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Sept. 14 2007

Lecture 5: Introduction to Mathematica IV

Graphics

Graphics are an important part of exploring mathematics and conveying its results. An informative plot or graphic that
conveys a complex idea succinctly and naturally to an educated observer is a work of creative art. Indeed, art is sometimes
defined as “an elevated means of communication,” or “the means to inspire an observation, heretofore unnoticed, in another.”
Graphics are art; they are necessary. And, I think they are fun.

For graphics, we are limited to two and three dimensions, but, with the added possibility of animation, sound, and perhaps
other sensory input in advanced environments, it is possible to usefully visualize more than three dimensions. Mathematics is
not limited to a small number of dimensions; so, a challenge —or perhaps an opportunity—exists to use artfulness to convey
higher dimensional ideas graphically.

The introduction to basic graphics starts with two-dimensional plots.

http://pruffle.mit.edu/3.016-2006/
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Lecture 05 Mathematica R© Example 1

Simple Plots
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

Here are some examples of simple x-y plots and how to decorate them. We start with very simple examples and add a little more at each
step to show how a plot can be developed incrementally. We leave all the steps in as cut-and-paste examples.

1Plot@Sin@xD ê x, 8x, -5 Pi, 5 Pi<D
2Options@PlotD

3
Plot@Sin@xD ê x, 8x, -5 Pi, 5 Pi<, PlotRange Ø

8-0.25,
1.25<, PlotStyle Ø 8Red, Thick<D

4

PlotBSin@xD ê x, 8x, -5 Pi, 5 Pi<, PlotRange Ø

8-0.25,
1.25<, PlotStyle Ø 8Red, Thick<, AxesLabel Ø

:"x",

"
Sin HxL

x
">F

5

PlotBSin@xD ê x, 8x, -5 Pi, 5 Pi<, PlotRange Ø

8-0.25,
1.25<, PlotStyle Ø 8Red, Thick<, AxesLabel Ø

:"x",

"
Sin HxL

x
">, BaseStyle Ø 8Large, FontFamily Ø

"Helvetica",

Italic<F

6

PlotBSin@xD ê x, 8x, -5 Pi, 5 Pi<, PlotRange Ø

8-0.25,
1.25<, PlotStyle Ø 8Red, Thick<, AxesLabel Ø

:"x",

"
Sin HxL

x
">, BaseStyle Ø 8Large, FontFamily Ø

"Helvetica",
Italic<, TicksStyle Ø 88Medium, Blue<,
8Medium,
RGBColor@0.5, 0.2, 0D<<F

1: This is the simplest version of Plot: all it requires is an expression depending on a variable and a
range over which to plot that variable. Mathematica R© has algorithms to select the region which
is most likely to be of interest.

2: Tweaking the appearance of a plot will usually involve changing one of Plot’s options.

3: Here we change PlotRange and PlotStyle explicitly. PlotStyle takes a list of graphics directives,
and the type of PlotStyle directives will generally depend on what is being plotted (i.e., lines,
points, surfaces).

4: The AxesLabel option is used here. The BasicMathInput-palette is useful to typesetting mathe-
matical expressions.

5: The option BaseStyle can be used to specify the basic size, font, font-shape, etc for the entire plot.

6: As a last example, we use a list of two styles for TickStyle to specify both x- and y-axis ticking

characteristics.

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2007/Notebooks/L05/Lecture-05.nb
http://pruffle.mit.edu/3.016-2007/pdf/L05/Lecture-05-1-COL.pdf
http://pruffle.mit.edu/3.016-2007/pdf/L05/Lecture-05-1-BW.pdf
http://pruffle.mit.edu/3.016-2007/html/Lecture-05/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2007/html/Lecture-05/HTMLLinks/index_1.html
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Lecture 05 Mathematica R© Example 2

Plotting Precision and an Example of Interaction
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

Even for continuous functions, a graphical representation is a discrete object. The level of precision is associated with the mesh—which
is the set where numerical evaluations are performed. More mesh points generally results in a smoother representation, but at the cost
of longer computation and memory.

Mesh and MeshStyle

1

Plot@Sin@xD ê x, 8x, -5 Pi, 5 Pi<, PlotRange Ø

All,
PlotStyle Ø 8Red, Thick<, Mesh Ø All,
MeshStyle Ø

8Black, PointSize@0.015D<D
MaxRecursion and PlotPoints

2

Plot@Sin@xD ê x, 8x, -5 Pi, 5 Pi<, PlotRange Ø

All,
PlotStyle Ø 8Red, Thick<, , Mesh Ø All,
MeshStyle Ø

8Black, PointSize@0.015D<, MaxRecursion Ø 2,
PlotPoints Ø

8D
Interactive Graphics: An Example of Manipulate

3

Manipulate@Plot@Sin@xD ê x, 8x, -5 Pi, 5 Pi<,
PlotRange Ø

All, PlotStyle Ø 8Red, Thick<, AxesLabel Ø

8"x",
"sinHxLêx"<, BaseStyle Ø 8Large,
FontFamily Ø

"Helvetica", Italic<, TicksStyle Ø

88Medium,
Blue<, 8Medium, RGBColor@0.5, 0.2, 0D<<,

Mesh Ø

All, MeshStyle Ø 8Black, PointSize@0.015D<,
MaxRecursion Ø

recursion, PlotPoints Ø plotpointsD,
88recursion,
3<, 1, 15, 1<, 88plotpoints, 4<, 2, 12, 1<D

1: The option Mesh→All shows the points where Plot made numerical evaluations. Note that the
points are not equally spaced, but are adapted to the plot (in this case, to the curvature). MeshStyle

permits specification of how the mesh is visualized.

2: A simple way to control the mesh is with PlotPoints (which specifies how many points to sample
initially) and MaxRecursion (which specifies how many times to try to optimize the adaptation of
the points on the curve).

3: This is a simple example of using Manipulate to change PlotPoints and MaxRecursion interactively.

Here, both of the options point to variables (recursion and plotpoints) that can be adjusted via a

graphical interface.

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2007/Notebooks/L05/Lecture-05.nb
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Lecture 05 Mathematica R© Example 3

Multiple Curves, Filling, and Excluding Points
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

Here, simple examples of plotting several curves at the same time, of filling between curves, or between curves and the axis, and of
telling plot to ignore certain points, are demonstrated.

