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Dec. 4 2006

Lecture 26: Separation of Variables and Solutions to Com-
mon ODEs

Reading:
Kreyszig Sections: 5.3, 5.5, 5.6 (pages177–180, 189–197, 198–202)

Special Functions: Solutions to Common ODEs

Most calculators have a button that evaluates the eigensolution to the simple first-order ODE dy/dt =
λy. Also, most calculators have buttons that evaluate the eigensolutions to the simple second-order
ODE: d2y/dt2 = λy.

Of course, these are also just the exponential and trigonometric functions.
However, there are many more simple differential equations that follow from physical models and

these also have known solutions that are not simple combinations of sines, cosines, and exponentials.
The solutions to these differential equations are called special functions. Mathematica R© has an
extensive list of special functions and these are collected in its help browser.

For example, the positions of a vibrating drum head are modeled with in cylindrical coordinates by
Bessel’s equation:
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(26-1)

where in the second equation ρ = kr. The displacement of the drum is h(r); k is related to an inverse
wavelength (e.g., the wavelength would be the radius of the drum divided by the number of maxima
in the drum head shape) and m is the mode (e.g., the number of maxima traversing the drum by 2π
in a circular direction).

There two solutions to Bessel’s equation and the general solution is the sum the two:

h(r) = C1Jm(kr) + C2Ym(kr)
h(ρ) = C1Jm(ρ) + C2Ym(ρ)

(26-2)

where Jm(x) is called (naturally enough) an order-m Bessel function of the first kind and Ym(x) is
called (naturally enough) an order-m Bessel function of the second kind. These are analogous to the
sines and cosines, but for a different ODE.

Another equation that appears in models of the angular deformations of body in a central force
potentials (for example, the ion distribution about a fixed charge; or, the Schrödinger equation for the
electron in a hydrogen atom) in spherical coordinates is Legendre’s equation:
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(26-3)

where µ ≡ cos θ so that −1 ≤ µ ≤ 1. The value ` is related to the number of modes in the θ direction
and m is related to the number of modes in the φ direction.
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Legendre’s equation has two solutions:

Ξ(µ) = C1Plm(µ) + C2Qlm(µ) (26-4)

The eigensolution Plm(µ) is called (again, naturally enough) order m Legendre functions of the first
kind and Qlm(µ) are called order lm Legendre functions of the second kind.

There are many other types of special functions.

Lecture 26 Mathematica R© Example 1

Visualizing special functions.

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

The ODEs that produce Bessel, Legendre, LaGuerre, and Hypogeometric functions are solved and these special
functions are visualized.

1: This is Bessel’s equation for y(x).
3: MyPlotStyle is a function to set PlotStyle for a given number of curves

so that their colors are spread over Hue from red (0) to blue (0.66).
4: This will produce at plot of the zeroeth Bessel’s function of the first kind

( BesselJ) and zeroeth Bessel’s function of the second kind ( BesselY)/
solutions.

6: This is two-parameter form of Ledendre’s equation for y(x).
8: This is another form of Ledendre’s equation for y(x).

14: This will produce solutions to Laguerres’s equation for y(x).

