesToCartesian transforms one of many different coordinate systems, named in the second
argument, into the three Cartesian coordinates, named in the first argument (which is a list).

4: For example, this would be the equation of a line radiating from the origin in spherical coordinates.
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Lecture 13 Mathematica R© Example 4

Frivolous Example Using Geodesy, VectorAnalysis, and CityData.
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

We compute distances from Boston to Paris along different routes.
  (The following will not work unless you have an active internet 
connection)

1CityData@"Boston", "Latitude"D
2CityData@"Marseille", "Latitude"D
3CityData@"Paris", "Longitude"D

4

SphericalCoordinatesofCity@
cityname_StringD := 8
6378.1 , CityData@cityname, "Latitude"D
Degree,
CityData@cityname, "Longitude"D Degree<

5SphericalCoordinatesofCity@"Boston"D

6
LatLong@city_StringD :=

8CityData@city, "Latitude"D,
CityData@city, "Longitude"D<

7
CartesianCoordinatesofCity@
cityname_StringD := CoordinatesToCartesian@
SphericalCoordinatesofCity@citynameD,
Spherical@r, theta, phiDD

8CartesianCoordinatesofCity@"Paris"D

9
MinimumTunnel@city1_String, city2_StringD :=

Norm@CartesianCoordinatesofCity@city1D -

CartesianCoordinatesofCity@city2DD
10MinimumTunnel@"Boston", "Paris"D
11Needs@"Geodesy`"D

12SphericalDistance@
LatLong@"Paris"D, LatLong@"Boston"DD

13SpheroidalDistance@
LatLong@"Paris"D, LatLong@"Boston"DD

1–3: CityData provides downloadable data. The data includes—among many other things—the latitude
and longitude of many cities in the database. This show that Marseilles is north of Boston (which I
found to be surprising).

4–5: SphericalCoordinatesofCity takes the string-argument of a city name and uses CityData to compute
its spherical coordinates (i.e., (rearth, θ, φ) are same as (average earth radius = 6378.1 km, latitude,
longitude)). We use Degree which is numerically π/180.

6: LatLong takes the string-argument of a city name and uses CityData to return a list-structure for
its latitude and longitude. We will use this function below.

7–8: CartesianCoordinatesofCity uses a coordinate transform and SphericalCoordinatesofCity

9–10: If we imagine traveling through the earth instead of around it, we would use the Norm of the
difference of the Cartesian coordinates of two cities.

11–12: Comparing the great circle route using SphericalDistance (from the Geodesy package) to the
Euclidean distance, is a result that surprises me. It would save only about 55 kilometers to dig a
tunnel to Paris—sigh.

13: SpheroidalDistance accounts for the earth’s extra waistline for computing great-circle distances.
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Lecture 13 Mathematica R© Example 5

Gradient and Divergence Operations in Other Coordinate Systems
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

A 1/rn-potential is used to demonstrate how to obtain gradients and divergences in other coordinate systems.

1
SimplePot@x_ , y_ , z_, n_D :=

1

Hx^2 + y ^2 + z^2L n

2

2gradsp = Grad@
SimplePot@x, y, z, 1D, Cartesian@x, y, zDD

:- x

Ix2 + y2 + z2M3ê2
,

-
y

Ix2 + y2 + z2M3ê2
, -

z

Ix2 + y2 + z2M3ê2
>

The above is equal to r
ØìJ »» rØ »»N3

3SimplePot@r_, n_D :=
1

rn

4gradsphere =

Grad@SimplePot@r, 1D, Spherical@r, q, jDD
5Grad@SimplePot@r, 1D, Cylindrical@r, q, zDD

6Grad@SimplePot@r, 1D,
ProlateSpheroidal@r, q, jDD

7
GradSimplePot@x_, y_, z_, n_D :=

Evaluate@Grad@SimplePot@x, y, z, nD,
Cartesian@x, y, zDDD

8Div@GradSimplePot@x, y, z, nD,
Cartesian@x, y, zDD êê Simplify

9Div@GradSimplePot@x, y, z, 1D,
Cartesian@x, y, zDD êê Simplify

0

1: SimplePot is the simple 1/rn potential in Cartesian coordinates.