1

Plot@Sin@xD ê x, 8x, -5 Pi, 5 Pi<,
PlotRange Ø 8-0.25, 1.25<,
PlotStyle Ø 8Red, Thick<,
TicksStyle Ø 88Medium, Blue<,

8Medium, RGBColor@0.5, 0.2, 0D<<,
Filling Ø AutomaticD
Combining several curves

2Plot@8Sin@xD ê x, Tan@xD ê x<,
8x, -5 Pi, 5 Pi<, BaseStyle Ø 8Thick<D

3
Plot@8Sin@xD ê x, Tan@xD ê x<,
8x, -5 Pi, 5 Pi<, PlotStyle Ø 88Red, Thick<,

8Hue@0.3, 1, .5D, Thickness@0.005D<<D
Removing points with Exclusions

4
Plot@Tan@xD ê x, 8x, -5 Pi, 5 Pi<,
BaseStyle Ø 8Thick, Medium<,
Exclusions Ø 8-Pi ê 2, Pi ê 2<D

5
Plot@Tan@xD ê x, 8x, -5 Pi, 5 Pi<,
BaseStyle Ø 8Thick, Medium<, Exclusions Ø

Table@p, 8p, -9 Pi ê 2, 9 Pi ê 2, Pi<DD
Multiple curves with exclusions

6
Plot@8Sin@xD ê x, Tan@xD ê x<, 8x, -5 Pi, 5 Pi<,
PlotStyle Ø 88Red, Thick<, 8Hue@0.3, 1, .5D,

Thickness@0.005D<<, Exclusions Ø

Table@p, 8p, -9 Pi ê 2, 9 Pi ê 2, Pi<DD
Filling  between curves

7

Plot@8Sin@xD ê x, Tan@xD ê x<,
8x, -5 Pi, 5 Pi<, PlotStyle Ø 88Red, Thick<,

8Hue@0.3, 1, .5D, Thickness@0.005D<<,
PlotRange Ø 8-0.25, 1.25<, Exclusions Ø

Table@p, 8p, -9 Pi ê 2, 9 Pi ê 2, Pi ê 2<D,
Filling Ø 82 Ø 881<, 8RGBColor@1, 0, 0, 0.2D,

RGBColor@0, 0, 1, 0.2D<<<D

1: Simple filling to the x-axis can be produced with Filling→Automatic.

2: When Plot gets a list of expressions as its first argument, it will superimpose the curves obtained
from each. The curves’ colors are chosen automatically, but can be specified. (n.b., if you find that the
colors are not changing as you’d expect, try calling Evaluate on the list.) In this example, a vertical
line appears for the tan(x)/x function where the values change as ±∞. To change the appearance
of each curve, a list containing a style-directive list for each curve is used for the PlotStyle option.
The first style, {Red,Thick}, uses simple directives for basic, easy-to-remember, control; the second
style uses higher precision control with Hue and Thickness.

3: The singularities in the function produce vertical lines in the above plots. To remove these features,
the option Exclusions can get a list of points where the curve should be sliced and not evaluated.

4: Here, we use Table to produce a list of all the singularities in tan(x)/x. This list is passed via
Exclusions.

7: This is a more complex example of filling: here we ask for the filling to take place between the second

curve and the first—and to use different filling styles when the first curve lies above or below the

second curve.

http://pruffle.mit.edu/3.016-2006/
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Lecture 05 Mathematica R© Example 4

Plotting Two Dimensional Parametric Curves and Mapped Regions
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

Here are simple examples of using ParametricPlot to plot functions for curves in the form (x(t), y(t)) and regions in the form
(x(s, t), y(s, t)).

1? ParametricPlot

2

MagicCircles@ t_, n_D :=

8 Cos@n t - Pi + 2 Pi Quotient@n t, 2 PiD ê n D +

Cos@2 Pi Quotient@n t, 2 PiD ê nD,
Sin@n t - Pi + 2 Pi Quotient@n t, 2 PiD ê n D +

Sin@2 Pi Quotient@n t, 2 PiD ê nD<

3
ParametricPlot@
MagicCircles@t, 5D, 8t, 0, 2 Pi<,
PlotStyle Ø Thick, PlotRange Ø AllD

4

Manipulate@
ParametricPlot@MagicCircles@t, ncircD,
8t, 0, lastp<, PlotStyle Ø Thick,
PlotPoints Ø 6 ncirc, Axes Ø FalseD,

88ncirc, 3<, 1, 36, 1<,
88lastp, 2 Pi<, 0.0001, 2 Pi<D

5OrbitOrbit@ r_, t_, n_D :=

8 r Cos@n t D + Cos@tD, r Sin@n tD + Sin@tD<

6
ParametricPlot@
Evaluate@OrbitOrbit@.5, t, 12DD,
8t, -Pi, Pi<, PlotStyle Ø ThickD
Now we let both r and t vary. Some regions in the disk r œ (0.25,0.75) 
don't get covered, and others get covered one or more times.

7
ParametricPlot@Evaluate@OrbitOrbit@r, t, 12DD,
8t, -Pi, Pi<, 8r, .25, .75<,
PlotStyle Ø 8Thick, Red<,
Mesh Ø False, PlotPoints Ø 72D

8

ParametricPlot@Evaluate@OrbitOrbit@r, t, 6DD,
8t, -Pi, Pi<, 8r, .25, .9<,
PlotStyle Ø 8Thick, Red<,
Mesh Ø False, PlotPoints Ø 36,
ColorFunction Ø HHue@Ò3, 1, 1, 0.25D &LD

2: A function, MagicCircles[t,n] , is defined to produce some interesting parametric plots. It returns
data in the form {x(t),y(t)} where t ∈ (0, 2π). The second argument, n, is a parameter which will
determine how many circles get drawn.

3: ParametricPlot is used with the PlotStyle option set for thick curves, and PlotRange set to All.

4: Here, we make ParametricPlot the first argument to Manipulate so that the number of circles
can be varied (note, that we force n to iterate over integers). The trajectory of the curve can be
visualized here by interactively changing the upper bound of t with lastp.

5: We cook up another function, OrbitOrbit[r,t,n] , to demonstrate filling a region. Data is returned in
the form {x(r,t),y(r,t)}, and n is a parameter.

6: If r is fixed, ParametricPlot produces a curve as before.

7: Letting both r and t vary, produces a two-dimensional region—one might think of the region as the
set of all the curves for different r.

8: This is a slightly advanced example where we use a pure function for the ColorFunction option.

I’m including this example because I think it’s pretty.

http://pruffle.mit.edu/3.016-2006/
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Lecture 05 Mathematica R© Example 5

Simple Plots of Data
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

One of Mathematica R© ’s integrated data resources, ElementData, is used to demonstrate plotting of discrete data.
The next command uses Mathematicas Integrated Data Resources, it will 
not retrieve the data unless you have an active internet connection

1ElementData@D
Here is a list of properties that we can access from ElementData

2ElementData@"Properties"D
However, one should always question the provenence and accuracy of 
data... Let's make a sanity check: the stable phase of carbon at STP is 
graphite which is hexagonal (but not close packed).

3ElementData@6, "StandardName"D
ElementData@6, "CrystalStructure"D

We create a list of the densities of the first one hundred elements. Data 
that is missing is reported with Missing[NotAvailable] or Missing[Un-
known].

4Densities =

Table@ElementData@i, "Density"D, 8i, 1, 100<D
5ListPlot@DensitiesD

6
ListPlot@Densities,
BaseStyle Ø 8Large, FontFamily Ø "Helvetica",
PointSize@0.025D<D

7

ListLinePlot@Densities,
BaseStyle Ø 8Large, FontFamily Ø "Helvetica",
PointSize@0.025D<D

ListPlot@Densities, BaseStyle Ø

8Large, FontFamily Ø "Helvetica",
PointSize@0.025D<, Joined Ø TrueD

To see the data, we use the PlotMarkers Option.

8

ListLinePlot@Densities,
BaseStyle Ø 8Large, FontFamily Ø "Helvetica",
PointSize@0.025D<,

PlotMarkers Ø Automatic, AxesLabel Ø

8"Element Number", "Density HMKSL"<,
ImageSize Ø LargeD

1: ElementData will download physical data for the elements via an internet connection. This command
won’t work if you do not have an active connection. However, similar data remain in the now obsolete
ChemicalElements package.