Bessel's equation

1 BesselODE = x2  y ''@xD + x y '@xD + Hx2 - n2 L y@xD ã 0

2 DSolve@BesselODE, y@xD, xD

3
MyPlotStyle@HowMany_IntegerD :=

Table@8Hue@0.66 * i êHowManyD, Thickness@0.01D<,
8i, 0, HowMany<D

4 Plot@8BesselJ@0, xD, BesselY@0, xD<,
8x, 0, 20<, PlotStyle Ø MyPlotStyle@2DD

5 Plot@8BesselJ@1 ê2, xD, BesselY@1 ê2, xD<,
8x, 0, 20<, PlotStyle Ø MyPlotStyle@2DD

Legendre's equation

6 LegendreODE = H1 - x2 L y''@xD - 2 x y '@xD + Hn Hn + 1LL y@xD ã 0

7 DSolve@LegendreODE, y@xD, xD

8
AnotherFormLegendreODE =

H1 - x2 L y ''@xD - 2 x y'@xD +
i
k
jjn Hn + 1L -

m2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 - x2

y
{
zz y@xD ã 0

9 DSolve@AnotherFormLegendreODE, y@xD, xD

10 Plot@8LegendreP@0, xD, LegendreQ@0, xD<,
8x, -1, 1<, PlotStyle Ø MyPlotStyle@2DD

11 Plot@8LegendreP@1, xD, LegendreQ@1, xD<,
8x, -1, 1<, PlotStyle Ø MyPlotStyle@2DD

12 Plot@Evaluate@Table@LegendreP@i, xD, 8i, 0, 10<DD,
8x, -1, 1<, PlotStyle Ø MyPlotStyle@11DD

13 Plot@Evaluate@Table@LegendreQ@i, xD, 8i, 0, 10<DD,
8x, -1, 1<, PlotStyle Ø MyPlotStyle@11DD

Hypergeometric and Laguerre special functions

14 DSolve@x y''@xD + Hq + 1 - xL y'@xD + p y@xD ã 0, y@xD, xD
15 Plot@LaguerreL@4, 1, xD, 8x, -5, 15<D

Partial Differential Equations: Separation of Variables

Many ordinary differential equations that arise in practice derive from methods to solve partial differ-
ential equations.

In other words, the solution to the partial differential equation involving c(x, y, z, t) and its partial
derivatives with respect to x, y, z, and t can sometimes be reduced to the solution of several ordinary
differential equations.

In practice, most of the partial differential equations that can be solved analytically are solved by
the method of separation of variables. Separation of variables works by isolating one of the variables

http://pruffle.mit.edu/3.016-2006/Notebooks/L26/Lecture-26.nb
http://pruffle.mit.edu/3.016-2006/pdf/L26/Lecture-26-1.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-26/HTMLLinks/index_1.html
http://pruffle.mit.edu/3.016-2006
http://pruffle.mit.edu/3.016-2006/html/Lecture-26/HTMLLinks/index_1.html
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onto one side of equality—it is best described by simple example and here the one-dimensional wave-
equation is a prototype. The wave-equation (e.g., the time (t)-dependent propagation of a scalar
quantity (h) such as height, density, charge, etc. in a single direction x is:

∂2h(x, t)
∂t2

= v2∂
2h(x, t)
∂x2

(26-5)

where v is the phase-velocity v = ω/k, ω is the angular frequency describing how rapidly the phase of
the wave changes as it moves past a fixed position and k = 2π/λ is the wave-number.

Consider a specific case in which waves are propogating in a guitar string of length L—this will
give Dirichlet boundary conditions at the guitar’s nut and saddle:

h(x = 0, t) = 0 and h(x = L, t) = 0 (26-6)

(two boundary conditions—one for each spatial derivative). The shape of plucked string gives the
initial condition; for example, this could be modeled with a triangular shape:

h(x, t = 0) =
{
Ax/` 0 < x < `

AL−x
L−` ` < x < L

(26-7)

where the string is plucked at a position x = ` with a displacement A at time t = 0.
The separation of variables method begins with the assumption that the function can be factored

into independent functions of the dependent variables. For Eq. 26-5, this assumption is written as:

h(x, t) = χ(x)τ(t) (26-8)

If this is inserted into Eq. 26-5, and both sides are divided by v2χ(x)τ(t) then

1
v2τ(t)

d2τ(t)
dt2

=
1

χ(x)
d2χ(x)
dx2

(26-9)

Note that both sides of Eq. 26-9 depend on different variables and observe Fig. 26-28.
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Figure 26-28: If two functions, T (t) and X(x), depend on different variables and are equal,
then they can only be constant χ(x) = τ(t) = λ

Thus, both sides of Eq. 26-9 can be set equal to a separation constant λ:

1
χ(x)

d2χ

dx2
= λ or

d2χ

dx2
− λχ = 0 (26-10)
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and
1

v2τ(t)
d2τ

dt2
= λ or

d2τ

dt2
− λv2τ = 0 (26-11)

For Eq. 26-10, the boundary conditions (Eq. 26-6) can also be written in terms of χ(x):

χ(x = 0) = 0 and χ(x = L) = 0 (26-12)

As advertised, ODEs are generated (Eqs. 26-10 and 26-11) in the process of solving the PDE 26-5.
As only Eq. 26-10 has a boundary condition, it is solved first; in general its solution appears as:

χ(x) =


A+ exp(

√
λx) +B+ exp(−

√
λx) 0.25in ifλ > 0

A0x+B0 ifλ = 0
A− cos(

√
−λx) +B− sin(

√
−λx) 0.25in ifλ < 0

(26-13)

The boundary conditions 26-12 place an initial restriction on the separation constant λ > 0 and specify
that χ(x) must be a sum of sines and cosines. Furthermore, trying to solve Eqs. 26-12 at x = 0
shows that A− = 0; at x = L, solutions must coincide with any of the zeroes of the eigenfunction
sin(kx) = sin(

√
−λx), or

λn =
−n2π2

L2
= −k2

n n = 1, 2, 3, . . . (26-14)

The λn (or equivalently the kn) become eigenvalues of the ODE and generate an infinity of eigenfunc-
tions with independent amplitudes An: χn(x) = An sin(nπx/L).