2: Grad is defined in the VectorAnalysis: in this form it takes a scalar function and returns its gradient
in the coordinate system defined by the second argument.

3: An alternate form of SimplePot is defined in terms of a single coordinate; if r is the spherical
coordinate r2 = x2 + y2 + z2 (referring back to a Cartesian (x, y, z)), then this is equivalent the
function in 1.

4: Here, the gradient of 1/r is obtained in spherical coordinates; it is equivalent to the gradient in 2,
but in spherical coordinates.

5: Here, the gradient of 1/r is obtained in cylindrical coordinates, but it is not equivalent to 2 nor 4,
because in cylindrical coordinates, (r, θ, z), r2 = x2 + y2, even though the form appears to be the
same.

6: Here, the gradient of 1/r is obtained in prolate spheroidal coordinates.

7: We define a function for the x–y–z gradient of the 1/rn scalar potential. Evaluate is used in the
function definition, so that Grad is not called each time the function is used.

8: The Laplacian (∇2(1/rn)) has a particularly simple form, n(n− 1)/r2+n

9: By inspection of ∇2(1/rn) or by direct calculation, it follows that ∇2(1/r) vanishes identically.
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Curl and Its Interpretation

The curl is the vector-valued derivative of a vector function. As illustrated below, its operation can be geometrically interpreted
as the rotation of a field about a point.

For a vector-valued function of (x, y, z):

~v(x, y, z) = ~v(~x) = (v1(~x), v2(~x), v3(~x)) = v1(x, y, z)̂i + v2(x, y, z)ĵ + v3(x, y, z)k̂ (13-3)

the curl derivative operation is another vector defined by:

curl ~v = ∇× ~v =
((

∂v3

∂y
− ∂v2

∂z

)
,

(
∂v1

∂z
− ∂v3

∂x

)
,

(
∂v2

∂x
− ∂v1

∂y

))
(13-4)

or with the memory-device:

curl ~v = ∇× ~v = det

 î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

v1 v2 v3

 (13-5)

For an example, consider the vector function that is often used in Brakke’s Surface Evolver program:

~w =
zn

(x2 + y2)(x2 + y2 + z2)
n
2

(yî− xĵ) (13-6)

This will be shown below, in a Mathematica R© example, to have the property:

∇× ~w =
nzn−1

(x2 + y2 + z2)1+
n
2

(xî + yĵ + zk̂) (13-7)

which is spherically symmetric for n = 1 and convenient for turning surface integrals over a portion of a sphere, into a
path-integral, over a curve, on a sphere.

http://pruffle.mit.edu/3.016-2006/
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Lecture 13 Mathematica R© Example 6

Computing and Visualizing Curl Fields
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

Examples of curls are computing for a particular family of vector fields. Visualization is produced with the VectorFieldPlot3D

function from the VectorFieldPlots package.

1
LeavingKansas@x_, y_, z_ , n_D :=

zn

Hx^2 + y ^2L Hx^2 + y ^2 + z^2L n

2

8y, -x, 0<

2

Needs@"VectorFieldPlots`"D;

VectorFieldPlot3D@LeavingKansas@x, y, z, 3D,
8x, -1, 1<, 8y, -1, 1<,
8z, -0.5, 0.5<, VectorHeads Ø True,
ColorFunction Ø HHue@Ò1 0.66`D &L,
PlotPoints Ø 21, ScaleFactor Ø 0.5`D

3

VectorFieldPlot3D@
LeavingKansas@x, y, z, 3D, 8x, 0, 1<,
8y, 0, 1<, 8z, 0.0, 0.5<, VectorHeads Ø True,
ColorFunction Ø HHue@Ò1 0.66D &L,
PlotPoints Ø 15, ScaleFactor Ø 0.5D

4Curl@LeavingKansas@x, y, z, 3D,
Cartesian@x, y, zDD êê Simplify

5
Glenda@x_, y_, z_, n_D :=

Simplify@Curl@LeavingKansas@x, y, z, nD,
Cartesian@x, y, zDDD

6

VectorFieldPlot3D@
Evaluate@Glenda@x, y, z, 1DD,
8x, -0.5, 0.5<, 8y, -0.5, 0.5<,
8z, -0.25, 0.25<, VectorHeads Ø True,
ColorFunction Ø HHue@Ò1 0.66`D &L,
PlotPoints Ø 21D
Demonstrate that the divergence of the curl vanishes for the above 
function independent of n

7DivCurl =

Div@Glenda@x, y, z, nD, Cartesian@x, y, zDD
8Simplify@DivCurlD

1: LeavingKansas is the family of vector fields indicated by 13-6.