2: This produces a list of properties that are available. One should always suspect data sources! The
stable form of carbon and graphite, is hexagonal but not close-packed.

3: For example, this is how to access properties for carbon.

4: Table is used with ElementData to produce a list, Densities, of the first 100 elements for subsequent
use. Missing data are indicated with the function Missing.

5: Simply using ListPlot produces an indexed scatter plot.

6: Like Plot, we can use options in ListPlot and ListLinePlot to change the appearance of the
graphic.

7: A set of line segments are drawn (approximating a curve) in ListLinePlot—which is equivalent to
using ListPlot with the option PlotJoined set to True.

8: Using the PlotMarkers option, both the data and the line segments are visualized.

http://pruffle.mit.edu/3.016-2006/
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Lecture 05 Mathematica R© Example 6

Getting More out of Displayed Data: Screen Interaction
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

Putting too much information on a single data graphic can make it difficult to understand. Using pop-up windows with the mouse can
be a nice way to improve graphical information flow. Here, we show how this can be done using Tooltip. In these examples, where the
extra information appears can be altered by replacing Tooltip with StatusArea, Annotation, or PopupWindow.

Example with Tooltip to make graphics interactive----put your mouse over 
a point and you get a pop-up with more information

1

ListLinePlot@Tooltip@DensitiesD,
BaseStyle Ø 8Large, FontFamily Ø "Helvetica",
PointSize@0.025D<,

PlotMarkers Ø Automatic, AxesLabel Ø

8"Element Number", "Density HMKSL"<,
ImageSize Ø LargeD
This is a slightly more complicated example of Tooltip. We create a data 
structure with {x(i),y(i)} = {density(i), bulkmodulus(i)} and then tell Tooltip 
to pop-up the element's symbol when the mouse is over it.

2

ListPlot@
Table@Tooltip@8ElementData@i, "Density"D,

ElementData@i, "BulkModulus"D<,
ElementData@i, "Abbreviation"D,
LabelStyle Ø 8Large<D, 8i, 1, 100<D,

BaseStyle Ø 8Large, FontFamily Ø "Helvetica",
PointSize@0.025D<, PlotMarkers Ø Automatic,

AxesLabel Ø 8"Density", "Bulk Modulus"<,
PlotLabel Ø "MKS Units",
ImageSize Ø FullD

1: This is a simple example of Tooltip: wrapping the first argument to ListPlot or ListLinePlot

inside Tooltip will show the value of each data point when the mouse is over it.

2: I like this example which uses Tooltip[{xi,yi},labeli] to produce an interesting way to pick ma-

terial properties. Suppose we were interested in finding materials that are very stiff (large bulk modu-

lus) but not very heavy (low density)—plotting modulus versus density will identify “interesting” el-

ements in the northwest region of the plot. Using Tooltip with ElementData[i,‘‘Abbreviation’’]

allows us to explore element properties without cluttering up the plot. I use LabelStyle as an option

for Tooltip and ImageSize as an option for ListPlot to make things readable on the display.

http://pruffle.mit.edu/3.016-2006/
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Lecture 05 Mathematica R© Example 7

Graphical Data Exploration, continued
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

We use BarChart and PieChart in the BarCharts and PieCharts packages to explore the relative abundances of different crystal
structures among the elements. A three-dimensional histogram of elements selected by their melting points and densities is produced
with Histogram3D from the Histograms package.

Here we do a small exercise to get a graphical representation of which 
Crystal Structures the elements form, and represent the frequency of 
each type. First we create a list of known elemental crystal structures for 
the first 100 elements.

1CrystalStructures = Table@ElementData@
i, "CrystalStructure"D, 8i, 100<D

2
UniqueStructures = Tally@Cases@

CrystalStructures, Except@Missing@_DDDD
MatrixForm@UniqueStructuresD

Here is a bar chart showing the frequency of crystal structures. 

3

Needs@"BarCharts`"D
BarChart@Transpose@UniqueStructuresD@@2DD,
BarLabels ->

Transpose@UniqueStructuresD@@1DD,
BaseStyle Ø 8Large, FontFamily Ø "Helvetica"<,
BarOrientation Ø Horizontal, ImageSize Ø FullD

4

Needs@"PieCharts`"D
PieChart@Transpose@UniqueStructuresD@@2DD,
PieLabels ->

Transpose@UniqueStructuresD@@1DD,
BaseStyle Ø 8Large, FontFamily Ø "Helvetica"<,
ImageSize Ø FullD
As a last example, we produce a 3D histogram. The height of each bar 
corresponds to the number of elements in a range of melting points and 
range of densities.  

5

Needs@"Histograms`"D
histdata = DeleteCases@Table@

8ElementData@i, "AbsoluteMeltingPoint"D,
ElementData@i, "Density"D<, 8i, 100<D,

8Missing@_D, _< » 8_, Missing@_D<D
Histogram3D@histdata, AxesLabel Ø

8"Melting Point", "Density", "Number"<,
HistogramCategories Ø 816, 24< D

1: CrystalStructures will be a list of the crystal structures of the most stable solid phase. (I am not
sure what is meant by most stable—this is ambiguous, but that is what it says in the documentation)

2: UniqueStructures will be a list of pairs—each item will be comprised of a crystal structure and how
many times it appears. We use Cases to remove missing data by using a pattern, and then use
Tally to create the data structure.

3: Because BarChart needs data of the form {y1, y2, . . .}, we need to manipulate the data. To get
the data, Transpose will put the abundances into the second row, which is also the list we need. We
use the first row of the transpose for the BarLabels option. The plot is easier to read if horizontal,
so we use the BarOrientation option.

4: Here we simply replace the barchart with PieChart.

5: As a final example, we create a histogram of elements with similar densities and melting points. We

use a pattern with an “or” in Cases to remove missing data with DeleteCases, because we cannot

plot data where either the density or the melting point is missing.
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Lecture 05 Mathematica R© Example 8

Three-Dimensional Graphics
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

Here we show examples of three-dimensional graphics, although it would be better to say, 3D graphics projected onto a 2D screen.

1
EPot@x_, y_ , z_ , xo_ , yo_D :=

1

Hx - xoL^2 + Hy - yoL^2 + z^2

2
SheetOLatticeCharge@x_, y_ , z_D :=

Sum@EPot@x, y, z, xo, yoD,
8xo, -5, 5<, 8yo, -5, 5<D
SheetOLatticeCharge represents the electric field produced by an 11 by 
11 array of point charges arranged on the x-y plane at z = 0. The follow-
ing command evaluates and plots the field variation in the plane z = 0.25:

3
Plot3D@
Evaluate@SheetOLatticeCharge@x, y, 0.25DD,
8x, -6, 6<, 8y, -6, 6<D
Note below how theplot is set to contain the output of the Plot3D com-
mand---it is now a symbol assigned to a graphics object.  The number of 
plotpoints is increased so that we can resolve all the bumps.  This will 
take a while to compute on most machines.

4
theplot = Plot3D@
Evaluate@SheetOLatticeCharge@x, y, 0.25DD,
8x, -6, 6<, 8y, -6, 6<, PlotPoints Ø 60D
This demonstrates the use of RegionFunction plot option which is pure 
function. Here, only the region inside a cylinder with radius 9 (x2  + y 2  § 
92 ) is plotted.