This infinity of eigenfunctions are needed to satisfy the initial conditions Eqs. 26-7, but first the
solution to the second ODE 26-11 must be obtained for the the restriced set of eigenvalues for the
separation constant:

d2τ

dt2
+
n2π2

L2
v2τ = 0 (26-15)

so that, in general,

τn(t) = E?
n cos(

nπvt

L
) +O?

n sin(
nπvt

L
) (26-16)

and therefore with Eq. 26-8, the superposition of all solutions is

h(x, t) =
∞∑

n=1

τn(t)χn(x)

=
∞∑

n=1

(
En cos

nπvt

L
+On sin

nπvt

L

)
sin

nπx

L

(26-17)

And the initial conditions become

h(x, 0) =
∞∑

n=1

τn(0)χn(x) =
∞∑

n=1

En sin
nπx

L
(26-18)

(the sine (odd) coefficients are not needed in this case) and determination of the coefficients is reduced
to the Fourier representation. For the initial conditions in Eq. 26-7, these can be computed using
Eq. ??:

En =
AL2 sin 2πn`

L

(2πn)2`(L− `)
(26-19)

giving a solution:

h(x, t) =
∞∑

n=1

AL2 sin 2πn`
L

(2πn)2`(L− `)
cos

nπvt

L
sin

nπx

L
(26-20)

The Shrödinger equation for a central potential serves as a more involved example for the method
of separation of variables and is provided in the following section.



MIT 3.016 Fall 2006 Lecture 26 c© W.C Carter 223

Special Functions in the Eigenfunctions of the Hydrogen Atom

The time-independent Shrödinger for the electron in a hydrogen atom is a partial differential equation
involving three spatial variables. If the mass of the nucleus can be considered very large compared to
that of an electron, then it is reasonable to fix the center of a spherical 1/r–potential at the origin and
use spherical coordinates (r, θ, φ) to express the Shrödinger equation:18

~2

2me
∇2ψ + V ψ = Eψ

~2

2me

[
1
r2

∂

∂r

(
r2
∂

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
r2 sin2 θ

∂2

∂φ2

]
ψ − Ze2ψ

εor
= Eψ

(26-21)

Here, φ wraps around like longitude and φ goes north and south from the equator (θ=0) like latitude.
Because the potential depends only on r, the initial separation is between the radial and angular

parts,
ψ(r, θ, φ) = ρ(r)Y (θ, φ) (26-22)

which separates Eq. 26-21 into

1
ρ

d

dr

(
r2
dρ

dr

)
+

2mer
2

~2

(
E +

Ze2

εor

)
=

1
Y

[
1

sin θ
∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1
sin2 θ

∂2Y

∂φ2

] (26-23)

Therefore, the two sides must be equal to a separation constant λ. The radial part becomes

1
r2

d

dr

(
r2
dρ

dr

)
+

[
2me

~2

(
E − Ze2

εor

)
− λ

r2

]
ρ = 0 (26-24)

and the angular part becomes

1
sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1
sin2 θ

∂2Y

∂φ2
+ λY = 0 (26-25)

Solutions to Eq. 26-25 are related to the spherical harmonics and can be derived through another
separation of variables. Putting

Y (θ, φ) = Θ(θ)Φ(φ) (26-26)

into Eq. 26-25 gives
1
Φ
d2Φ
dφ2

= −m2 =
− sin θ

Θ
d

dθ

(
sin θ

dΘ
dθ

)
− λ sin2 θ (26-27)

where the separation constant, −m2, is explicitly set to a negative quantity reflecting that Φ must have
periodic solutions, i.e., the two separated ODEs are:

0 =
d2Φ
dφ2

+m2Φ

0 =
1

sin θ
d

dθ

(
sin θ

dΘ
dθ

) (
λ− m2

sin2 θ

)
Θ

(26-28)