2–3: The function will be singular for n > 1 along the z − axis. This singularity will be reported during
the numerical evaluations for visualization. There are two visualizations—the second one is over a
sub-region but is equivalent because of the cylindrical symmetry of LeavingKansas . The singularity
in the second case could be removed easily by excluding points near z = 0, but Mathematica R©
seems to handle this fine without doing so.

4–6: This demonstrates the assertion, that for Eq. 13-7, the curl has cylindrical symmetry for arbitrary
n, and spherical symmetry for n = 1.

7–8: This demonstrates that the divergence of the curl of ~w vanishes for any n; this is true for any

differentiable vector field.

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2007/Notebooks/L13/Lecture-13.nb
http://pruffle.mit.edu/3.016-2007/pdf/L13/Lecture-13-6-COL.pdf
http://pruffle.mit.edu/3.016-2007/pdf/L13/Lecture-13-6-BW.pdf
http://pruffle.mit.edu/3.016-2007/html/Lecture-13/HTMLLinks/index_6.html
http://pruffle.mit.edu/3.016-2007/html/Lecture-13/HTMLLinks/index_6.html


3.016 Home

JJ J I II

Full Screen

Close

Quit

c©W. Craig Carter

One important result that has physical implications is that the curl of a gradient is always zero: f(~x) = f(x, y, z):

∇× (∇f) = 0 (13-8)

Therefore if some vector function ~F (x, y, z) = (Fx, Fy, Fz) can be derived from a scalar potential, ∇f = ~F , then the curl of
~F must be zero. This is the property of an exact differential df = (∇f) · (dx, dy, dz) = ~F · (dx, dy, dz). Maxwell’s relations
follow from equation 13-8:

0 =
∂Fz

∂y
− ∂Fy

∂z
=

∂ ∂f
∂z

∂y
−

∂ ∂f
∂y

∂z
=

∂2f

∂z∂y
− ∂2f

∂y∂z

0 =
∂Fx

∂z
− ∂Fz

∂x
=

∂ ∂f
∂x

∂z
−

∂ ∂f
∂z

∂x
=

∂2f

∂x∂z
− ∂2f

∂z∂x

0 =
∂Fy

∂x
− ∂Fx

∂y
=

∂ ∂f
∂y

∂x
−

∂ ∂f
∂x

∂y
=

∂2f

∂y∂x
− ∂2f

∂x∂y

(13-9)

Another interpretation is that gradient fields are curl-free, irrotational, or conservative.

The notion of “conservative” means that, if a vector function can be derived as the gradient of a scalar potential, then integrals
of the vector function over any path is zero for a closed curve—meaning that there is no change in “state;” energy is a common
state function.

Here is a picture that helps visualize why the curl invokes names associated with spinning, rotation, etc.

http://pruffle.mit.edu/3.016-2006/
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�i
�k

�j

∂vy

∂x >0∂vx
∂y <0

Figure 13-10: Consider a small paddle wheel placed in a set of stream lines defined by a vector
field of position. If the vy component is an increasing function of x, this tends to make the

paddle wheel want to spin (positive, counter-clockwise) about the k̂-axis. If the vx component is
a decreasing function of y, this tends to make the paddle wheel want to spin (positive, counter-
clockwise) about the k̂-axis. The net impulse to spin around the k̂-axis is the sum of the two.
Note that this is independent of the reference frame because a constant velocity ~v = const. and
the local acceleration ~v = ∇f can be subtracted because of Eq. 13-10.

Another important result is that divergence of any curl is also zero, for ~v(~x) = ~v(x, y, z):

∇ · (∇× ~v) = 0 (13-10)

http://pruffle.mit.edu/3.016-2006/
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CoordinatesFromCartesian, 139
CoordinatesToCartesian, 139
Degree, 140
Evaluate, 141
Grad, 141
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SpheroidalDistance, 140
VectorFieldPlot3D, 143
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singularities
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