5
Plot3D@
Evaluate@SheetOLatticeCharge@x, y, 0.25DD,
8x, -9, 9<, 8y, -9, 9<, PlotPoints Ø 60,
RegionFunction Ø HÒ1^2 + Ò2^2 § 81 &LD
This demonstrates the use of the ColorFunction  plot option which is pure 
function. Here we use one of Mathematica ColorData functions.

6

Plot3D@
Evaluate@SheetOLatticeCharge@x, y, 0.25DD,
8x, -9, 9<, 8y, -9, 9<, PlotPoints Ø 60,
RegionFunction Ø HÒ1^2 + Ò2^2 § 81 &L,
ColorFunction Ø

HColorData@"TemperatureMap"D@Ò3D &LD

1: This is the electrostatic potential as a function of (x, y, z) due to a single positive charge located at
(xo, yo, z = 0) (i.e., anywhere on the z = 0 plane).

2: By summing over a square lattice of unit charges, this function (SheetOLatticeCharge ) computes
the electrostatic potential over a 11× 11 square-lattice of point-charges centered on the z-plane as a
function of x, y, and z.

3: Plot3D plots data of the form f(x, y) (f is the height above a point (x, y)). Therefore, we must fix
one of the coordinates; here we visualize the electrostatic potential at a fixed height (z = 0.25). Note
that the bounds for both the “horizontal” and “into-screen” coordinates need to be specified.

You can rotate the graphics by dragging the mouse over the surface, translate by dragging with the
shift-key held down, and zoom with the alt-key held down.

4: With sufficiently many PlotPoints, the structure of the potential at a fixed distance z = 0.25 is
made apparent. The finer details are not resolved at lower resolutions, but using 60 points in each
direction may be overkill and this will be slow on older computers and may not fit on machines with
little memory.

5: RegionFunction is new as of Mathematica R© 6. This is an advanced examples, but it demonstrates
how one can plot over non-rectangular domains.

6: As a last example, the use of the new ColorData functions for the ColorFunction option is demon-

strated.

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2007/Notebooks/L05/Lecture-05.nb
http://pruffle.mit.edu/3.016-2007/pdf/L05/Lecture-05-8-COL.pdf
http://pruffle.mit.edu/3.016-2007/pdf/L05/Lecture-05-8-BW.pdf
http://pruffle.mit.edu/3.016-2007/html/Lecture-05/HTMLLinks/index_8.html
http://pruffle.mit.edu/3.016-2007/html/Lecture-05/HTMLLinks/index_8.html


3.016 Home

JJ J I II

Full Screen

Close

Quit

c©W. Craig Carter

Lecture 05 Mathematica R© Example 9

Colors and Contours: Three-Dimensional Graphics in Two Dimensions
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

Three dimensions can also be visualized by drawing level sets (as in a topographical map) or by drawing colors (as in a relief map). The
data burden is usually much smaller than a 3D graphics object, is sometimes easier to interpret, and is certainly easier to publish.

1
theconplot = ContourPlot@
Evaluate@SheetOLatticeCharge@x, y, 0.25DD,
8x, -6, 6<, 8y, -6, 6<, PlotPoints Ø 32D

2
theconplot = ContourPlot@
Evaluate@SheetOLatticeCharge@x, y, 0.25DD,
8x, -4, 4<, 8y, -4, 4<, PlotPoints Ø 50,
ColorFunction Ø Hue, Contours Ø 24D

3

thedenplot = DensityPlot@
Evaluate@SheetOLatticeCharge@x, y, 0.25DD,
8x, -4, 4<, 8y, -4, 4<,
PlotPoints Ø 50, ColorFunction Ø

ColorData@"GreenBrownTerrain"DD

1: We reproduce the 3D graphics object for the sheet of electric charges using ContourPlot. Here, the
number of contours are picked arbitrarily, but PlotPoints has to be increased to resolve details of
the function. Moving the mouse over one of the contours will give a pop-up window for the value
along that contour.

2: In the representation above, we might conclude that a positive charge (such as a hole) confined to
z = 0.25 could not be “trapped” because no minima are obvious. Increasing the number of contours
with the Contours option improves the resolution so that local minima can be observed. Here we
pass Hue to the ColorFunction option; however, I don’t find this satisfactory because both the
largest and the smallest values are red. In other words, the color scaling runs completely around the
outside of a color wheel and ends up where it started.

Unless options are sent requesting otherwise, the values of the plot will be scaled so that the maximum
and minimum values are 1 and 0. Thus, two plots would look the same whether the differences are
very small or very large. This feature is controlled by ColorFunctionScaling.

3: Here, instead of a single color decorating the region between two neighboring contours, a color is

plotted directly indicating the “height” of the function. ColorData is used with GreenBrownTerrain

so that the high potentials look like snow-covered peaks and lower potentials look like green river-

deltas.
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Lecture 05 Mathematica R© Example 10

Graphics Primitives, Drawing on Graphics, and Combining Graphical Objects
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

Here, examples of placing Graphics Primitives into a Graphics Object are demonstrated by direct means: by a drawing tool, and by
sequential combination.

It can be useful to be able to build up arbitrary graphics objects piece-by-
piece using simple "graphics primitives" like Circle:

1thecirc = Graphics@Circle@82, 2<, 1.5DD
2Show@thecirc, Axes -> TrueD

3Show@thecirc, Axes -> True,
AxesOrigin Ø 80, 0<, AspectRatio Ø 1D
Now we take a simple plot…

4cosplot = Plot@Cos@xD, 8x, 0, 4 Pi<D
Adding Graphics Primitives to Plots (or other 
graphics objects) using the built-in Drawing Tool

Mathematica6 now has a simple drawing editor that allows you add text, 
arrows, lines, and shapes to existing graphics. To do this, select the 
previous graphics output for the cosine plot.  While the graphics are 
selected, use the Menu Item "Drawing Tools" under Graphics. After you 
have added shapes, text, etc.. move the cursor to the left of the selected 
graphics object and type a symbol (below, I used "thenewplot") for the 
new (combined) graphics object to be assigned to.

5thenewplot =
Hello World!

2 4 6 8 1012
-1.0
-0.5

0.0
0.5
1.0

6thenewplot

Combining Graphical Objects using Show.
and overlay some text in places of our own choosing…

7
Show@cosplot, Graphics@
Text@"One Wavelength", 82 Pi, 0.5<DD,
Graphics@Text@"Two\nWavelengths",

84 Pi, 0.5<DD, PlotRange Ø AllD

8
Show@thenewplot, Graphics@
Text@"One Wavelength", 82 Pi, 1.1<DD,
Graphics@Text@"Two Wavelengths",

84 Pi, 1.1<DD, PlotRange Ø AllD

1: A Circle is a graphics primitive, and making a primitive an argument to Graphics returns a
“Graphics Object.” When a graphics object is output, graphics appear. The graphical output can
be suppressed by a trailing semicolon. In this case, thecirc is assigned to the graphics object and
it is displayed. If a trailing semicolon appears (e.g., a unit circle thecirc = Graphics[Circle[]];),
then the assignment is made to thecirc, but no graphics are sent to the display.