The first of these has the same form as Eq. 26-10 (solutions given by Eq. 26-13) but here the solutions
will be written as

Φ(φ) = A+e
ımφ +A−e

−ımφ (26-29)
18To treat the hydrogen atom more accurately, the reduced mass m̃ = 1/(1/m + 1/M), weighted coordinates x̃ =

(mxm + MxM )/M etc., and relative positions ∆x = xm − xM , etc., would produce PDEs for the entire system and for
the relative positions.
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because the wavefunction is complex in general. Here, m, indicated how many maxima that the
latitudinal part of φ will have, and the two different A multiply wavefunctions that are out-of-phase
by π. Either solution can be obtained by changing the sign of m, therefore in general

Φm(φ) =
1√
2π
eımφ m = 0,±1,±2, . . . (26-30)

where the prefactor normalizes Φ so that
∫ 2π
0 ΦmΦ∗mdφ = 1.

The second of Eqs. 26-28 has the same form as Eq. 26-3 for which the relevant solution (because
they are bounded) if an only if

λ = `(`+ 1) and |m| ≤ ` for ` = 0, 1, 2, . . . (26-31)

Putting all of this together and normalizing, the spherical harmonic part of the H-atom orbital (Eq. 26-
25) is:

Y`,m = σ(m)

√
2l + 1

4π
(`− |m|)!
(`+ |m|)!

P`,m(cos θ)eımφ (26-32)

where σ(m) = 1 if m ≤ 0 or m even, and σ(m) = −1 for odd-positive m.
Finally, for the radial part of the H-atom orbital (Eq. 26-24) with λ = `(`+ 1) becomes an ODE in

r:
1
r2

d

dr

(
r2
dρ

dr

)
+

[
2me

~2

(
E − Ze2

εor

)
− `(`+ 1)

r2

]
ρ = 0 (26-33)

where E < 0 defines a bound state.
This equation can also be solved analytically, and it has integer eigenvalues n > ` ≥ |m|:

ρn,`(r) = −

√(
2Z
na0

)3 (n− `− 1)!
2n[(n+ `)!]3

exp(
−Zr
na0

)
(
−2Zr
na0

)`

Ln+1,2`+1

(
2Zr
na0

)
(26-34)

where a0 = ~2ε0/mee
2 is the Bohr radius and the Lq,p is yet another special function—c’est LaGuerre

polynomials.
The Hydrogen orbitals are visualized in the following example.
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Lecture 26 Mathematica R© Example 2

Visualizing the Hydrogen atom eigenfunctions

Download notebooks, pdfs, or html from http://pruffle.mit.edu/3.016-2006.

This example is still in progress—it has not been check for accuracy yet.

1: This example will be completed at a later date.
Functions to displayy y* will be developed.

Lengthswill be normalized so that theBohr radius is 1 and Z = 1

1

k@n_D := k@nD =
1

ÅÅÅÅÅÅÅÅ
n

A@n_ , L_D := A@n , LD = $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Factorial@n- L - 1D
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 n HFactorial@n + LDL3

prefactor@n_, l_D := prefactor@n, lD = A@n, lD H2 k@nDL3ê2

2
spherefactor@l_, m_D :=
spherefactor@l, mD =

2 l + 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 p

 
Factorial@l-mD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Factorial@l+mD

3 SquareRadialPart@n_, l_, r_D := Hprefactor@n, lD
Exp@- rD H2 rLl LaguerreL@n- l- 1, 2 l + 1, 2 rDL2

4

SquareAngularPart@l_, m_, prob_, q_, f_D :=
H*q is longitude*L
Module@8ctheta = Cos@qD, r<,
r = prob * Hspherefactor@l, mD LegendreP@l, m, cthetaDL2 ;
Return@8r Cos@fD ctheta, r Sin@fD ctheta, r Sin@qD<D

D
5 << Graphics`FilledPlot`

6 << Graphics`ParametricPlot3D`

http://pruffle.mit.edu/3.016-2006/Notebooks/L26/Lecture-26.nb
http://pruffle.mit.edu/3.016-2006/pdf/L26/Lecture-26-2.pdf
http://pruffle.mit.edu/3.016-2006/html/Lecture-26/HTMLLinks/index_2.html
http://pruffle.mit.edu/3.016-2006
http://pruffle.mit.edu/3.016-2006/html/Lecture-26/HTMLLinks/index_2.html
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