2–3: Additional options can be added to a graphics object with Show. The result is a new graphics
object.

4: Here we create a graphics object and assign it to the symbol cosplot by simply using Plot.

5: If the mouse is clicked on the display of the graphics object, then it can be edited just like input.
Clicking to the left of the object allows you to type a symbol for assignment to the graphics object.
Shown here is the result of assigning a graphic to thenewplot. If the graphic is selected, then
a Drawing Tools Widget can be pulled up under the Graphics menu item. With the widget, other
primitives such as text, lines, arrows, and shapes can be combined. When the expression is evaluated,
the combined graphics will be assigned to thenewplot.

7–8: Here, Show is used to add text via a graphics primitive to the original plot and to the new combined

graphics object.
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Lecture 05 Mathematica R© Example 11

A Worked Example: The Two-Dimensional Wulff Construction
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

The Wulff construction is a famous thermodynamic construction that predicts the equilibrium enclosing-surface of an anisotropic isolated
body. The anisotropic surface tension, γ(n̂), is the amount of work (per unit area) required to produce a planar surface with outward
normal n̂. The construction proceeds by drawing a bisecting plane at each point of the polar plot γ(n̂)n̂. The interior of all bisectors is
the resulting Wulff shape.
A working example of the Wulff construction for a γ(θ) in two dimensions is produced here.

This next example shows a clever way to perform a famous thermody-
namic graphical construction called  the  Wulff construction. 

1

wulffline@8x_, y_<, wulfflength_D :=

Module@8q, wulffhalf = wulfflength * 0.5,
x1, x2, y1, y2<, q = ArcTan@x, yD;
x1 = x + wulffhalf * Cos@q + Pi ê 2D;
x2 = x + wulffhalf * Cos@q - Pi ê 2D;
y1 = y + wulffhalf * Sin@q + Pi ê 2D;
y2 = y + wulffhalf * Sin@q - Pi ê 2D;
Graphics@Line@88x1, y1<, 8x2, y2<<DD

D

2
gammaplot@ theta_ , anisotropy_ , nfold_D :=

8Cos@thetaD + anisotropy *

Cos@Hnfold + 1L * thetaD, Sin@thetaD +

anisotropy * Sin@Hnfold + 1L * thetaD<

3
GammaPlot =

ParametricPlot@gammaplot@t, 0.1, 4D,
8t, 0, 2 Pi<, PlotStyle Ø

88Thickness@0.01D, RGBColor@1, 0, 0D<<D

4Show@Table@wulffline@gammaplot@t, 0.1, 4D, 2D,
8t, 0, 2 Pi, 2 Pi ê 100<D, GammaPlotD

5

ToutesDesLoups@anisotropy_, nfold_D :=

Module@8GammaPlot <, GammaPlot =

ParametricPlot@gammaplot@t, anisotropy,
nfoldD, 8t, 0, 2 Pi<, PlotStyle Ø

88Thickness@0.01D, RGBColor@1, 0, 0D<<D;
Show@Table@wulffline@gammaplot@

t, anisotropy, nfoldD, 3D,
8t, 0, 2 Pi, 2 Pi ê 100<D, GammaPlotDD

Manipulate@ToutesDesLoups@aniso, nfoldD,
88aniso, 0.1<, -0.9, 0.9<,
88nfold, 6<, 2, 16, 1<D

1: This function takes a point {x,y} as an argument and then returns a graphics object of a line of
specified length. The line is the perpendicular bisector required by the Wulff construction.

2: This is an example γ(n̂) with the surface tension being smaller in the 〈11〉-directions (if the
anisotropy parameter is positive).

3: A particular instance of a γ-plot is assigned to GammaPlot.

4: Table is used to produce a list of graphics objects by calling wulffline function at one hundred points
on the γ-plot. The equilibrium shape is the interior of all the curves and the γ-plot from which it
derives is superimposed by collecting all the graphics together with Show.

5: All the above steps are collected together and bundled into a Module to produce a single visualization
function, ToutesDesLoups . The function depends on the prior definition of gammaplot[t,α,n].

6: Here, ToutesDesLoups is used as the argument to Manipulate to visualize the effect of changing

the anisotropy factor and the n-fold axis.
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Lecture 05 Mathematica R© Example 12

Animation
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

Animations are a nice way to visualize an extra dimension, like time. An animation is composed of a sequence of displayed graphics
(frames) that are displayed iteratively. Animations are fairly easy to create–and can be great fun.

1
Fxt@x_, t_D :=

Sin@3 Hx + 10 - tLD Exp@-Hx + 10 - tL^2D -

Sin@3 Hx - 10 + tLD Exp@-Hx - 10 + tL^2D

2

Animate@
Plot@Fxt@xvar, timevarD, 8xvar, -15, 15<,
PlotRange Ø 8-1, 1<, PlotStyle Ø 8Thick, Red<,
Filling Ø Axis, FillingStyle Ø

8RGBColor@0, 0.5, 0, 0.5D, RGBColor@
0, 0, 0.5, 0.5D<D, 8timevar, 0, 25<D

This is the solution to the temperature evolution equation (the diffusion 
equation) for a square of length L initially at 500K embedded in a plate 
initially at 100K , k is the themal diffusivity (units length2 /time).  We 
introduce a "normalized" time and space variables variable t= k t/L2  and x 
= x/L and h=y/L

3

TempSquare =

100 + 400 IntegrateB
ExpB-

Hx-xoL2 + Hy-yoL2
4 k t

F
4 p k t

,

8xo, -L ê 2, L ê 2<, 8yo, -L ê 2, L ê 2<F
NormalizeRules = 9t Ø t L2 ë k, x Ø x L ,

y Ø h L , xo Ø xo L, yo Ø ho L=;
TempSquare = Simplify@TempSquare ê.

NormalizeRules, Assumptions Ø k > 0 && L > 0D
We divide by 500 so that the temperatures should scale between zero 
and one, and then use ColorFunctionScaling->False so that the colors 
are consistent over time.

4

ListAnimate@
Table@Plot3D@TempSquare ê 500, 8h, -1, 1<,

8x, -1, 1<, PlotRange Ø 80, 1<, PlotPoints Ø

50, ColorFunction Ø "TemperatureMap",
ColorFunctionScaling Ø FalseD,

8t, 0.001, .1, 0.002<DD

1: We will create a simple animation by cooking up a function f(x, t) and then plotting it for a range
of x and for a sequence of t’s.

2: This plot would be the frame associated with t = 0.

3: Using Plot as the argument to Animate produces the animation. Note, xvar ‘belongs’ to Plot

while timevar belongs to Animate.

Can you imagine what the animation would look like if we animated over x and plotted over t? No?
Try it!

4: We will produce a three-dimensional animation of how the temperature would change in a flat plate,
if at time t = 0 there is a square at a different temperature than the rest of the plate. The governing
partial differential equation is ∂T/∂t = κ∇2T and for initial conditions T (x, y, t = 0) = 500 when
−L/2 < x, y < L/2 and T = 100 otherwise, the closed form solution can be expressed as an integral.

To make a plot, we must send a function that can be evaluated numerically. To do this, we must non-
dimensionalize variables (also known, as dimensional scaling or normalizing variables). This is done
by dividing variables having physical units (such as x), with a characteristic quantity in the model
that has the same physical units (here, we will use the model’s length L to produce a dimensionless
variable ξ = x/L) NormalizeRules is a set of rules that can be applied to our physical problem.
After the normalization rules are applied, the properly scaled solution should be a non-dimensional
temperature-quantity as a function of non-dimensional space- and time-quantities.

5: Finally, we will use Plot3D inside ListAnimate. Plot3D’s argument is scaled by dividing by the

maximum temperature, so that all temperature-like quantities scale between zero and one. We turn

off ColorFunctionScaling so that the ‘meaning’ of each color remains constant in the animation.

ListAnimate takes a list of frames that are produced via Table.
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Lecture 05 Mathematica R© Example 13

An Example of Animating a Random Walk
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

A random walk process is an important concept in diffusion and other statistical phenomena. Functions to simulate a random walk in
two dimensions are constructed and then visualized with animations.

1randomwalk@0D = 80, 80, 0<<

2

randomwalk@nstep_Integer ?PositiveD :=

randomwalk@nstepD =

8nstep, randomwalk@nstep - 1DP2T +

RandomReal@0.5D 8Cos@
theta = RandomReal@2 pDD, Sin@thetaD<<

Create a function that returns a graphic object putting the step number at 
the correct place:

3
gtext@nstep_Integer ?NonNegativeD :=

gtext@nstepD = Graphics@
Text@ToString@randomwalk@nstepD@@1DDD,
randomwalk@nstepD@@2DDDD;

4locations = Show@Table@gtext@iD, 8i, 0, 100<D,
PlotRange Ø All, AspectRatio Ø 1D

5
gline@nstep_IntegerD := gline@nstepD =

Graphics@Line@8randomwalk@nstep - 1D@@2DD,
randomwalk@nstepD@@2DD<DD;

6
Show@Table@gtext@iD, 8i, 0, 100<D,
Table@gline@jD, 8j, 1, 100<D,
PlotRange Ø All, AspectRatio Ø 1D

7Animate@Show@gtext@iD, gline@iDD,
8i, 1, 49, 1<D
If we use the PlotRange from a graphical object that contains all the 
points, we can fix the framesize, we use AbsoluteOptions

8prange =

PlotRange ê. AbsoluteOptions@locationsD

9Animate@Show@gtext@iD, gline@iD,
PlotRange Ø prangeD, 8i, 1, 100, 1<D

10
Animate@
Show@Table@8gtext@iD, gline@iD<, 8i, 1, j<D,
PlotRange Ø prangeD, 8j, 2, 100<D

1–2: This is a recursive function that simulates a random walk process. Each step in the random walk
is recorded as a list structure, { {iteration number}, { x , y }}, and assigned to randomwalk
[iteration number]. For each step (or iteration), a number between 0 and 1/2 is selected (for the
magnitude of the displacement), and an angle between 0 and 2π is selected (for the direction), with
each of these numbers being selected randomly from a uniform distribution (using RandomReal).
The function includes an assignment, so all previous values are stored in memory.

3: The function gtext calls randomwalk to create a text graphics-object located at the position corre-
sponding to nstep.

4: This shows the history of a random walk after 50 iterations by combining the graphics objects
created by gtext . The resulting graphics object gets assigned, because we will use some information
contained in it later.

5: To improve the physical interpretation of the previous graphic, it would be an aid to the eye if the
individual jumps were indicated. To do this, the function gline calls randomwalk to create a line
graphics-object connecting the position corresponding to nstep to its previous position.

7: Thus, we could animate by combining the line and the text with Show and using that as the argument
to Animate. However, this result will be unsatisfactory because the “length scale” of each frame will
not be consistent.

8: To solve this problem, we find the bounds of a graphics object (locations) that contains all the
points, and then query its PlotRange using AbsoluteOptions and this is assigned to a symbol
prange.

9: The animation is consistent now, but could still use some improvement.

10: Here, we animate the graphics object that also contains the history of prior jumps. This is not a

terribly efficient way to do this because we recreate the early steps many times over, but it works for

our purposes.
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Lecture 05 Mathematica R© Example 14

Worked Example (part A): Visualizing the Spinodal and Common Tangent Construction
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

The spinodal and common tangent construction is a fundamental thermodynamic concept used for the creation of an alloy phase diagram
from molar-free energies. This construction appears repeatedly in studies of materials.
An example of visualizing this construction as a function of temperature will be worked out in detail for the case of a single curve and a
binary alloy.
First, we will work out all the steps in detail that are used to build up a single visualization, and then we will collect it all together in a
reusable function.

A prototype molar free energy of mixing using the same xlogx function for 
the ideal entropy of mixing terms.  The temperature term is a scaled 
energy (RT), and it is assumed that enthalpies have been scaled so that 
the temperatures of interest (if there are any) are between T=0 and T=10.

1

xlogx@0D =

xlogx@1D = xlogx@0.0D = xlogx@1.0D = 0;
xlogx@x_D := x Log@xD
Gmolar@X_, T_D :=

5 X H1 - XL + T Hxlogx@XD + xlogx@1 - XDL + X ê 2
Here is the shape of our prototype free energy at T=3/2

2p1 = Plot@Gmolar@x, 3 ê 2D,
8x, 0, 1<, PlotStyle Ø ThickD
We will need the bounds of the above graphics object:

3
88graphxmin, graphxmax<,

8graphymin, graphymax<< =

PlotRange ê. AbsoluteOptions@p1, PlotRangeD
First let's determine where the spinodal region (by finding where the 
second derivative with respect to composition is negative

4ddg = D@Gmolar@x, 3 ê 2D, 8x, 2<D
Then, use RegionPlot to illustrate the range over which spinodal decompo-
sition is spontaneous

5
p2 = RegionPlot@ddg < 0,

8x, graphxmin, graphxmax<,
8T, graphymin, graphymax<,
PlotStyle Ø RGBColor@0, 1, .5, 0.1DD
Show them both together to identify the spinodal region

6Show@p1, p2D

1: We cook up a prototypical molar free-energy as a function of molar composition, X, and temperature
T. The x log x terms are calculated with a handy function, xlogx , which will handle the zeroes without
numerical difficulty at 0 Log[0].

2: The molar free-energy is plotted at a particular temperature (T = 1.5) and assigned to a symbol, pl.

3: We will need the bounds of the plot to create other graphical objects. We grab the bounds with
AbsoluteOptions and assign them to variables using a handy assignment construction {a,b} =

List.

4: The spinodal region is the easiest to visualize—it is the region where the second derivative of the
molar free-energy is negative. The second derivative is assigned to ddg.

5: RegionPlot evaluates its first argument over a square region and fills where the argument is true.
It is exactly what we need in order to visualize the spinodal region. We use the bounds that we
calculated from the free energy curve as the bounds for RegionPlot.

6: Showing both plots together, we visualize the spinodal region.
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Lecture 05 Mathematica R© Example 15

Worked Example (part B): Visualizing the Spinodal and Common Tangent Construction
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

The common tangent is any finite line segment that touches the molar free-energy at two points which have the same derivative. For
phase diagrams, we are interested only in lower common tangents (i.e., lines that touch the molar free-energy, but always lie below all
values). One can picture the common tangent by imagining that an elastic string is stretched along a molar free-energy curve; the common
tangents are where the string pulls away from the the curves.
The common tangent is related to the convex hull that appears in computational geometry.

We can use the ConvexHull to find the common tangent lines; this 
function is in the Computational Geometry Package.

1<< ComputationalGeometry`

First we compute a list of values along the molar free energy curve, then 
compute those that lie outside the common tangent(s) (i.e., the convex 
hull). Because the points are given in order, we might as well
sort them on the way back out.  Note, the convex hull program gives the 
indices of the vertices that are on the hull.

2
npoints = 100;
gvals = Table@8x, Gmolar@x, 3 ê 2D<,

8x, 0, 1, 1 ê N@npoints - 1D<D;
We only want the lower convex hull; therefore we add some "fictive" 
points to the beginning and the end of the data.  The the fictive points 
add a rectangle to the top of the curve that should be part of the com-
puted convex hull.

3
gmax = Max@Transpose@gvalsD@@2DDD;
PrependTo@gvals, 80, 10 * Abs@gmaxD<D;
AppendTo@gvals, 81, 10 * Abs@gmaxD<D;

After we compute this hull, we shift the hull by one and take off its first 
and last element. We strip the first and last element from the discrete 
values of free energy as well.

4
chull = Sort@ConvexHull@gvalsDD;
chull = Drop@Drop@chull - 1, 1D, -1D
gvals = Drop@Drop@gvals, 1D, -1D

The common tangent(s) correspond to gaps in the vertex list of the 
common tangent. We will use Split to find the set of continous sequences.

5convexparts = Split@chull, HÒ2 - Ò1 < 2L &D

881, 2, 3, 4, 5, 6<, 895, 96, 97, 98, 99, 100<<

1: To calculate convex hulls, the ComputationalGeometry package is needed.

2: ConvexHull operates on discrete data. Discrete data are created by evaluating Gmolar at npoints

evenly-spaced mesh-points. We use Table and assign the discrete data list to gvals.

3: ConvexHull calculates the entire hull (i.e., the polygon that encloses all other points), and we are
only interested in the lower hull. Thus, we add a rectangle to the top of the data which is guaranteed
to be part of the hull, calculate the hull and discard the upper parts. Here we use PrependTo to add
a point ten times higher than the maximum value on the left side of the region, and use AppendTo

to add a corresponding point to the right side of the region. We have thus added a known rectangle
that we will remove later.

4: ConvexHull returns a list of indices of points from the original data. Because the original data was
created in an orderly left-to-right way, we can use Sort to put the data in a predictable form.
Because there was an additional point added at the beginning of gvals, we will need to shift the
indices down by one (by subtracting 1 from each index), and then we use Drop to remove the first
and last elements of both chull and gvals.

5: Thinking about the indices on the convex hull, any ordered sequence of the sorted list must be part

of original discrete data and also part of the convex hull. We are interested in connecting the last

point of any isolated sequence to the first point of the next sequence. We can use Split to find the

isolated sequences.

http://pruffle.mit.edu/3.016-2006/
http://pruffle.mit.edu/3.016-2007/Notebooks/L05/Lecture-05.nb
http://pruffle.mit.edu/3.016-2007/pdf/L05/Lecture-05-15-COL.pdf
http://pruffle.mit.edu/3.016-2007/pdf/L05/Lecture-05-15-BW.pdf
http://pruffle.mit.edu/3.016-2007/html/Lecture-05/HTMLLinks/index_15.html
http://pruffle.mit.edu/3.016-2007/html/Lecture-05/HTMLLinks/index_15.html


3.016 Home

JJ J I II

Full Screen

Close

Quit

c©W. Craig Carter

Lecture 05 Mathematica R© Example 16

Worked Example (part C): Visualizing the Spinodal and Common Tangent Construction
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

With the information contained in the convex hull data, graphical objects are created to represent the gaps in that data. The gaps
coincide with the common tangents.

Now we create graphics objects for each of the two-phase regions (i.e., 
the gaps in the convex hull) and collect them all into a graphics list for 
subsequent display.

1

len = Length@convexpartsD;
graphicslist = 8<;
i = 1;
While@i + 1 § len, leftpoint =

gvals@@Last@ convexparts@@iDD D DD ;
rightpoint = gvals@@
First@ convexparts@@i + 1DD D DD;

ctline = 8Red, Thick,
Line@8leftpoint, rightpoint<D<;

twophaseregion = 8RGBColor@0.5, 0, 0, 0.2D,
Rectangle@8leftpoint@@1DD, graphymin<,
8rightpoint@@1DD, graphymax<D<;

AppendTo@graphicslist, ctlineD;
AppendTo@graphicslist, twophaseregionD;
i++

D
p3 = Graphics@graphicslistD

2Show@p1, p2, p3D

1: We traverse the list convexparts and construct graphical objects corresponding to the regions of
isolated sequences. Because it is possible that a curve may have any number of common tangents,
we accumulate graphics primitives in a list as we encounter common tangents. A graphics object is
created from the list of graphics primitives.

The number of isolated sequences is assigned to len and we start with an empty list graphicslist.
Then, we loop over the list of length len. At each iteration in the loop, we identify the last vertex
on the previous point of the convex hull sequence and the first part of the next sequence. We use
those indices to extract the points on the curve that have been stored in gvals. With the two points,
we create red lines for the common tangents—and with the extra graphical information about the
original plot, draw a rectangle for the region.

Finally, a new graphics object (p3) is created.

2: Our final visualization is obtained by showing all three graphics objects together.
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Worked Example (part D): Visualizing the Spinodal and Common Tangent Construction
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

The previous three parts illustrate how one might actually go about developing a complex visualization: create simple working
parts and then integrate them together into something more complex. (Don’t get the impression that I didn’t make any er-
rors or silly conceptual mistakes as I created this example! It was very time consuming and, while it looks fairly straightforward
in hindsight, it was a challenge to build.) However, once finished, it is useful to collect everything into a single function that can be reused.

1

Needs@"ComputationalGeometry`"D;
CommonTangentConstruction@
Gm_, T_, npts_: 100D :=

Module@8x, y, p1, p2, p3, gxmin, gxmax,
gymin, gymax, ddg, gvals, gmax,
chull, conprts, len, glist = 8<, i = 1,
lftpt, rtpt, ctline, twophasreg<,
p1 = Plot@Gm@x, TD, 8x, 0, 1<,
PlotStyle Ø ThickD;

88gxmin, gxmax<, 8gymin, gymax<< =

PlotRange ê.
AbsoluteOptions@p1, PlotRangeD;

ddg = D@Gm@x, TD, 8x, 2<D;
p2 = RegionPlot@ddg < 0,

8x, gxmin, gxmax<, 8y, gymin, gymax<,
PlotStyle Ø RGBColor@0, 1, .5, 0.1DD;

gvals = Table@8x, Gm@x, TD<,
8x, 0, 1, 1 ê N@npts - 1D<D;

gmax = Max@Transpose@gvalsD@@2DDD;
PrependTo@gvals, 80, 10 * Abs@gmaxD<D;
AppendTo@gvals, 81, 10 * Abs@gmaxD<D;
chull = Sort@ConvexHull@gvalsDD;
chull = Drop@Drop@chull - 1, 1D, -1D;
gvals = Drop@Drop@gvals, 1D, -1D;
conprts = Split@chull, HÒ2 - Ò1 < 2L &D;
len = Length@conprtsD;
While@i + 1 § len,
lftpt = gvals@@Last@ conprts@@iDD D DD ;
rtpt = gvals@@ First@ conprts@@i + 1DD D DD;
ctline =

8Red, Thick, Line@8lftpt, rtpt<D<;
twophasreg = 8RGBColor@0.5, 0, 0, 0.2D,
Rectangle@8lftpt@@1DD, gymin<,
8rtpt@@1DD, gymax<D<;

AppendTo@glist, ctlineD;
AppendTo@glist, twophasregD; i++D;

p3 = Graphics@glistD; Show@p1, p2, p3DD

1: Here is the result, CommonTangentConstruction , which collects the previous three examples together
and returns a single graphical object. CommonTangentConstruction takes two arguments for the
molar free-energy function, Gm, and temperature T, and an optional third argument for the precision
to calculate the hull. The optional argument is indicated by the :100 and will default to 100 if not
passed to the function.

The first argument must be the name of a defined function of composition and temperature.
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Worked Example (part E): Visualizing the Spinodal and Common Tangent Construction
notebook (non-evaluated) pdf (evaluated, color) pdf (evaluated, b&w) html (evaluated)

Examples of visualizing with CommonTangentConstruction are presented here.
1CommonTangentConstruction@Gmolar, 1.5D

2Manipulate@CommonTangentConstruction@
Gmolar, T, 300D, 88T, 2<, 0, 3<D

T

1: This is the construction at T = 1.5.

2: Here we use the construction as an argument to Manipulate so that we can observe the effect of

temperature on the spinodal and common tangent construction.
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AbsoluteOptions, 55, 56
Animate, 54, 55
animation

of random walk, 55
Annotation, 48
AppendTo, 57
arguments with default values, 59
array of charges

visualization example, 50
AxesLabel, 43

BarChart, 49
BarCharts, 49
BarLabels, 49
BarOrientation, 49
BaseStyle, 43
BasicMathInput, 43

Cases, 49
ChemicalElements, 47
Circle, 52
ColorData, 50, 51
ColorFunction, 46, 50, 51
ColorFunctionScaling, 51, 54
common tangent construction

visualization of, 56
CommonTangentConstruction, 59, 60
ComputationalGeometry, 57
ContourPlot, 51
Contours, 51

convex hull, 57
ConvexHull, 57
crystal structures

relative fractions among elements, 49

data
using mouse-over to annotate, 48

data visualization, 47
DeleteCases, 49
density—melting point

histogram for elements, 49
diffusion equation

example of visualizing, 54
dimensional scaling, 54
Drawing Tools Widget, 52
Drop, 57

element properties
visualization, 47

ElementData, 47
Evaluate, 45
Example function

CommonTangentConstruction, 59, 60
Gmolar, 57
MagicCircles[t,n], 46
NormalizeRules, 54
OrbitOrbit[r,t,n], 46
SheetOLatticeCharge, 50
ToutesDesLoups, 53
gline, 55
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gtext, 55
randomwalk, 55
wulffline, 53
xlogx, 56

Exclusions, 45

Filling, 45
filling

between curves, 45

gline, 55
Gmolar, 57
Graphics, 52
graphics

graphical interaction
simple example, 44

graphics primitives, 52
mesh control, 44

graphics in mathematica
examples, 42

Graphics Object, 52
Graphics Primitives, 52
GreenBrownTerrain, 51
gtext, 55

Histogram3D, 49
Histograms, 49
Hue, 45, 51

ImageSize, 48

LabelStyle, 48
ListAnimate, 54

ListLinePlot, 47, 48
ListPlot, 47, 48

MagicCircles[t,n], 46
Manipulate, 44, 46, 53, 60
Mathematica function

AbsoluteOptions, 55, 56
Animate, 54, 55
Annotation, 48
AppendTo, 57
AxesLabel, 43
BarChart, 49
BarLabels, 49
BarOrientation, 49
BaseStyle, 43
BasicMathInput, 43
Cases, 49
Circle, 52
ColorData, 50, 51
ColorFunctionScaling, 51, 54
ColorFunction, 46, 50, 51
ContourPlot, 51
Contours, 51
ConvexHull, 57
DeleteCases, 49
Drop, 57
ElementData, 47
Evaluate, 45
Exclusions, 45
Filling, 45
Graphics, 52
GreenBrownTerrain, 51
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Histogram3D, 49
Hue, 45, 51
ImageSize, 48
LabelStyle, 48
ListAnimate, 54
ListLinePlot, 47, 48
ListPlot, 47, 48
Manipulate, 44, 46, 53, 60
MaxRecursion, 44
MeshStyle, 44
Mesh, 44
Missing, 47
Module, 53
ParametricPlot, 46
PieChart, 49
Plot3D, 50, 54
PlotJoined, 47
PlotMarkers, 47
PlotPoints, 44, 50, 51
PlotRange, 43, 46, 55
PlotStyle, 43, 45, 46
Plot, 43–45, 52, 54
PopupWindow, 48
PrependTo, 57
RandomReal, 55
RegionFunction, 50
RegionPlot, 56
Show, 52, 53, 55
Sort, 57
Split, 57
StatusArea, 48
Table, 45, 47, 53, 54, 57

Tally, 49
Thickness, 45
TickStyle, 43
Tooltip, 48
Transpose, 49

Mathematica package
BarCharts, 49
ChemicalElements, 47
ComputationalGeometry, 57
Histograms, 49
PieCharts, 49

MaxRecursion, 44
melting point–density

histogram for elements, 49
Mesh, 44
mesh, 44
MeshStyle, 44
Missing, 47
Module, 53

non-dimensionalize variables, 54
NormalizeRules, 54
normalizing variables, 54

optional arguments, 59
OrbitOrbit[r,t,n], 46

parametric plots, 46
ParametricPlot, 46
phase diagrams

visualization of common tangent construction, 56
PieChart, 49
PieCharts, 49
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Plot, 43–45, 52, 54
Plot3D, 50, 54
PlotJoined, 47
PlotMarkers, 47
PlotPoints, 44, 50, 51
PlotRange, 43, 46, 55
plots

changing appearance, 43
changing the appearance of individual curves, 45
data, 47
excluding points, 45
filling, 45
labeling, 43
multiple curves, 45
over non-rectangular regions, 50
parametric, 46
superposition of curves, 45
ticks, 43
two dimensions

examples, 43
options, 43

PlotStyle, 43, 45, 46
PopupWindow, 48
PrependTo, 57
pure function, 46

random walk, 55
RandomReal, 55
randomwalk, 55
RegionFunction, 50
RegionPlot, 56

SheetOLatticeCharge, 50

Show, 52, 53, 55
singularities

removing from plots, 45
Sort, 57
spinodal

visualization of, 56
Split, 57
StatusArea, 48

Table, 45, 47, 53, 54, 57
Tally, 49
Thickness, 45
TickStyle, 43
Tooltip, 48
ToutesDesLoups, 53
Transpose, 49

visualization example
random walk, 55

Wulff construction
example mathematica function to draw, 53

Wulff shape, 53
wulffline, 53

xlogx, 56
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